PES Institute of Technology Department of Mechanical Engineering VI Semester Sl. No. 1. 2. 3. 4. 5. 6.
7. 8. 9. 10. 11. 12. 13.
Course Code 14ME351 14ME352 14ME353 14ME354 14ME355 14ME356 Elective - III 14ME331 14ME332 14ME333 14ME334 14ME335 Elective - IV 14ME341 14ME342
14. 14ME343 15. 14ME344 16. 14ME345
Finite Element Methods Heat Transfer Mechanical Vibrations Dynamics and Design Laboratory Heat Transfer Laboratory CAE/CAM Laboratory
Hours / week L T P S 4 0 0 0 4 0 0 0 4 0 0 0 0 0 2 0 0 0 2 0 0 0 2 0
Elements of Space Technology Power Plant Engineering Introduction to Vehicle Dynamics Mechanism Design Composite Materials
4 4 4 4 4
0 0 0 0 0
0 0 0 0 0
Introduction Introduction to Gas Dynamics Dynamics Computational Computational Fluid Dynamics Dynamics Electric Hybrid and Fuel Cell Vehicles Theory Theor y of Plasticity 3D Printing Technology
4 4
0 0
4 4 4
Course Title
4 4 4 1 1 1
Course Type CC CC CC CC CC CC
0 0 0 0 0
4 4 4 4 4
EC EC EC EC EC
0 0
0 0
4 4
EC EC
0
0
0
4
EC
0 0
0 0
0 0
4 4
EC EC
Credits
14ME351: Finite Element Methods Faculty: Dr. SHRIKANTH V. Class Chapter Title / No. Reference Literature 1 T2-Chapter 1: Introduction Page 1
2 3 4 5
6 7 8 9 10
11 12
T1-Chapter 4: Page 43 T1-Chapter 1: Page 6 T1-Chapter 1: Page 8 T1-Chapter 1: Page 10 + Krishnamoorthy + Ramamurthy T1-Chapter 2: Page 17 T1-Chapter 5: Page 56 ***Notes T1-Chapter 6: Page 68 T1-Chapter 7: Page 87
T1-Chapter 7: Page 91 T1-Chapter 8: Page 100
13
T1-Chapter 8: Page 105
14
T1-Chapter Page 126 T1-Chapter Page 129 T1-Chapter Page 130 T1-Chapter Page 132 T1-Chapter Page 134 ***Notes
15 16 17 18 19
No. of Hours: 52 % Portions covered Lecture Cumulative
Topics to be covered UNIT
INTRODUCTION Introduction to computational methods – FDM, FDM, FVM and FEM Direct stiffness method
Integral formulation for numerical solution – Variational Variational method. Method of weighted residuals Potential energy formulation, principle of virtual work
Division of region into elements, 1D linear element Linear triangular element Representation of scalar and vector fields Global, local and natural coordinate systems. UNIT – II TWO DIMENSIONAL FIELD PROBLEMS Governing differential equations, integral equations for element matrices. Element matrix-triangular element. Torsion of non circular cross sections – General theory, twisting of a square bar. Shear stress components, Evaluation of twisting torque.
9:
Flow of an ideal fluid – potential formulation Ground water flow
9:
Flow around a cylinder
9:
Regional aquifer
9:
Problems.
9:
Introduction to electric magnetic problems.
