1
Pada grup telah dipelajari himpunan dengan satu operasi. Sekarang akan dipelajari himpunan dengan dua operasi.
Ilustrasi 1.1
Perhatikan himpunan (a)
Apakah
5
5
0,1,2,3,4 .
grup terhadap operasi penjumlahan? Jelaskan pendapatmu!
Gunakan tabel Cayley bila perlu! (b)
Apakah pada
5
berlaku sifat komutatif pada penjumlahan?
(c)
Apakah pada
5
berlaku sifat asosiatif terhadap perkalian?
(d)
Selidiki pula apakah pada
5
berlaku sifat distributif kiri dan kanan?
Jelaskan pendapatmu! (e)
Perhatikan jawabmu pada (a) – (d). Tuliskan kembali sifat-sifat yang kamu temukan dalam
5
.
Ilustrasi 1.2
a b , , , a b c d . c d
Perhatikan himpunan M 2 ( ) (a)
Apakah M 2
grup terhadap operasi penjumlahan? Jelaskan pendapatmu!
Gunakan tabel Cayley bila perlu! (b)
Apakah pada M 2
berlaku sifat komutatif pada penjumlahan?
(c)
Apakah pada M 2
berlaku sifat asosiatif terhadap perkalian?
(d)
Selidiki pula apakah pada M 2 Jelaskan pendapatmu!
berlaku
sifat distributif kiri dan kanan?
2
(f)
Perhatikan jawabmu pada (a) – (a) – (d). (d). Tuliskan kembali sifat-sifat yang terdapat dalam M 2
.
Jika himpunan dengan operasi penjumlahan membentuk grup komutatif dan terhadap operasi perkalian memenuhi sifat asosiatif dan distributif, maka himpunan dengan dua operasi biner tersebut dikenal sebagai ring. Berikut ini adalah definisi ring secara rinci.
Definisi 1.1
Ring
Ring R R adalah suatu himpunan dengan dua operasi biner, yaitu penjumlahan
(dinyatakan dengan a+b) a+b) dan perkalian (dinyatakan dengan ab), ab), sehingga untuk semua a,b,c di R di R,, berlaku sifat-sifat berikut: 1.
abba.
2.
a b c a b c .
3.
Terdapat elemen 0 di R di R sehingga sehingga a 0 a .
4.
Terdapat elemen – a di R di R sehingga sehingga a a 0.
5.
ab c a bc .
6.
a b c ab ac dan b c a ba ca.
Latihan 1.1
Perhatikan kembali definisi ring secara keseluruhan. Apakah pada ring berlaku sifat komutatif pada perkalian? Adakah elemen kesatuan dan invers perkalian pada ring? Jelaskan pendapatmu!
Latihan 1.2
Perhatikan sifat asosiatif pada ring. Dengan adanya sifat tersebut, apakah kita dapat menuliskan operasinya sebagai Jelaskan pendapatmu.
ab c a bc abc ,
tanpa tanda kurung?
2
(f)
Perhatikan jawabmu pada (a) – (a) – (d). (d). Tuliskan kembali sifat-sifat yang terdapat dalam M 2
.
Jika himpunan dengan operasi penjumlahan membentuk grup komutatif dan terhadap operasi perkalian memenuhi sifat asosiatif dan distributif, maka himpunan dengan dua operasi biner tersebut dikenal sebagai ring. Berikut ini adalah definisi ring secara rinci.
Definisi 1.1
Ring
Ring R R adalah suatu himpunan dengan dua operasi biner, yaitu penjumlahan
(dinyatakan dengan a+b) a+b) dan perkalian (dinyatakan dengan ab), ab), sehingga untuk semua a,b,c di R di R,, berlaku sifat-sifat berikut: 1.
abba.
2.
a b c a b c .
3.
Terdapat elemen 0 di R di R sehingga sehingga a 0 a .
4.
Terdapat elemen – a di R di R sehingga sehingga a a 0.
5.
ab c a bc .
6.
a b c ab ac dan b c a ba ca.
Latihan 1.1
Perhatikan kembali definisi ring secara keseluruhan. Apakah pada ring berlaku sifat komutatif pada perkalian? Adakah elemen kesatuan dan invers perkalian pada ring? Jelaskan pendapatmu!
Latihan 1.2
Perhatikan sifat asosiatif pada ring. Dengan adanya sifat tersebut, apakah kita dapat menuliskan operasinya sebagai Jelaskan pendapatmu.
ab c a bc abc ,
tanpa tanda kurung?
3
Latihan 1.3
Perhatikan sifat distributif pada ring. Sifat a b c menyatakan bahwa kita dapat menjumlahkan terlebih dahulu baru diikuti dengan perkalian kiri. Akan sama saja dengan perkalian kiri dahulu diikuti dengan penjumlahan. Berikan komentar Anda mengenai b c a .
Ilustrasi 1.3
Suatu ring yang mempunyai mempunyai sifat komutatif pada perkalian disebut ring komutatif . Bila suatu ring mempunyai elemen kesatuan terhadap perkalian, maka dikatakan ring tersebut mempunyai elemen kesatuan (unity ( unity). ). Bila suatu elemen tak nol pada suatu ring komutatif (dengan elemen kesatuan), mempunyai invers terhadap perkalian, maka dikatakan elemen tak nol tersebut sebagai satuan (unit ) dari ring tersebut. Dengan kata lain, misalkan a elemen ring komutatif R, R, dengan a 0 , maka a dikatakan unit dari ring R ring R bila bila a 1 ada.
Jika a dan b adalah anggota ring komutatif R komutatif R dan dan a tak nol, dikatakan a membagi b (a faktor dari b) dan ditulis a b , jika ada elemen c di R di R sehingga sehingga b ac. Bila tidak demikian, maka dikatakan a tidak membagi b, ditulis a∤b.
Latihan 1.4
Perhatikan himpunan bilangan bulat Apakah
suatu ring? Bila ya, apakah
dengan operasi penjumlahan dan perkalian. suatu ring komutatif? Jelaskan alasanmu
dan tentukan elemen kesatuan dan satuan dari
, bila ada!
Latihan 1.5
Apakah himpunan bilangan bulat modulo n,
n
,1,2,...., n 1 , dengan operasi 0,1,2,.
penjumlahan dan perkalian, merupakan ring komutatif? Apakah ia mempunyai elemen kesatuan? Apakah Apakah mempunyai mempunyai satuan? Jelaskan pendapatmu! pendapatmu!
