Problemas seleccionados para actividad de TRABAJO AUTONOMO realizado realizado por los l os estudiantes de l a materia ELECTROTECNIA 2017 ESPOL (4 carillas) escoja entre circuitos magnéticos y transformadores 10 prob. CIRCUITOS MAGNETICOS. MAGNETICOS. 1.- Calcular la intensidad que debe aplicarse a la bobina del circuito magnético de la Figura, para establecer en la columna derecha un flujo de 10-3Wb. La permeabilidad relativa se supone que es constante en todos los puntos y de valor μr =400, =400, Y la sección S= 10 cm2 es la misma en toda la estructura, excepto en la columna izquierda, que vale 20 cm2. La longitud l es igual a 10 cm. Calcular también el flujo en el brazo central. [Resp.: I= 9,95 A; Φ= 2,2 mWb.]
2.- Un circuito magnético tiene una sección uniforme de 8 cm 2 y una longitud magnética media igual a 0,3 metros. Si la curva de magnetizaci6n del material viene expresada aproximadamente por la ecuación:
Calcular la c.c. en amperios que debe introducirse en la bobina de excitación, que tiene 100 espiras, para producir un flujo en el núcleo de 8x10-4Wb. [Resp.: 0,42 A]
3.- Calcular la corriente necesaria en la bobina de la Figura, para producir una densidad de flujo en el entrehierro igual a 0,8 Teslas. El núcleo está hecho de un material cuya curva de imanaci6n viene dada por:
[Resp.: 6,83 A]
4.- En la estructura magnética mostrada en la Figura, la densidad de flujo en el entrehierro de la derecha es de 1 Wb/m 2. El núcleo está hecho de un material cuya curva de imanación viene dada por:
la longitud l =10 cm y la sección transversal es uniforme y vale 5 cm2. Calcular las corrientes I1 e I2 que deben circular por las bobinas para que el flujo f lujo en el entrehierro izquierdo sea nulo.
5.- La estructura magnética mostrada en la Figura está construida con un material cuya curva de imanación se expresa por:
La longitud de la trayectoria magnética media en el núcleo es igual a 0,75 m. Las medidas de la sección transversal son de 6 x 8 cm 2.La longitud del entrehierro es de 2 mm y el flujo en el mismo es igual a 4 mWb (en el sentido indicado en la Figura). Determinar el número de espiras de la bobina B. [Resp.: N B≈ 1.237 espiras.] 6.- EI núcleo magnético mostrado en la Figura tiene una sección transversal uniforme igual a 100 cm 2. La bobina A tiene 1.000 1.000 espiras, circulando una c.c. de 0,5 A en la dirección indicada. Determinar la corriente B , para conseguir un flujo nulo en el brazo I br azo central. centr al. La permeabilidad relativa es μr = 200. [Resp.: 18= 1,25 A]
7.- El circuito magnético de la Figura está construido con un material, cuya curva de magnetización viene dada por:
La sección de la columna central vale 50 cm 2 y en el resto es uniforme y de valor 25 cm 2. Si N1 =N 2 =360 espiras, calcular el valor de I1 = I2 para producir un flujo de 5x10-3 Wb en el entrehierro. [Resp.: 11,32 A] 8.- La estructura magnética de la Figura está fabricada con dos tipos de materiales, cuyas curvas de magnetización vienen expresadas por las ecuaciones:
Calcular la intensidad I que debe circular por la bobina para producir un flujo de 1.5x10 -4 Wb, si la sección es uniforme y vale 15 cm 2. [Resp.: 1 A.] 9.- La máxima densidad de flujo de operación operaci ón de un electroimán usado usad o para elevar cargas es de 1.9 T y el área efectiva de la cara de un polo tiene sección circular. Si el flujo magnético total es de 611 mWb determine el radio de la cara del polo. (Respuesta: 32 cm.). 10.- Encuentre la fuerza magnética de la fuerza magnetomotriz magnetomotri z necesaria para producir una densidad densid ad de flujo de 0.33 T en una abertura de aire aire de longitud de 15 mm. (Respuesta: 32 cm.). cm.). 11.- Para el circuito magnético mostrado en la figura encuentre la corriente I en la bobina necesaria para producir un flujo de 0.45 mWb en la abertura de aire. El circuito magnético es de hierro con silicio (silicon iron) y tiene una sección transversal transversal de 3 cm2 y su curva de magnetización es mostrada. (Respuesta: 0.83 A)
12.- La figura muestra un circuito magnético de un relay. Cuando cada entrehierro es de 1.5 mm de ancho encuentre la fmm requerida para producir un flujo de densidad de 0.75 T en los entrehierros. Use la curva B – H del ejercicio anterior.