and
2
2
2
4
2
6
2
8
2
10
2
12
2
14
2
16
2
18
2
20
2
22
2
24
2
26
2
28
2
30
2
32
2
34
2
36
2
38
20
21 22 23-24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44
T1-Chapter 11: Page 138
T1-Chapter Page 142 T1-Chapter Page 144 T1-Chapter Page 145 T1-Chapter Page 165 T1-Chapter Page 166 T1-Chapter Page 168 T1-Chapter Page 170 T1-Chapter Page 176 T1-Chapter Page 238
T1-Chapter Page 246 T1-Chapter Page 250 T1-Chapter Page 261 T1-Chapter Page 267 T1-Chapter Page 277 T1-Chapter Page 286 T1-Chapter Page 288 T1-Chapter Page 293 T1-Chapter Page 295 T1-Chapter Page 297 T1-Chapter Page 304 T1-Chapter Page 314 T1-Chapter Page 317 T1-Chapter Page 320
UNIT – III
11:
HEAT TRANSFER BY CONDUCTION One dimensional fin Composite wall
11:
Two dimensional fin
11:
11:
Long two dimensional bodies Convective boundary conditions Axis symmetric field problems – differential equation Axis symmetric elements
11:
Galerkin’s method
11:
Element matrices
11:
Problems
18:
UNIT – IV
19:
STRUCTURAL AND SOLID MECHANICS Axial force member – element element matrix Truss element – element element matrices
19:
Analysis of pinned truss
20:
Beam element – element element matrices
20:
Analysis of statically indeterminate beam. Plane frame element – element element matrices Two dimensional stress analysis – Stress strain and Hooke’s law Strain displacement equations
11:
21: 22: 22:
23:
Two dimensional elasticity – Plane Plane stress and plane strain. Displacement equations
23:
Element matrices
23:
Element stresses
23: 23:
Axis symmetric stress analysis – element matrices Surface loads
23:
Problems
23:
2
40
2
42
2
44
4
48
2
50
2
52
2
54
2
56
2
58
2
60
2
62
2
64
2
66
2
68
2
70
2
72
2
74
2
76
2
78
2
80
2
82
2
84
2
86
2
88
45
46 47 48 49 50 51 52
UNIT – V
* **Notes
T2-Chapter Page 208 T1-Chapter Page 371 T1-Chapter Page 375 T1-Chapter Page 376 T1-Chapter Page 196 T1-Chapter Page 380 T1-Chapter Page 382
8: 27: 27: 27: 15: 27: 27:
HIGHER ORDER ELEMENTS Iso parametric elements in 1-D and 2-D Use of higher order elements
Changing the variables of integration – 1D 1D and 2D Numerical integration – 1D 1D integrals Quadrilateral regions and triangular regions Rectangular and triangular elements Evaluation of [B] integral, Evaluation of surface integrals Pre and post processing, capability of Fem packages and error analysis
1
90
1
91
2
93
1
94
1
95
2
97
2
99
1
100
Text Books:
T1. ―Applied finite element analysis‖ by L. J. Segerlind, Wiley, 2 nd edition, 1984. T2. ―Applied finite element analysis‖ by G. Ramamurthy, IK international publishing house, 2009. *** Notes will be provided by the Course instructors. instructors.
14ME352: HEAT TRANSFER No. of Hours: 26 / 52 Faculty: JPK
Class
1-2
3
4-5
6-7
8-9
Chapter Title/ Reference Literature Chapter 1 Introduction T1: Page 1-12
Chapter 2 Introduction to Conduction T1: Page 47-59
Chapter 2 Introduction to Conduction T1: Page 66-70 Chapter 3 One Dimensional Steady State Conduction T1: Page 78-121 Chapter 3 One Dimensional Steady State Conduction
Portions to be Covered UNIT-1 Mechanisms of Heat Transfer - Basic laws governing each mechanism; combined mechanisms; Illustrative examples Conduction Basic Equations : one dimensional conduction equation in rectangular, cylindrical and spherical coordinates; thermal diffusivity; 3dimensional conduction equation in Cartesian coordinates; (No derivation of 2-D&3-D equations in cylindrical and spherical coordinate systems) Boundary conditions of first, second and third kind; radiation boundary condition; illustrative examples on formulation of conduction problems.