4
Latihan 1.6
Apakah himpunan bilangan bulat genap 2 , dengan operasi penjumlahan dan perkalian, merupakan ring komutatif? Carilah elemen kesatuannya, bila ada!
Latihan 1.7
Himpunan semua matriks 2 2, M 2 ( ) , dengan elemen-elemennya (entries) adalah bilangan bulat, merupakan ring nonkomutatif, dengan elemen kesatuannya
1 0 . Selidiki kebenaran pernyataan tersebut! 0 1
adalah
Latihan 1.8
Himpunan dari semua fungsi kontinu bernilai real dari suatu variabel real yang grafiknya melalui titik (1,0), adalah ring komutatif tanpa elemen kesatuan, terhadap operasi penjumlahan dan perkalian titik demi titik [yaitu operasi
( f g )(a) f (a) g (a) dan ( fg )(a) f (a) g ( a) ]. Benarkah pernyataan tersebut? Jelaskan pendapatmu!
Ilustrasi 1.4
Misalkan R1 , R2 ,..., Rn adalah ring. Misalkan
R1 R2 ... Rn a1 , a2 ,..., an ai Ri , dengan penjumlahan perkomponen didefinisikan sebagai berikut:
a1 , a2 ,..., an b1 , b2 ,..., bn a1 b1 , a2 b2 ,..., an bn , dan perkalian perkomponen didefinisikan sebagai berikut:
a1 , a2 ,..., an b1 , b2 ,..., bn a1b1 , a2 b2 ,..., anbn . Ring yang demikian ini disebut sebagai jumlah langsung (direct sum) dari
R1 , R2 ,..., Rn .
5
1.1 Sifat-sifat Ring Teorema 1.1 Aturan Perkalian
Misalkan a,b, dan c anggota ring R. Maka, 1.
a0 0a 0
2.
a(b) (a)b (ab)
3.
(a)(b) ab
4.
a(b c) ab ac dan (b c)a ba ca
Selanjutnya, jika R mempunyai elemen kesatuan 1, maka 5.
(1)a a
6.
(1)(1) 1.
Latihan 1.9
Buktikan teorema tersebut. Petunjuk: 1. Gunakan sifat a0 a (0 0) dan invers terhadap penjumlahan. 2. Mulailah dengan a0 a (b b ) dan sifat 1. 3. Untuk aturan 3-6, mulailah membuktikan dari informasi yang kamu ketahui.
Latihan 1.10
Berikan sebuah contoh suatu ring nonkomutatif yang berhingga.
Latihan 1.11 2 2 Misalkan R sebuah ring. Buktikan bahwa a b a b a b untuk semua a, b
di R jika dan hanya jika R komutatif.
Latihan 1.12
Tunjukkan bahwa jika m dan n bilangan bulat dan a dan b elemen dari ring, maka
m a n b mn ab . Petunjuk:
m a a a ... a . m
6
Teorema 1.2 Ketunggalan dari Elemen kesatuan dan Invers
Jika suatu ring mempunyai elemen kesatuan, maka tunggal. Jika setiap unsur di suatu ring mempunyai invers, maka tunggal.
Latihan 1.13
Buktikan Teorema 1.2 tersebut.
Latihan 1.14
Selidiki apakah ring A 0,2,4,6,8 terhadap penjumlahan dan perkalian modulo 10 mempunyai elemen kesatuan. Carilah tersebut, bila ada!
Latihan 1.15
Misalkan R ring dengan elemen kesatuan 1 dan a adalah elemen dari R sehingga a 2 1 . Misalkan S ara r R . Buktikan bahwa S ring dengan operasi yang sama dari R. Apakah S memuat 1?
1.2 Subring
Ilustrasi 1.5
Perhatikan ring
6
. Himpunan A 0,2,4 adalah subset dari
A merupakan ring dari himpunan
6
6
. Periksa apakah
. Carilah elemen kesatuannya, bila ada. Perhatikan pula
, yang merupakan subset dari ring
katakan tentang hubungan antara
Definisi 1.2
6
6
dan
12
12
. Apakah yang dapat kamu
? Jelaskan pendapatmu.
Subring
Suatu subset S dari suatu ring R adalah subri ng dari R jika S sendiri ring dengan operasi dari R.
7
Latihan 1.16
Tunjukkan bahwa 2
3 bukan subring dari
.
Latihan 1.17
Jelaskan mengapa setiap subgrup dari subring dari
n
n
terhadap penjumlahan juga merupakan
.
Teorema 1.3 Tes Subring
Subset tak kosong S dari ring R adalah subring jika S tertutup terhadap pengurangan dan perkalian, yaitu jika a b dan ab terdapat di S bilamana a dan b ada di S .
Latihan 1.18
Buktikan teorema tersebut. Petunjuk: gunakan tes subgrup satu tahap.
Latihan 1.19
Misalkan M 2
sebuah ring dari semua matriks ukuran 2x2 yang beranggotakan a a b , a b . Selidiki apakah R subring a b b
bilangan bulat. Misalkan R dari M 2
.
Latihan 1.20
F adalah ring, tetapi F \ 0 , juga membentuk grup. Selidiki eksistensi dan ketunggalan persamaan linier ax b c .
Latihan 1.21
Persamaan linier di ring R dengan a, b, c R adalah ax b c. Selidiki kapan persamaan linier tersebut mempunyai jawab dan kapan jawab tersebut tunggal.
8
2.1. Pembagi Nol, Integral Domain dan Lapangan
Ilustrasi 2.1.
Pembagi Nol
Perhatikan himpunan
5
dengan operasi penjumlahan dan perkalian.
1.
Selidiki apakah
2.
Buatlah tabel Cayley untuk
3.
Perhatikan unsur-unsur dalam tabel tersebut. Apakah 2 membagi 3? Sebutkan
5
merupakan ring komutatif. 5
terhadap operasi perkalian.
unsur pembagi 3 yang selain 2. 4.
Apakah 4 membagi 1? Adakah unsur pembagi 1 selain 4? Perhatikan, bila
ab 1 , maka dikatakan a membagi 1 atau b membagi 1. Demikian pula a pembagi 1 atau b pembagi 1. Apakah syarat agar a atau b dikatakan pembagi suatu bilangan? Jelaskan pendapatmu. 5.
Misalkan a
5
, a 0 . Dapatkah kamu temukan b
5
, b 0 , sedemikian
sehingga ab 0? Dengan kata lain, dapatkah kamu menemukan pembagi nol a dalam 6.
5
? Jelaskan pendapatmu.
