Ejercicios de Prueba de hipótesis
1. Se realiza una serie de ocho análisis de sangre sobre un determinado paciente a lo largo de varios días. La variable considerada es el nivel total de proteínas. Puesto que el nivel de proteínas en sangre no puede ser ni demasiado grande ni demasiado pequeño, se desea detectar cualquiera de los dos hechos. De este modo estamos contrastando contrastando Ho: µ = 7,25 HA: µ 7,25 Basada en una muestra de tamaño 9. El contraste tiene dos colas. ¿Qué conclusión puede extraerse en base a las siguientes observaciones? 7,23 7,25 7,27 7,29 7,32 7,26 7,27 7,24 7,31 Utilizar la distribución t de Student. Para un nivel de 0,90 de confianza. Calcular la media y desviación estandar:
Docimacia Docimacia de Hipótes Hipótes is 1. Determinar la hipótesi s Nula y alternat alternativa iva H o = H a = 2.
Determi nar el nivel ni vel de s ig nif ic ancia
3.
Determi nar el estadís tico ó la dis tri buci ón a utiliz ar
4.
Calcular Calcular el estadís tico
5.
C ontras tar res ultados ultados
6.
Conclusiones y comenta comentario rio
2. Antes, el número medio de paradas por problemas de oxígeno al escalar el nevado del Huascarán entre los turistas era de 2.03. Se está probando un nuevo sistema de oxígeno de uso personalizado y se espera que reduzca esta cifra. Los datos se obtienen mediante la observación de una muestra de 20 turistas que están utilizando este nuevo sistema de oxígeno auxiliar de carga ligera. 1 3 2 1 1 1 2 2 2 0 1 0 0 0 1 3 1 1 ¿Puede rechazarse la hipótesis de investigación al nivel 0,01?
0 0
3. El gerente de control de calidad de una fábrica de bombillas especiales para los laboratorios de Biología, necesita estimar la vida promedio de un gran cargamento de bombillas. Se sabe que la desviación estándar del proceso es de 100 horas. En una muestra de 60 bombillas se encontró una vida promedio de 350 horas. a. Establezca una estimación de intervalo de confianza de 95% de la vida promedio verdadera de las bombillas de luz del cargamento.
b. Se dice que la producción está “bajo control”(es decir funcionando apropiadamente) cuando la vida promedio de la población de las bombillas es de 375 horas. Establezca las hipótesis nula y alternativa. Utilizando un nivel de significación de 0,05, ¿A qué conclusión debería llegar el gerente de control de calidad con respecto al proceso, si se basa en los resultados de la muestra.
c.
Al nivel de significación de 0,05, ¿Existe evidencia de que la vida promedio es menor que 375 horas?
4.- En un estudio para estimar la proporción de resident es de cierta ciudad y sus suburbios que están a favor de la construcción de una planta de energía nuclear, se encuentra que 63 de 100 residentes urbanos están a favor de la construcción mientras que solo 59 de 125 residentes suburbanos la favorecen. ¿ Hay una diferencia significativa entre la proporción de residentes urbanos y suburbanos que favorecen la construcción de la planta nuclear?. Use un valor P. α = 0.05
5.- El administrador de una compañía de taxis trata de decidir si el uso de llantas radiales en lugar de llantas regulares de cinturón mejora la economía de combustible. Se equipan 12 autos con llantas radiales y se manejan por un recorrido de prueba preestablecido. Sin cambiar de conductores, los mismos autos se equipan con llantas comunes con cinturón y se manejan otra vez por el recorrido de prueba. El consumo de gasolina, en kilómetros por litro, se registró como sigue: Auto Kilómetros por litro 1 2 3 Llantas radiales 4,2
4,1
4,7
4
5
6
7
8
9
10
11
12
4,9
6,6
6,2
7,0
6,9
6,7
6,8
4,5
4,4
5,8
7,4
6,9
4,9
4,7
6,1
6,0
5,2
4,9
Llantas con cinturón 5,7
5,7
6,0
¿Podemos concluir que los autos equipados con llantas radianes dan una economía de combustible mejor que los equipados con llantas de cinturón? Suponga que las poblaciones se distribuyen normalmente. Utilice un valor P en su conclusión. H0: μ1 = μ2 . H1: μ1 > μ2. Nivel de significancia α = 0.05
6.- La oficina de logística de una empresa de valores evalúa la adquisición de una gran remesa de bombillas o focos de luz. La vida útil de cada una es, según el proveedor, “no menor de 3000 horas”. Como la compra es muy significativa, se toma una muestra de 45 bombillas a fin de verificar los dichos del proveedor, arrojando una media de 2985 horas y una desviación Standard de 40 horas. Si la población se distribuye en forma normal, determine con un 95% de confianza si recomienda o no realizar la compra.