One Dimensional Steady State Conduction in a slab, radial conduction in cylinder and sphere with and without heat generation
% Portions Covered Classes
Cumulative
4
4
2
6
4
10
4
14
Concept of thermal resistance, conduction in composite medium and overall heat transfer coefficient 4
18
4
22
2
24
T1: Page 78-94 Chapter 3
10-11
One Dimensional Steady State Conduction
Governing differential equations for one dimensional conduction in fins; solution to this equation for different tip conditions; fin efficiency and fin effectiveness
T1: Page 121-145 Chapter 3
12
One Dimensional Steady State Conduction T1: Page 78-121
One dimensional steady state conduction in slabs, cylinders and spheres with variable thermal conductivity
Class
13
Chapter Title/ Reference Literature
Portions to be Covered
Chapter 5
UNIT-2
Transient Conduction
Lumped system analysis with illustrative examples; Criterion for neglecting internal temperature gradients in transient conduction analysis
T1: Page 250-256
Chapter 5
14-15
Transient Conduction T1: Page 265-277
Chapter 5
16
Transient Conduction
One dimensional transient conduction in a slab subjected to convective boundary condition- solution of this problem in the form of Transient-Temperature Chart. Similar charts for radial transient conduction in an infinite cylinder and in a sphere
% Portions Covered Classes
Cumulative
2
26
4
30
2
32
4
36
4
40
2
42
Use of charts to solve multi-dimensional transient problems; semi infinite solids
T1: Page 277-283 Chapter 5
17-18
Transient Conduction T1: Page 294-310 Chapter 5
19-20
Transient Conduction T1: Page 294-310
Finite Difference equations for one dimensional steady state conduction in slabs, cylinders and spheres; Finite difference equations for two dimensional steady state conduction Explicit finite difference equations for one dimensional transient conduction in slabs, radial conduction in cylinders and spheres; Implicit Scheme (Crank Nicholson Scheme) for one dimensional transient conduction
Chapter 5
21
Transient Conduction T1: Page 294-310
Illustrative examples
Class
22-23
Chapter Title/ Reference Literature
Portions to be Covered
Chapter 12
UNIT-5
Radiation: Processes & properties
Basic concepts and terms used in radiation heat exchange analysis; Planck’s law, Stefan-Boltzman law, Wein’s displacement Law, Kirchoff’s law and Lambert’s Law; Radiation heat exchange between two parallel infinite black and gray surfaces surf aces
T1: Page 669-708
Radiation exchange between two finite surfaces – Concept Concept of View Factor; View Radiation exchange factor algebra; Hottel’s Cross string between surfaces formula
% Portions Covered Classes
Cumulative
3
45
3
48
2
50
Chapter 13
24-25
T1: Page 739-750
Network method for analysis of radiation heat exchange in two and three zone Radiation exchange enclosures. between surfaces Chapter 13
26
T1: Page 750-764
HEAT TRANSFER No. of Hours: 26 / 52 Faculty: Dr. AT Chapter Title/ Class
1
Reference Literature
Portions to be Covered
Chapter 6
UNIT-3
Introduction to Convection
Basic concepts for flow over bodiesVelocity boundary layer, thermal boundary layer, drag coefficient, general expression for heat transfer coefficient in terms of temperature gradient; illustrative examples. Dimensionless Parameters in Forced Convection Flow and their physical significance.
T1: Page 332-343
% Portions Covered
2
2
Chapter Title/ Class
2
Reference Literature
Portions to be Covered
Chapter 6
Concepts for flow through duct hydraulic diameter; hydro-dynamically developing and developed flow; thermally developing and thermally developed flow; general expression for pressure drop and heat transfer coefficient for flow through ducts; illustrative examples
Introduction to Convection T1: Page 332-343
Chapter 8
3-4
Internal flow
% Portions Covered
2
4
4
8
Flow inside a circular tube; expressions for friction factor and pressure drop for hydro dynamically and thermally developed laminar and turbulent flows; hydrodynamic and thermal entrance lengths
2
10
Use of correlations to determine pressure drop and heat transfer coefficient for hydro dynamically and thermally developed flow through tubes; illustrative examples.