Periksa apakah dalam
Definisi 2.1.
6
terdapat elemen pembagi nol? Jelaskan jawabmu.
Pembagi Nol
Pembagi nol adalah suatu elemen tak nol a dari suatu ring komutatif R sedemikian
sehingga ada suatu elemen tak nol b R dengan ab 0 .
Latihan 2.1.
Tuliskan elemen-elemen dari Sebutkan pula unit dari
10
10
dan sebutkan pembagi-pembagi nol dalam
10
.
. Periksa apakah ada hubungan antara pembagi nol
9
dengan unit dari dari
10
10
. Apakah yang dapat kamu simpulkan tentang elemen-elemen
tersebut?
Latihan 2.2.
Misalkan a dan b adalah elemen-elemen dari suatu ring, yang mempunyai sifat: a dan b adalah pembagi nol, a b 0 , dan a b bukan pembagi nol. Carilah beberapa ring yang memenuhi sifat-sifat demikian dan sebutkan elemen a dan b nya.
Latihan 2.3.
Misalkan a dan b adalah elemen suatu ring komutatif dan ab adalah pembagi nol. Tunjukkan bahwa a atau b adalah pembagi nol.
Latihan 2.4.
Jika a dan b bukan pembagi nol, buktikan bahwa ab bukan pembagi nol.
Latihan 2.5.
Tentukan pembagi nol dalam Z5 i a bi a , b Z 5 , dengan i 2 1.
Ilustrasi 2.2.
Integral Domain
Perhatikan kembali Ilustrasi 2.1 tentang perkalian. Apakah
5
5
dengan operasi penjumlahan dan
merupakan ring komutatif? Apakah
kesatuan? Sebutkan elemen kesatuannya. Apakah
5
5
mempunyai elemen
mempunyai unsur pembagi
nol? Bila ya, sebutkan unsur pembagi nolnya. Selidiki pula himpunan 6
,
7
,
9
,
11
, dan
15
. Jelaskan jawabmu.
Ring komutatif yang mempunyai elemen kesatuan, tetapi tidak mempunyai elemen pembagi nol disebut sebagai integral domain. Dari Ilustrasi 2.2 tersebut dapat disimpulkan bahwa
5
,
7
integral domain berikut ini.
,
11
merupakan integral domain. Perhatikan definisi
10
Definisi 2.2.
Integral domain
Integral domain adalah suatu ring komutatif dengan elemen kesatuan dan tanpa
elemen pembagi nol.
Latihan 2.6.
Selidiki apakah
n
, ring bilangan bulat modulo n, adalah integral domain. Jika n
adalah bilangan prima p, apakah
p
integral domain? Jelaskan jawabmu.
Latihan 2.7.
Berikan dua contoh ring (selain ring bilangan bulat modulo n) yang merupakan integral domain dan bukan integral domain.
Latihan 2.8.
Berikan contoh ring komutatif tanpa pembagi nol yang bukan integral domain.
Latihan 2.9.
Tunjukkan bahwa suatu ring komutatif berhingga dengan tanpa pembagi nol dan paling sedikit mempunyai dua elemen, mempunyai suatu elemen kesatuan.
Latihan 2.10.
Tunjukkan bahwa
a, b a, b
adalah bukan integral domain.
Latihan 2.11.
2 a b 2 a, b
a)
Periksa apakah ring
b)
Periksa pula apakah ring domain.
n
merupakan integral domain.
2 a b 2 a, b
n
merupakan integral
11
Ilustrasi 2.3. Nilpoten
Misalkan a adalah elemen suatu ring R dengan elemen kesatuan. Elemen a dikatakan nilpoten jika a n 0, untuk n bilangan bulat positif. Periksa apakah
0 1 0 0 1 A dan B 0 0 1 merupakan nilpoten. Jelaskan jawabmu. 0 0 0 0 0
Latihan 2.12.
Tunjukkan bahwa 0 adalah satu-satunya elemen nilpoten dalam integral domain.
Latihan 2.13.
Tunjukkan bahwa elemen nilpoten dalam suatu ring komutatif membentuk suatu subring. Ilustrasi 2.4. Idempoten
Suatu elemen a dari suatu ring disebut idempoten jika a 2 a. Selidiki apakah
1 0 0 0 0 A dan B 0 1 0 merupakan idempoten. Jelaskan jawabmu. 0 0 0 0 1
Latihan 2.14.
Buktikan bahwa satu-satunya idempoten dalam suatu integral domain adalah 0 atau 1.
Teorema 2.1. Pembatalan
Misalkan a, b, dan c adalah elemen-elemen suatu integral domain. Jika a 0 dan
ab ac , maka b c.
Latihan 2.15.
Buktikan Teorema 2.1 tersebut. Petunjuk: mulailah dari persamaan ab ac. Latihan 2.16.
12
Tunjukkan bahwa suatu ring komutatif dengan sifat pembatalan (terhadap operasi perkalian) tidak mempunyai pembagi nol. Ilustrasi 2.5.
Perhatikan ring A 0,3,6,9 yang merupakan subring dari bilangan bulat modulo 12
. Selidiki apakah ring A tersebut merupakan ring komutatif. Apakah elemen
kesatuannya? Apakah setiap elemen taknolnya adalah unit (mempunyai invers)?
Perhatikan juga ring R 0,2,4,6,8 terhadap penjumlahan dan perkalian modulo 10. Selidiki apakah R merupakan ring komutatif. Adakah elemen kesatuannya? Selidiki pula apakah setiap elemen taknolnya mempunyai invers.
Bila ring A dan R tersebut merupakan ring komutatif, yang mempunyai elemen kesatuan dan setiap elemennya tak nolnya mempunyai invers, maka A dan R dikatakan lapangan. Perhatikan definisi berikut ini.
Definisi 2.3.
Lapangan
Lapangan adalah suatu ring komutatif dengan elemen kesatuan, di mana setiap
elemen taknolnya adalah suatu unit (mempunyai invers).
Latihan 2.17.
Selidiki apakah suatu lapangan merupakan integral domain.
Latihan 2.18. Tes Sublapangan
Misalkan F adalah lapangan dan K adalah subset dari F yang mempunyai paling sedikit dua elemen. Buktikan bahwa K adalah sub lapangan dari F jika untuk sebarang a,b (b 0) di K , a b dan ab 1 adalah elemen K .
13
Latihan 2.19.
Misalkan F adalah lapangan berorde 32. Tunjukkan bahwa satu-satunya sublapangan dari F adalah F sendiri dan 0,1 .