7.- Según las estadísticas oficiales del INEI-Perú, el precio al que se vende, en promedio, el kilo de uva borgoña es de S/. 4,50. Seleccionados 72 comercios al a zar, el precio al que venden, promedio, el kilo de uva es S/. 4,65, con una desviación Standard muestral de S/. 0,50. Determine si corresponde o no rechazar la aseveración oficial, al 90% de confianza. Indique, además, qué significa que el nivel de confianza sea el indicado. 8.- Una empresa que vende repelentes contra insectos asegura que su producto es eficaz, por lo menos durante 400 horas. Un análisis sobre 9 productos seleccionados aleatoriamente indicó un promedio de 380 horas. Se pide: Probar la aseveración de la compañía respecto de la alternativa de que el repelente sea eficaz menos de las 400 hs, a un nivel de 0,01, si la desviación Standard muestral es de 60 horas. Idem inciso anterior, pero sabiendo que la desviación Standard poblacional es de 90 horas. ¿En cuáles de las situaciones anteriores es necesario saber que la población es aproximadamente normal? ¿Por qué?
9.- Una agencia de empleos anuncia que los empleados que colocó en los últimos 6 meses obtienen salarios que promedian $1800 al mes. Una muestra aleatoria de ese grupo, tomada por
una oficina oficial, obtiene un salario promedio de $1600 y una desviación Standard de $200 sobre la base de 50 personas. • ¿qué distribución de muestreo es la que teóricamente se puede utilizar correctamente? ¿Por qué? • ¿Qué distribución de muestreo se puede emplear para obtener una aproximación razonable? • Pruebe la aseveración de la agencia de em pleos respecto
a la alternativa de que el salario promedio es menor de $1800, utilizando el nivel de significación de 0,05. 10.- El gerente de producción de una empresa industrial quiere verificar si las cajas de bizcochos que se venden son rellenados con el gramaje correcto o no. Cada caja debería contener 368 grs. Se toma una muestra de 25 cajas, la cual arrojó una media de 372,50 grs. Trabajando con un nivel de significación del 5% responda: • Si el desvío Standard poblacional es de 15 grs., ¿se rechaza o no la hipótesis nula? ¿Debe hacerse alguna suposición respecto de la distribución poblacional? • Responda la pregunta mediante la metodología del valor p (o p-value) • ¿Qué intervalo de confianza
se podría formar de la media poblacional a partir de la media muestral? ¿Se condicen los resultados con los dos incisos anteriores? • Responda los incisos anteriores suponiendo que al gerente sólo le preocuparía que la media poblacional fuera menor a 368 grs. • ¿Cómo se alteraría el análisis si se
desconociera la variancia poblacional y el desvío Standard muestral fuera de 12 grs?
11.- La cantidad promedio de unidades producidas por m es por una máquina es, según su fabricante, 8000. Una empresa compra la máquina y durante los primeros 8 meses la cantidad promedio mensual de producción fue 7792, con un desvío standard de 441. Si estudios sobre máquinas similares han determinado que la cantidad producida por las mismas sigue una distribución normal, indique: • Si puede rechazarse o no la hipótesis nula de que la media es efectivamente 8000 o no, al
5% de significación. Si la media de la hipótesis nula se encuentra dentro de un intervalo de confianza del 95% para la media poblacional. Extraiga conclusiones. • Si puede rechazarse o no la hipótesis
nula de que la media es de 8000 unidades como mínimo, al 1% de significación.
12.- Una empresa que está en venta afirma que tiene un monto mensual de ventas de $245.000 promedio. Se toma una muestra de los últimos 2 años y el promedio mensual, corregido por los efectos de la inflación, fue de $244.200, con un desvío standard de $2.520. I ndique: • Si puede rechazarse la hipótesis nula de la media poblacional de $245.000 al 5% de significación, si hay evidencias de que el nivel de ventas mensual sigue una distribución normal. • Si puede rechazarse
la misma hipótesis nula, el mismo nivel de significación, pero suponiendo que no hay evidencia de que la población se distribuya normalmente y que los resultados obtenidos correspondan a los últimos 121 meses, en vez de los últimos 2. Resuelva con normal y con t y compare. 13.- Suponga que el nivel de ingresos de los graduados en ciencias económicas sigue una distribución normal. Se obtiene una muestra de 49 graduados, arrojando un promedio de ingresos de $7.000 y un desvío standard de $1400. Conteste si puede rechazarse la hipótesis nula de que la media de ingresos de todos los graduados en ciencias económicas es de $6.700, al 5% de significación. Utilice el valor p.