4
14
Integral method of analysis for laminar incompressible boundary layer over a flat plate
4
18
Correlations for drag coefficient and heat transfer coefficient for flow over a flat plate
2
20
4
24
4
28
Analysis of hydro dynamically and thermally developed laminar flow COUETTE flow
T1: Page 447-453 Chapter 8
5
Internal flow T1: Page 447-453
Chapter 8
6-7
Internal flow T1: Page 453-479 Chapter 6
8-9
Introduction to Convection T1: Page 348-358 Chapter 7
10
External flow T1: Page 380-392 Chapter 7
11-12
External flow
Flow across a cylinder, flow across tube bundles
T1: Page 400-424 Chapter 9
UNIT-4
Free convection
Dimensionless parameters for free convective heat transfer problems; Correlations for free convection from vertical plane surfaces
13-14 T1: Page 510-531
Chapter Title/ Class
15
Reference Literature
Portions to be Covered
Chapter 9
Correlations for free convection from vertical & horizontal cylinders
Free convection
% Portions Covered
2
30
4
34
2
36
4
40
4
44
3
47
3
50
T1: Page 510-531 Chapter 9
16-17
Free convection
Horizontal and inclined plane surfaces; combined forced and free convection; illustrative examples
T1: Page 510-531 Chapter 10 Boiling & Condensation
18
Nusselt’s theory for laminar film condensation on a vertical plane surface
T1: Page 581-590 Chapter 10 Boiling & Condensation
19-20
T1: Page 581-590 Chapter 10 Boiling & Condensation
21-22
Correlations for determining heat transfer coefficient for laminar and turbulent film condensation on a plane vertical surface and horizontal tubes. Illustrative examples. Different regimes of pool boiling; Correlations for pool boiling heat transfer
T1: Page 562-577
23-24
Chapter 11
UNIT-5
Heat Exchangers
Classification of heat exchangers; overall heat transfer coefficient. Expressions for mean temperature difference for parallel flow, counter flow heat exchangers; correction factors for other type of heat exchangers
T1: Page 603-619
Chapter 11
25-26
Heat Exchangers
Limitations of LMTD method; Effectiveness-NTU method for heat exchanger analysis; illustrative examples
T1: Page 619-630 Text Book:
T1. "Heat and Mass Transfer: Fundamentals and Applications", Applications", Cengel, Yunus A. and Ghajar, Afshin J., McGraw-Hill, Fifth Edition, 2016. Reference Books:
T2. ―Fundamentals of Heat & Mass Transfer‖, Theodore L. Bergman, Adrienne S. Lavine, Frank P. Inc rop era , K. N. See tha ramu , T. R . See tha ram , Wiley Wiley India India Publi Publica catio tion, n, 201 2013. 3.
T3. ―Heat Transfer – A – A basic Approach‖, M. Necati Ozisik, McGraw-Hill International Edition, 1985.
14ME353: Mechanical Vibrations Faculty: Dr.CVC/Dr.SV/Prof.JKM/Prof. Dr.CVC/Dr.SV/Prof.JKM/Prof. BKK
Clas s
No. of Hours: 52 % of Portions covered
Chapter Title / Reference Literature
Topics to be covered
Ref.
No.
1
2
Cum.