Teorema 2.2. Integral domain Berhingga adalah Lapangan
Suatu integral domain berhingga adalah suatu lapangan.
Latihan 2.20.
Buktikan Teorema 2.2 tersebut. Petunjuk: 1. Misalkan D adalah integral domain berhingga dengan elemen kesatuan 1. 2. Misalkan a D, a 0. Tunjukkan bahwa a adalah unit. 3. Selidiki untuk a 1 dan a 1.
Latihan 2.21.
Tuliskan elemen-elemen dari
2
i a bi
modulo 2. Buatlah tabel perkalian untuk
a, b 2
i .
2
, ring bilangan bulat Gauss
Selidiki apakah ring tersebut
merupakan integral domain atau lapangan.
Latihan 2.22.
Misalkan a dan b adalah elemen-elemen dari suatu lapangan berorde 8 dan bahwa
a 2 ab b 2 0 . Buktikan bahwa a 0 dan b 0. Bila lapangannya berorde 2n , dengan n ganjil, buktikan pula bahwa a 0 dan b 0.
Akibat:
p
adalah suatu lapangan
Untuk setiap bilangan prima p, ring dari bilangan bulat modulo p ( suatu lapangan.
p
), adalah
14
Latihan 2.23.
Buktikan Akibat dari Teorema 2.2 tersebut. Petunjuk: 1.
Berdasarkan Teorema 2.2, buktikan bahwa
p
tidak mempunyai pembagi
nol. 2.
Misalkan a, b
p
dan ab 0. Ambil ab pk , k
dan tunjukkan bahwa
a 0 atau b 0.
Latihan 2.24.
Tunjukkan bahwa
7
[ 3] {a b 3 a, b
7
} adalah suatu lapangan. Untuk
sebarang bilangan bulat k dan bilangan prima p, dapatkah kamu menentukan suatu kondisi yang perlu dan cukup
p
[ k ] { a b k a, b
p
} agar membentuk
suatu lapangan? Jelaskan jawabmu.
2.2. Karakteristik Ring
Ilustrasi 2.6.
Perhatikan A 0,2,4,6,8 yang merupakan subring dari
5 x x x x x x 0 . Perhatikan juga ring setiap
x
3 x 0, x
3
3
[i],
3 x x x x 0. Bilangan
3
10
. Untuk setiap x A ,
[i ] a bi a , b 3
dan
5
yang
3
. Untuk membuat
[i], dan 5 x 0, x A disebut karakteristik dari suatu ring. Jadi 3
adalah karakteristik dari karakteristik dari
Definisi 2.4.
3
[i], dan 5 adalah karakteristik dari A. Selidiki
. Jelaskan jawabmu.
Karakteristik Ring
Karakteristik dari suatu ring R (notasi: kar R) adalah bilangan bulat positif terkecil n sedemikian sehingga nx 0 , untuk semua x di R. Jika bilangan bulat yang demikian tidak ada, maka dikatakan bahwa ring R tersebut mempunyai karakteristik 0.
15
Latihan 2.25.
Hitunglah
2 a b
karakteristik
2 a, b
dari
dan
4
M 2
a b , , , a b c d , c d
4 a, b a
4
, b4
.
Latihan 2.26.
Misalkan F adalah lapangan yang berorde 2n . Buktikan bahwa kar F = 2.
Latihan 2.27.
Jelaskan mengapa suatu ring berhingga yang mempunyai paling sedikit dua elemen, pasti mempunyai karakteristik tak nol.
Latihan 2.28.
Misalkan F adalah lapangan berkarakteristik 2, yang mempunyai lebih dari dua 3
elemen. Tunjukkan bahwa x y x3 y 3 untuk beberapa x dan y di F .
Teorema 2.3. Karakteristik dari Suatu Ring dengan Elemen Kesatuan
Misalkan R suatu ring dengan elemen kesatuan 1. Jika 1 mempunyai orde tak hingga terhadap penjumlahan, maka karakteristik dari R adalah 0. Jika 1 mempunyai orde n terhadap penjumlahan, maka karakteristik dari R adalah n.
Latihan 2.29.
Buktikan Teorema 2.3 tersebut. Petunjuk: 1. Untuk elemen kesatuan yang mempunyai orde n, n 1 0. 2. Untuk suatu x R, tunjukkan bahwa n x 0.
16
Latihan 2.30.
Misalkan R adalah ring komutatif dengan elemen kesatuan 1 dan karakteristik prima. Jika a R adalah nilpoten, buktikan bahwa ada suatu bilangan bulat positif k
k sedemikian sehingga 1 a 1.
Teorema 2.4. Karakteristik dari suatu Integral domain
Karakteristik dari suatu integral domain adalah 0 atau bilangan prima.
Latihan 2.31.
Buktikan Teorema 2.4 tersebut. Petunjuk: 1. Gunakan Teorema 2.3. 2. Tunjukkan bahwa jika orde penjumlahan dari 1 adalah berhingga, maka karakteristik dari integral domain tersebut adalah prima. 3. Misalkan n st , 1 s, t n , tunjukkan bahwa s n atau t n.
Latihan 2.32.
Misalkan R adalah ring komutatif tanpa pembagi nol. Tunjukkan bahwa karakteristik dari R adalah 0 atau bilangan prima.
Latihan 2.33.
Perhatikan persamaan x 2 5 x 6 0. Carilah semua solusi yang mungkin dari persamaan tersebut di
7
,
8
,
12
dan
14
.
17
Dalam materi grup telah dipelajari mengenai grup faktor (kuosien) dan subgrup normal. Analog dengan subgrup normal dan grup faktor, dalam pembahasan ring kali ini, akan dipelajari ideal dan ring faktor dari suatu ring.
3.1. Ideal
Ilustrasi 3.1.
Perhatikan ring R. 0 dan R adalah subring dari R. Periksa apakah untuk setiap r R dan
a R, ra dan ar terdapat di R. Demikian pula untuk r 0 dan a 0 , selidiki apakah ra dan ar terdapat di 0 . Jelaskan jawabmu.
Perhatikan pula himpunan 2
. Untuk setiap r
apakah ra dan ar terdapat di 2
. Jelaskan pendapatmu.
dan setiap a 2 , selidiki
Ilustrasi 3.2.
Perhatikan kedua contoh pada Ilustrasi 3.1 tersebut. {0} dan R adalah disebut ideal dari R, bila ra dan ar terdapat di R dan {0}. Demikian pula, 2 , bila ra dan ar terdapat di 2
adalah ideal dari
. Istilah khusus untuk ideal {0} adalah ideal
trivial dari R dan ideal R disebut ideal unit dari R. Berikut ini adalah definisi ideal
dari suatu ring.