TRANSFORMADORES MONOFASICOS IDEALES 1.- Encuentre la impedancia impedancia Zab en el el circuito de la figura si ZL = 80 / 60o .
2.- a) Encuentre la potencia promedio disipada en cada resistencia del circuito de la Figura. b) compruebe que la potencia potencia entregada es es igual a la potencia potencia absorbida. absorbida.
3.- a) Encuentre la potencia promedio entregada por la fuente de corriente senoidal del circuito de la figura. b) Encuentre la potencia disipada disipada por la resistencia resistencia de 20 .
4.- La fuente de voltaje en el circuito de la figura entrega un voltaje rmas de 2000 V. La carga de 4 en el circuito absorbe 4 veces más potencia que la carga de 25 . Las dos cargas están acopladas a la fuente senoidal que tiene una impedancia interna de 500/0° k . a) Especifique los valores numéricos de a1 y a2. b) Calcule la potencia potencia entregada entregada a la carga carga de 25 . c) Calcula el valor rms del voltaje en la resistencia de 4 .
5.- a) Encuentre Encuentre la relación relación del vueltas N1/N2 para el transformador ideal del circuito de la figura de manera que la máxima transferencia de potencia es entregada a la carga de 400 . b) Encuentre la potencia promedio promedio entregada a la carga de 400 400 . c) Encuentre el voltaje V 1. d) ¿Qué porcentaje de la potencia entregada por la fuente de corriente ideal es liberad por la carga de 400 ?
6.- La impedancia de carga Z L en el circuito es ajustado hasta que la máxima transferencia transferencia de potencia es transferida a ZL. a) Especifique el valor de ZL si N1 = 3600 vueltas y N2 = 600 vueltas. b) Especifique los valores de de IL y VL cuando ZL está absorbiendo la máxima potencia promedio.
7.- El voltaje senoidal de la fuente en el circuito de la figura está operando a una frecuencia de 20 Krad/s. La reactancia capacitiva variable en el circuito es ajustada hasta que la potencia promedio liberada a la resistencia de 100 es la máxima posible. a) Encuentre el valor de C en microfaradios. b) ¿Cuándo C tiene tiene el valor encontrado encontrado en (a), cual es la potencia promedio promedio entregada entregada a la resistencia resistencia de 100 ? c) Reemplace la resistencia de 100 con una resistencia r esistencia variable R o. Especifique el valor de Ro para tener la máxima potencia promedio promedio entregada entregada a R o d) ¿Cuál es la máxima potencia promedio que puede ser entregada a R o?
8.- Encuentre la potencia promedio entregada a la resistencia de 10 en el circuito de la figura.
9.- La fuente de voltaje en el dominio fasorial en la figura es 25 / 0° kV. Encuentre la amplitud y el ángulo de fase de V2 e I2.
10.- Determine I1 e I2 en el circuito de la figura.
11.- En referencia al circuito de la figura, determine la potencia absorbida por el resistor de 2 . Suponga que 80 V es un valor en rms.
12.- Obtenga V1 y V2 en el circuito con transformador ideal de la figura.
13.- En relación con el circuito que se muestra en la figura, halle el valor de la potencia promedio absorbida por el resistor de 8 .
14.- a) Halle I1 e I2 en el circuito de la figura. b) Cambie la marca en uno de los devanados. Halle de nuevo
I1 e I2.
15.- Halle Ix en el circuito con transformador ideal de la figura.