Chapte r Chapter 1: Fundamentals of Vibrations T1: Page 1-17
Chapter 1: Fundamentals of Vibrations T1: Page 18 – 21 21
UNIT – I
Introduction, importance of vibration, basic concepts of vibration, classification of Vibration Vibration analysis procedure, Mathematical modeling of a forging hammer, Mathematical model of a motorcycle
1
2
1
4
1
6
1
8
1
10
1
12
Problem: C1
3
Chapter 1: Fundamentals of Vibrations T1: Page Page 22 - 39
Spring elements, Combination of springs, Springs in parallel and springs in series, Problem: C2, C3 and C4
4
Chapter 1: Fundamentals of Vibrations T1: Page 40-45
Problem: C5 and C6
Spring constant associated restoring force due to gravity
with
Problem: C7
5
Chapter 1: Fundamentals of Vibrations T1: Page 45-46
Mass or inertia elements, Combination of masses, Case 1: Translational Masses Connected by a Rigid Bar, Case 2: Translational and Rotational Masses Coupled Together Problem: C8
Damping elements, types of model and combination dampers 6
Chapter 1: Fundamentals of Vibrations T1: Page 54-56, 62-63
Harmonic motion and definitions and terminology – only theory, Harmonic analysis, Fourier series expansion Problem: C9 and C10
7
Chapter 2: Free Vibration of Singledegree-of-freedom Systems T1: Page 124-134 + 153 for only ( Rayleigh’s energy method)
Introduction, free vibrations of undamped translational system, Equation of motion using Newton’s second Law of Motion, Equation of motion using other methods, D’Alembert’s Principle, the Principle of virtual displacement and the Principle of conservation of energy method ( Rayleigh’s Energy Method)
1
14
1
16
1
18
1
20
1
22
1
24
1
26
1
28
Problem: C11
8
9
Chapter 2: Free Vibration of Singledegree-of-freedom Systems R2 Chapter 2: Free Vibration of Singledegree-of-freedom Systems
T1: Page 146-148 10
Chapter 2: Free Vibration of Singledegree-of-freedom Systems
Problem: C12, C13 , C14 and C15
Free vibration of undamped torsional system Problem: C16, C17, C18, C19, C20, C21 and C22
Free vibration with viscous damping, Logarithmic decrement Problem: C23 and C24
T1: Page 158-166 11
Chapter 2: Free Vibration of Singledegree-of-freedom Systems
Problem: C25, C26, C27 and C28
T1: Page 171-174 12
Chapter 2: Free Vibration of Singledegree-of-freedom Systems
Problem: C29 and C30
T1: Page 171-174
13
Chapter 3:
UNIT – II
Harmonically excited vibration of single-degree-ofsingle-degree-offreedom system
Introduction, Equation of motion, response of an undamped system under harmonic force
T1: Page 259-267 14
Chapter 3: Harmonically excited vibration of single-degree-ofsingle-degree-offreedom system
T1: Page 271-276
Response of a damped system under harmonic force
15
Chapter 3:
Magnification factor, Total Response
Harmonically excited vibration of single-degree-ofsingle-degree-offreedom system
1
30
1
32
1
34
1
36
1
38
Introduction, vibration nomograph and vibration criteria
1
40
Reduction of vibration at the source
1
42
Whirling of rotating shafts, critical speeds, response of the system
1
44
Control of vibration, control of natural frequencies, introduction of damping, vibration isolation, numerical problems
1
46
T1: Page 271-276 16
Chapter 3: Harmonically excited vibration of single-degree-ofsingle-degree-offreedom system
Response of a damped system under the harmonic motion of the base (base excitation)
T1: Page 281-287 17
Chapter 3: Harmonically excited vibration of single-degree-ofsingle-degree-offreedom system
Displacement transmissibility and force transmissibility ratio
T1: Page 281-287 18
Chapter 3: Harmonically excited vibration of single-degree-ofsingle-degree-offreedom system
Response of a damped system under rotating unbalance
T1: Page 288-293 19
Chapter 3: Harmonically excited vibration of single-degree-ofsingle-degree-offreedom system