18
Definisi 3.1.
Ideal
Suatu subring A dari ring R disebut ideal kiri dari R jika untuk setiap r R dan setiap a A , ra terdapat di A. Selanjutnya, subring A disebut ideal kanan dari R jika untuk setiap r R dan setiap a A , ar ada di A. Jika subring A adalah ideal kiri dan kanan dari R, maka A dikatakan ideal (dua sisi) dari R.
Latihan 3.1.
Untuk suatu bilangan bulat positif n, selidiki apakah ring nZ 0, n, 2n,... merupakan ideal dari
.
Ilustrasi 3.3.
Subring A dari ring R adalah suatu ideal dari R jika rA ra a A A dan
Ar ar a A A untuk semua r R. Dengan kata lain, A ideal dari R jika A “menyerap” elemen-elemen dari R terhadap perkalian.
Ilustrasi 3.4.
Perhatikan ring R subset ) dari
. Karena 2
dan subset A 2 . 2
disebut subset murni ( proper
. Dari jawaban Latihan 3.1, diketahui bahwa 2 adalah subset murni, maka ideal 2
adalah ideal dari
disebut ideal murni dari
.
Secara umum, suatu ideal A dari ring R disebut ideal murni dari R jika A adalah subset murni ( proper subset ) dari R.
Teorema 3.1. Tes Ideal
Suatu subset tak kosong A dari suatu ring R adalah sebuah ideal dari R jika 1.
a b A untuk setiap a, b A .
2.
ra dan ar di A untuk setiap a A dan r R .
19
Latihan 3.2.
Buktikan Teorema 3.1 tersebut di atas. Petunjuk: gunakan Tes Subgrup satu tahap.
Latihan 3.3.
a1 a2 ai a3 a4
Misalkan ring R
b1 b2 b j 2 b b 3 4
I
dan I adalah subset dari R, dengan
. Selidiki apakah I ideal dari R.
Latihan 3.4.
Misalkan R adalah ring komutatif dengan elemen kesatuan dan misalkan a R . Apakah himpunan a ra r R adalah sebuah ideal dari R?
Ilustrasi 3.5.
(1)
Bila a ra r R ideal dari R, maka ideal yang demikian disebut ideal prinsipil yang dibangkitkan oleh a.
(2)
Suatu integral domain D disebut domain (daerah) ideal prinsipil ( principal ideal domain = PID) jika setiap ideal dari D mempunyai bentuk
a ad d D untuk suatu a di D.
Latihan 3.5.
Perhatikan ring bilangan bulat. Tentukan bilangan bulat positif a sedemikian sehingga: a). a 2 3 ; b). a 3 6 ; c). a 4 6 ; d). a m n .
Latihan 3.6.
Perhatikan ring bilangan bulat. Carilah bilangan bulat positif a sedemikian sehingga a 3 4 , a 2 3 dan a m n . Latihan 3.7.
20
x an xn an1 xn1 ... a1 x a0
Misalkan semua
x
polinom
f x
x
dengan
koefisien
f (0) 0 subset dari
ai
menyatakan ring dari
bilangan
x . Selidiki
bulat.
Misalkan
apakah x ideal dari
x. Latihan 3.8.
Perhatikan ring bilangan bulat Gaussian subset dari
i . Selidiki apakah
i a bi
2 i ideal dari
a, b
dan
2 i adalah
i .
Latihan 3.9.
Tunjukkan bahwa
adalah suatu domain ideal prinsipil.
3.2. Ring Faktor
Misalkan R ring dan A ideal dari R. Dalam pembahasan Grup, telah dipelajari bahwa R adalah grup terhadap penjumlahan dan A adalah subgrup normal dari R. Dari informasi ini dapat dibentuk suatu grup faktor R / A r A r R . Analog dengan grup faktor, akan dipelajari bagaimana membentuk suatu ring dari grup koset tersebut.
Ilustrasi 3.6.
Ambil n , dan A 6 . Tulis n A n a a A. Sebutkan semua anggota dari 1 A, 2 A, 3 A,... Apakah ada dua himpunan di antara himpunan-himpunan tersebut yang mempunyai anggota bersama?
Ilustrasi 3.7.
Jika n, m , tuliskan
n A m A n m A .
terhadap operasi penjumlahan tersebut.
Buatlah tabel Cayley
21
Ilustrasi 3.8.
Jika n, m , tuliskan
n A m A nm A .
Buatlah tabel Cayley terhadap
operasi perkalian untuk koset tersebut.
Latihan 3.10.
Perhatikan subring 4
dari ring
. Tuliskan
/ 4 n 4
n
. Sebutkan
semua anggota dari ring faktor / 4 . Hitunglah penjumlahan dan perkalian dari
2 4 dan 3 4 , terhadap operasi modulo 4.
Latihan 3.11.
Perhatikan subring 6
dari ring 2
2 / 6 n 6
. Hitunglah penjumlahan dan perkalian dari 4 6
n2
. Sebutkan semua anggota dari ring faktor dan
4 6 terhadap operasi modulo 6.
Teorema 3.2. Keujudan (Eksistensi) dari Ring Faktor
Misalkan R suatu ring dan misalkan A subring dari R. Himpunan koset-koset
R / A r A r R adalah
ring
(faktor)
terhadap
operasi
penjumlahan
s A t A s t A dan operasi perkalian s At A st A , jika dan hanya jika A adalah ideal dari R.
Latihan 3.12.
Buktikan Teorema tersebut. Petunjuk: 1. () Gunakan pengandaian A subring dari R, yang bukan ideal dari R. 2. Ambil elemen a A 0 A dan r A . 3. () Tunjukkan bahwa perkalian terdefinisi dengan baik (well defined ) bila A ideal. 4. Misalkan A ideal dan s A s ' A , t A t ' A .
22
Latihan 3.13.
Perhatikan
ring R dan I pada
Latihan
3.3.
Tuliskan
ring
faktor
r1 r 2 0,1 I r . Ukuran (banyaknya elemen) dari R/I adalah 16. i r r 3 4
R / I
2 4 I , 6 8
Tuliskan semua anggota dari R/I tersebut. Selidiki apakah
1 3 5 7 I ,
5 4 I merupakan anggota dari R/ I . 2 9
dan
Latihan 3.14.
Tuliskan ring faktor dari ring faktor
i / 2 i x 2 i x i . Bila banyaknya anggota
i / 2 i
i / 2 i
ada lima, sebutkan semua anggota dari
.
3.3. Ideal Prima dan Ideal Maksimal
Ilustrasi 3.9.
Perhatikan ideal A 2 ideal murni dari menyebabkan
3 , 4 , 5
a2
dari suatu ring komutatif
. Apakah 2
? Selidiki apakah untuk setiap a, b atau
merupakan
dan ab 2 ,
b 2 . Bagaimanakah bila A adalah ideal
atau 6 ? Selidiki apakah untuk setiap
a, b
dan
ab A ,
menyebabkan a A atau b A.
Definisi 3.2.
Ideal Prima
Ideal prima A dari suatu ring komutatif R adalah ideal murni dari R sedemikian
sehingga a, b R dan ab A mengimplikasikan a A atau b A .
23
Latihan 3.15.
Perhatikan Ilustrasi 3.3. Misalkan n adalah bilangan bulat yang lebih besar dari 1. Pada ring bilangan bulat, ideal n adalah prima jika dan hanya jika n prima. Buktikan pernyataan tersebut.
Latihan 3.16.
Perhatikan Latihan 3.7. Tunjukkan bahwa x merupakan ideal prima dari
x .
Latihan 3.17.
Misalkan R ring komutatif dengan elemen kesatuan, yang mempunyai sifat a 2 a , untuk semua a di R. Misalkan I adalah ideal prima dari R. Tunjukkan bahwa
R / I 2.
Ilustrasi 3.10.
Perhatikan ring komutatif
R
36
. Ideal dari
0 , 2 , 3 , 4 , 6 , 9 , 12 , 18 dan Selidiki apakah terdapat ideal B dari
36
36
36
antara lain adalah
. Misalkan ideal murni A 2 .
, sehingga A B R . Apakah B A
atau B R ? Jelaskan pendapatmu.
Lakukan hal yang sama untuk ideal murni A 3 . Selidiki pula untuk ideal-ideal murni yang lain dari
36
. Bagaimana pendapatmu?
Ideal murni yang memiliki sifat seperti
2 dan 3 tersebut, dikatakan sebagai
ideal maksimal. Berikut ini diberikan definisinya.
Definisi 3.3.
Ideal Maksimal
Ideal murni A dari ring komutatif R adalah ideal maksimal dari R jika untuk setiap B ideal dari R dan A B R , maka B A atau B R .
24
Latihan 3.18.
Tentukan semua ideal maksimal dalam
8
,
10
,
12
, dan
n
.
Latihan 3.19.
Dalam
, misalkan I a, 0 a . Periksa apakah I ideal prima. Apakah
I ideal maksimal? Jelaskan pendapatmu.
Latihan 3.20.
Misalkan x f ( x ) Z x f (0) 0 . Apakah
x
ideal maksimal di
x ?
Jelaskan pendapatmu.
Latihan 3.21.
Selidiki apakah x 2 x 1 ideal maksimal dari
2
x .
Teorema 3.3. R/A adalah integral domain jika dan hanya jika A ideal prima
Misalkan R adalah ring komutatif dengan elemen kesatuan dan misalkan A adalah ideal dari R. Maka R/A adalah integral domain jika dan hanya jika A adalah ideal prima.
Latihan 3.22.
Buktikan teorema tersebut. Petunjuk:
Gunakan
pemisalan R/A
integral domain dan ab A. Tunjukkan bahwa
a A atau b A.
Gunakan
pemisalan A prima
dan
a Ab A ab A 0 A A.
tentukan koset nol di R/A.
Latihan 3.23.
Periksa apakah ring faktor
/ 4 merupakan integral domain.
25
Latihan 3.24.
Selidiki apakah ring faktor 2 / 8 merupakan integral domain.
Teorema 3.4. R/A adalah lapangan jika dan hanya jika A ideal maksimal
Misalkan R adalah ring komutatif dengan elemen kesatuan dan misalkan A adalah ideal dari R. Maka R/A adalah lapangan jika dan hanya jika A ideal maksimal.
Latihan 3.25.
Buktikan teorema tersebut. Petunjuk: (1)
Misalkan
b B , tetapi b A , tentukan elemen tak nol dan identitas
perkalian dari R/ A. (2)
Ambil b A R / A, dan tentukan invers perkaliaannya.
(3)
Misalkan b A c A bc A, tunjukkan bahwa 1 bc A B.
(1)
Gunakan pemisalan A maksimal dan b B , tetapi b A .
(2)
Tunjukkan bahwa b A mempunyai invers perkalian.
(3)
Gunakan
pemisalan
B br a r R , a A .
Bila
1 B
dan
1 bc a ', a ' A, tunjukkan bahwa 1 A b A c A . Latihan 3.26.
Berikan contoh ring komutatif R dengan elemen kesatuan. Tentukan ideal maksimal dari R tersebut. Periksa apakah R/A lapangan. Latihan 3.27.
Misalkan
2
x
Tunjukkan bahwa
adalah ring dari semua polinom dengan koefisien di 2
x /
x 2 x 1 adalah lapangan.
3
x /
x 2 x 1 bukan lapangan.
Latihan 3.28.
Tunjukkan bahwa
2
.
26
Dalam pembahasan grup, telah dibicarakan mengenai grup homomorfisme. Untuk menguji kesamaan atau perbedaan dua buah grup G1 dan G2, digunakan pemetaan : G1 G2 , yang mengawetkan satu operasi grup. Bagaimana dengan ring homomorfisme? Analog dengan grup homomorfisme, untuk menguji kesamaan atau perbedaan dua buah ring R dan S , digunakan pemetaan : R S , yang mengawetkan dua operasi ring.
Ilustrasi 4.1.
Perhatikan pemetaan :
, dengan aturan x 2 x . Apakah pemetaan
tersebut mengawetkan operasi penjumlahan dan perkalian? Apakah pemetaan tersebut pemetaan yang satu-satu dan pada? Jelaskan jawabmu.
Ilustrasi 4.2.
Perhatikan pemetaan :
5
10
, dengan aturan x 5 x . Selidiki apakah
pemetaan tersebut mengawetkan operasi penjumlahan dan operasi perkalian. Jelaskan jawabmu.
Definisi 4.1.
Ring Homomorfisme, Ring Isomorfisme
Ring homomorfisme dari suatu ring R ke suatu ring S adalah pemetaan dari R
ke S yang mengawetkan ( preserved ) dua operasi ring; yaitu untuk semua a, b di R, a b a b dan ab a b .