Response of a damped system under rotating unbalance
T1: Page 288-293 20
Chapter 9: Vibration Control T1: Page 769-775
21
Chapter 9: Vibration Control T1: Page 775-776
22
Chapter 9: Vibration Control T1: Page 785-790
23
Chapter 9: Vibration Control T1: Page 798-807
24
Chapter 9:
Numerical
1
48
1
50
Vibration Control T1: Page 807-831
25
26
Chapter 5:
UNIT – III
Two-degree-of-freedom system T1: Page 467-482
Introduction, Free-vibration analysis of undamped systems
Chapter 5:
Differential equation of motion, natural frequencies and mode shapes of spring mass systems
1
52
Differential equation of motion, natural frequencies and mode shapes of double pendulum, coupled pendulum pen dulum
1
54
1
56
1
58
1
60
1
62
1
64
1
66
Two-degree-of-freedom system R2
27
Chapter 5: Two-degree-of-freedom system R2
28
Chapter 5: Two-degree-of-freedom system R2
29
Chapter 5:
Differential equation of motion, natural frequencies and mode shapes of masses on tightly stretched strings, geared systems Torsional systems
Two-degree-of-freedom system T1: Page 483-488
30
Chapter 5: Two-degree-of-freedom system T1: Page 488-493
31
Chapter 5:
Coordinate coordinates
coupling
Chapter 5:
Forced vibration analysis
Two-degree-of-freedom system T1: Page 494-497
33
Chapter 5: Two-degree-of-freedom system T1: Page 497-500
principal
Numerical
Two-degree-of-freedom system T1: Page 488-493
32
and
Semi-definite system
34
Chapter 9: Vibration Control T1: Page 832-839
35
36
Chapter 6:
Introduction, modeling of continuous system as multi-degree of freedom system, equations of motion using Newton’s second Law of motion
Chapter 6:
Influence coefficients, influence coefficients
Chapter 6:
Chapter 6:
Chapter 6: Multi-degree-of-freedom systems T1: Page 576-577
40
Chapter 6: Multi-degree-of-freedom systems T1: Page 581-582
41
Chapter 6:
Chapter 6: Multi-degree-of-freedom systems T1: Page 591-593
43
Chapter 6: Multi-degree-of-freedom systems R2
70
1
72
1
74
1
76
1
78
1
80
1
82
1
84
1
86
Inertia Influence Coefficients
Generalized coordinates and generalized forces (Only theory)
Equation of motion in matrix form (Only theory)
Solution of the eigen value problem
Multi-degree-of-freedom systems T1: Page 585-590
42
1
Flexibility influence coefficients
Multi-degree-of-freedom systems T1: Page 572-573
39
68
stiffness
Multi-degree-of-freedom systems T1: Page 567-571
38
1
UNIT – IV
Multi-degree-of-freedom systems T1: Page 553-560
Multi-degree-of-freedom systems T1: Page 562-567
37
Vibration absorber, Undamped dynamics vibration absorber
Orthogonality of normal modes (Only theory)
Matrix iteration method
44
Chapter 6:
Matrix iteration method
Multi-degree-of-freedom systems R2
45
Chapter 8:
Chapter 8:
Chapter 8:
Chapter 8:
50
51
52
1
92
1
94
1
96
1
98
1
100
1
100
1
100
Numerical
Continuous system R2
49
90
Lateral vibrations of beams
Continuous system T1: Page 721-726
48
1
Torsional vibration of a rod
Continuous system T1: Page 718-721
47
88
UNIT – V
Introduction, longitudinal vibration of a Continuous system T1: Page 699-701 and 710-712 bar of a rod 46
1
Chapter 10: Vibration Measurement Measurement T1: Page 870-891
Introduction, transducers, vibration pick-up, frequency measuring instruments
Chapter 10: Vibration Measurement Measurement T1: Page 892-895
Vibration exciters
Chapter 10: Vibration Measurement Measurement T1: Page 895-899
Signal analysis
Chapter 10: Vibration Measurement Measurement T1: Page 900-914
Experimental modal analysis
Text Books:
1. ―Mechanical Vibrations‖, S S Rao, Pearson E ducation, 5th Edition, 2004 Reference Books:
1. ―Theory of Vibration with application‖, W T Thomson, M D Dahleh and C Padmanabha, Pearson Education, 2008 2. Dr. CVC’s Notes [Includes theory, class -room problem sheet and assignment problem sheet]