Ring homomorfisme yang satu-satu dan pada disebut ring isomorfisme. Jika merupakan ring isomorfisme, maka R dan S dikatakan dua ring yang “sama” (isomorf ).
27
Latihan 4.1.
Perhatikan pemetaan :
5
30
, dengan aturan x 6 x . Apakah pemetaan
tersebut merupakan suatu ring homomorfisme? Apakah suatu ring isomorfisme? Jelaskan pendapatmu.
Latihan 4.2.
Selidiki apakah pemetaan :
10
10
, dengan aturan x 2 x , merupakan ring
homomorfisme. Apakah suatu ring isomorfisme? Jelaskan jawabmu.
Latihan 4.3.
Perhatikan pemetaan : M 2
, dengan aturan
a b c d a . Apakah
pemetaan tersebut merupakan ring homomorfisme?
Latihan 4.4.
Dapatkah kamu menentukan beberapa ring homomorfisme dari
6
ke
6
?
Jelaskan jawabmu.
Latihan 4.5.
Misalkan R dan S adalah ring. a)
Selidiki apakah pemetaan
: R S R , dengan aturan
a, b a ,
merupakan ring homomorfisme. b)
Tunjukkan bahwa pemetaan : R R S , dengan aturan a a, 0 , merupakan ring homomorfisme yang satu-satu.
c)
Selidiki apakah R S isomorfik ke S R .
28
Teorema 4.1. Sifat-sifat Ring Homomorfisme
Misalkan adalah ring homomorfisme dari suatu ring R ke suatu ring S . Misalkan A adalah subring dari R dan misalkan B adalah ideal dari S . 1.
Untuk sebarang
r R dan sebarang bilangan bulat bulat positif n, n
nr n r dan r n r . 2.
A a a A adalah subring dari S .
3.
Jika A adalah suatu ideal dan pada S , maka A adalah ideal juga.
4.
1 B r R r B adalah ideal dari R.
5.
Jika R komutatif, maka R komutatif.
6.
Jika R mempunyai elemen identitas 1, S 0 , dan pada, maka 1 adalah elemen identitas dari S .
7.
adalah
isomorfisme
jika
dan
hanya
jika
pada
dan
Ker r R r 0 0 . 8.
Jika adalah isomorfisme dari R pada S , maka 1 adalah isomorfisme dari S pada R.
Latihan 4.6.
Buktikan Teorema 4.1 untuk nomor 1 dan 2 di atas. Petunjuk: 1.
Perhatikan
bahwa
nr r r r ... r .
n
Gunakan
sifat
ring
homomorfisme untuk membuktikan bahwa nr n r . 2.
Tunjukkan bahwa A adalah ring. Mulailah dari sifat komutatif ring A untuk membuktikan sifat komutatif dari A terhadap operasi perkalian.
29
Latihan 4.7.
, dengan x 3x.
Perhatikan pemetaan :
12
a)
Carilah semua x di
12
sehingga x 0.
b)
Misalkan A x
c)
Kita mengetahui bahwa 1 3. Carilah semua x di
d)
Misalkan B x
e)
Apakah ada hubungan antara B dan A? Bagaimana cara memperoleh
12
x 0. Selidiki apakah A ideal dari
12
x 3. Apakah B ideal dari
12
12
12
.
, sehingga x 3. 12
?
himpunan B dari himpunan A? Jelaskan pendapatmu.
Teorema 4.2. Kernel adalah Ideal
Misalkan adalah suatu homomorfisme dari ring R ke ring S . Maka
Ker r R r 0 adalah suatu ideal dari R.
Latihan 4.8.
Ambillah A suatu ideal di
12
. Definisikan suatu pemetaan :
12
, dengan aturan x 3x.
12
12
,
sehingga Ker A .
Latihan 4.9.
Perhatikan pemetaan :
12
a)
Carilah kernel .
b)
Tentukan
c)
Tentukan himpunan x x ai , ai
d)
Tuliskan
12
. Apakah
0 0, 4,8 ,
12
ring?
1 1, 5, 9 ,
12
.
2 2, 6,10 , dan
3 3,7,11 .
Definisikan operasi a b x y x a, y b , dan a b xy x a, y b .
Misalkan A 0,1,2,3 . Ujilah apakah A ring.
30
e)
Himpunan A disebut juga dan
12
?
/ Ker . Apakah hubungan antara
12
Dapatkah dicari hubungan antara
/ Ker
12
/ Ker dan
12
12
sehingga mereka isomorf?
Latihan 4.10.
Lakukan hal yang sama seperti pada Latihan 4.9, tetapi untuk x 4 x.
Teorema 4.3. Teorema Isomorfisme Pertama untuk Ring
Misalkan adalah suatu ring homomorfisme dari ring R ke ring S . Maka pemetaan dari R/ Ker ke R , yang dinyatakan dengan r Ker r , adalah suatu isomorfisme. Simbolnya, R / Ker R .
Latihan 4.11.
a b , a b , dan misalkan b a
Misalkan R
: R
adalah suatu pemetaan, dengan
a b a b. b a
, yang memetakan
a)
Tunjukkan bahwa adalah homomorfisme terhadap ring.
b)
Carilah kernel dari .
c)
Tunjukkan bahwa R/ Ker isomorfik ke
d)
Apakah Ker ideal prima?
e)
Apakah Ker ideal maksimal?
.
Latihan 4.12.
Buatlah sebuah contoh ring R dan tentukan ideal A dari ring R tersebut. Misalkan adalah ring homomorfisme dari R ke R/A. Apakah A kernel dari ? Jelaskan
jawabmu.
31
Teorema 4.4. Ideal adalah Kernel
Setiap ideal dari suatu ring R adalah kernel dari suatu ring homomorfisme dari R. Khususnya, suatu ideal A adalah kernel dari pemetaan r r A dari R ke R/A.
Homomorfisme dari R ke R/A disebut homomorfisme natural dari R ke R/A.
32
Ilustrasi 5.1 3 5 Perhatikan polinomal f x x dan g x x di
3
x . Untuk setiap
a di
3
,
selidiki nilai-nilai dari f a dan g a . Bagaimana pendapatmu tentang f a dan g a ? Apakah f x dan g x merupakan dua fungsi yang sama dari 3
3
ke
?
Perhatikan kembali f x dan g x di atas, yang merupakan dua elemen yang berbeda dari
3
x .
Kapan dua elemen dari
3
x dikatakan
sama? Jelaskan
pendapatmu.
Definisi 5.1.
Ring Polinomial atas R
Misalkan R adalah ring komutatif. Himpunan dari simbol-simbol formal
R x an x n an 1x n 1 ... a1x a0 ai R , n adalah bilangan bulat non negatif disebut ring polinomial atas R dengan x tak tentu (indeterminate). Dua elemen
an x n an 1x n1 ... a1x a0 dan bm x m bm1x m1 ... b1x b0 dari R x dipandang sama jika dan hanya jika ai bi untuk semua bilangan bulat non negatif. (Definisikan ai 0 jika i n dan bi 0 jika i m ).
33
Latihan 5.1. 4 2 Misalkan fungsi f x x x dan g x x x di
g x menyatakan dua fungsi yang sama dari
Definisi 5.2.
3
ke
3
3
x .
Apakah f x dan
? Jelaskan pendapatmu.
Penjumlahan dan Perkalian di R x
Misalkan R adalah ring komutatif dan misalkan
f ( x) an x n an 1x n 1 ... a1x a0 dan g ( x ) bm x m bm1x m1 ... b1x b0 adalah elemen R x . Maka
f x g x a s bs x s as 1 bs 1 x s 1 ... a1 b1 x a0 b0 dengan s adalah maksimum dari m dan n, ai 0 untuk i n , dan bi 0 untuk i m. Juga berlaku
f x g x cm n x mn cm n1x m n1 ... c1 x c0 dengan ck ak b0 ak 1b1 ... a1bk 1 a0 bk , untuk k
0,..., m n.
Latihan 5.2. 2 2 3 Perhatikan fungsi p x 1 x x dan q x 2 x x , yang merupakan
elemen dari ring komutatif R x . Hitunglah p x q x dan p x q x , dengan cara yang sudah kamu ketahui. Lakukan penghitungan kembali dengan cara seperti pada Definisi 5.2 tersebut. Bandingkan hasilnya. Bagaimana pendapatmu?
Latihan 5.3.
Misalkan
f x 4 x 3 2 x 2 x 3 dan g x 3x 4 3x3 3x 2 x 4 , dengan
f x , g x Z 5 x . Hitunglah f x g x dan f x g x .
34
Ilustrasi 5.2
Dari pembahasan sebelumnya tentang integral domain, diketahui bahwa integral
domain.
Apakah
x f x an x n an1x n1 ... a1x a0
adalah
ai
merupakan integral domain juga? Jelaskan pendapatmu.
Teorema 5.1. D adalah Integral Domain yang mengakibatkan D x Integral Domain
Jika D adalah integral domain, maka D x adalah integral domain.
Latihan 5.4.
Buktikan Teorema 5.1 tersebut.
Latihan 5.5.
Diketahui bahwa
3
adalah integral domain. Selidiki apakah
domain. Bagaimana pula dengan
4
x dan
5
3
x juga integral
x ? Jelaskan pendapatmu.
Ilustrasi 5.3 1 Perhatikan polinomial f x an x n an 1 x n ... a1 x a0 , an 0. Bila derajat
(degree) suatu polinom dinyatakan oleh besarnya derajat (pangkat) terbesar dari variabel f x nya, apakah yang dapat kamu katakan tentang derajat dari f x tersebut? Bila derajat f x adalah n, maka ditulis deg f x n.
Koefisien dari variabel x n , yaitu an , disebut sebagai leading coefficient . Bila
f x 0 , maka f x dikatakan tidak mempunyai derajat. Secara umum, bila f x a0 , maka f x merupakan konstanta, yang derajatnya nol. Bila leading coefficient dari f x adalah elemen identitas perkalian dari R, maka f x disebut monic polinomial.
35
Latihan 5.6.
Carilah semua polinom berderajat tiga di
3
x .
Latihan 5.7.
Tunjukkan bahwa polinomial 2 x 1 di 4
4
x mempunyai
invers perkalian di
x .
Ilustrasi 5.4
Algoritma pembagian adalah salah satu sifat bilangan bulat yang sering digunakan. Jika a, b
, b 0 , maka terdapat bilangan bulat tunggal q dan r sehingga
a bq r ,
0 r b . Bagaimana algoritma pembagian dalam polinomial?
Berikut ini teoremanya.
Teorema 5.2. Algoritma Pembagian untuk F x
Misalkan F lapangan dan misalkan f x dan g x F x dengan g x 0. Maka ada polinomial tunggal q x dan r x di F x , sedemikian sehingga
f x g x q x r x dan juga r x 0 atau deg r x deg g x . q x disebut sebagai hasil bagi (quosient ) dan
r x disebut sisa pembagian
(remainder ) dari f x oleh g x .
Latihan 5.8.
Buktikan Teorema 5.2 tersebut.
Latihan 5.9. 3 Misalkan f x x 2 x 4 dan g x 3x 2 di
sisa pembagian f x oleh g x .
5
x. Tentukan kuosien dan
36
Latihan 5.10. 4 3 2 Misalkan f x 5x 3x 1 dan g x 3x 2 x 1 di
7
x . Carilah kuosien
dan sisa pembagian f x oleh g x .
Ilustrasi 5.5
Misalkan D adalah daerah integral. Jika f x dan g x di D x , maka g x membagi f x di D x , dan ditulis g x f x , jika terdapat h x D x , sehingga f x g x h x . g x dapat juga disebut sebagai faktor dari f x . a adalah nol (akar) dari polinom f x jika f a 0. Jika F lapangan, a F , k
f x F x , maka a disebut nol dari kelipatan k k 1 jika x a adalah faktor dari f x , tetapi x a
k 1
bukan faktor dari f x .
Latihan 5.11. 2 Tunjukkan bahwa p x x 3x 2 mempunyai empat nol (akar) di
Akibat 1.
6
.
Teorema Sisa (Reminder )
Misalkan F adalah lapangan, a F , dan f ( x) F [ x ] , maka f a adalah sisa dalam pembagian dari f x oleh x a .
Latihan 5.12. 3 2 Misalkan f x x 2 x 3x 4 di lapangan
5
. Tentukan a
5
sehingga
f a adalah sisa dalam pembagian dari f x oleh x a . Akibat 2.
Teorema Faktor
Misalkan F adalah lapangan, a F , dan f ( x) F [ x ] , maka a adalah nol dari
f x jika dan hanya jika x a adalah faktor dari f x .
37
Latihan 5.13.
Misalkan f x x3 4 x2 2 x 1 di
5
. Tentukan nol dari f x .