14ME331: ELEMENTS OF SPACE TECHNOLOGY FACULTY:
No: of Hours: 52
AJN
% of Portions covered
Chapter Title / Class #
Topic tos be covered Reference Chapter
1, 2
Unit I: Introduction to Satellites
What is a satellite, evolution of satellites
LEO (Low Earth Orbit), Geo
3, 4
Unit I: Introduction to Satellites
Classes
Cumulative
3.85%
3.85%
3.85%
7.69%
3.85%
11.54%
3.85%
15.38%
Synchronous Satellites
5, 6
7, 8
Unit I: Introduction to Satellites
Unit I: Introduction to Satellites
Communication – Domestic Domestic & International, Types of satellites, Future trends Satellite types - Communication Communication satellites,
Remote Sensing
9, 10
Unit I: Introduction to Satellites
Weather Satellites, Navigation Satellites
3.85%
19.23%
11, 12
Unit I: Introduction to Satellites
Scientific Satellites, Military Satellites
3.85%
23.08%
Basic Principles, Newton’s laws
3.85%
26.92%
3.85%
30.77%
3.85%
34.62%
3.85%
38.46%
3.85%
42.31%
Unit II: Satellite orbit and 13, 14
Trajectories
Unit II: Satellite orbit and
Orbital Parameters, Velocity and orbit
15, 16
Trajectories Trajectories
calculations
Unit II: Satellite orbit and
Orientation, Eccentricity, Distance from
17, 18
Trajectories Trajectories
earth
Unit II: Satellite orbit and
Sun synchronization synchronization and related
19, 20
Trajectories Unit III:
21, 22
launch vehicles
mechanics, Tutorial
Satellite Launch & Launch sequence, Satellite stabilization
Unit III:
Satellite Launch &
launch
Orbital effects, Launch Vehicle
23, 24
3.85%
46.15%
3.85%
50.00%
3.85%
53.85%
3.85%
57.69%
3.85%
61.54%
3.85%
65.38%
3.85%
69.23%
3.85%
73.08%
3.85%
76.92%
Monocoque, Semimonocoque
3.85%
80.77%
Corrugated, Sandwich Structure,
3.85%
84.62%
vehicles Unit III:
Satellite Launch &
launch
Look angles, Earth coverage and Ground
25, 26
vehicles
tracking, Tutorial
Unit IV:
Design considerations
Satellite subsystems, Mechanical
of 27, 28
Satellite Subsystems Unit IV:
Design considerations
of
structure, Propulsion subsystem Thermal control subsystem, Power supply
29, 30
Satellite Subsystems Subsystems Unit IV:
subsystem
Design considerations
of
Altitude and orbit control, Tracking
31, 32
Satellite Subsystems Unit IV:
Design consideration considerationss
of
Telemetry and Communication, Payload,
33, 34
Satellite Subsystems Unit IV:
Antenna subsystem
Design considerations
of
Space qualification and reliability
35, 36
Satellite Subsystems Unit IV:
Design considerations
of
Case Study – Mock Mock Design of a Satellite,
37, 38
Satellite Subsystems Subsystems Unit V:
Aerospace Structures
and
Tutorial General types of Construction and Structural Layout, Flight Envelope and V-
39, 40
Materials N Diagrams Unit V:
Aerospace Structures
and 41, 42
Materials Unit V:
43, 44
and
Aerospace Structures
Materials Unit V:
Reinforced and Honeycomb Structures,
Aerospace Structures
and
Geodesic Construction,
45, 46
3.85%
88.46%
3.85%
92.31%
3.85%
96.15%
3.85%
100.00%
Materials Unit V:
Aerospace Structures
and
Aerospace Materials, Metallic and Non-
47, 48
Materials Unit V:
Metallic Materials
Aerospace Structures
Uses of Aluminum Alloy, Titanium,
and 49, 50
Materials Unit V:
Stainless Steel,
Aerospace Structures
and
Tutorial
51, 52
Materials
Text Book: "Satellite Technologies, Principles and Applications", Anil K Maini, Varsha Agrawal; John Wiley and Sons, 2011 Reference Book: Space Sp acecraf craf t Sys Systems En gin eer i ng, 4th E dit ditii on , Peter Fortescue, Graham Swinerd, John Stark, August 2011
UE15ME332: POWER PLANT ENGINEERING(4-0ENGINEERING(4-0-0-0-4) 0-0-4) Faculty: PPK
Class No.
Chapter Title / Reference Literature
1 Chapter 1: Introduction T1: page 1-7
2 3 4 5 6 7 8 9 10 11
12 13 14 15
Chapter 4: Pg123-124 Chapter 4: Pg132-pg140
Pg190-Pg193
Introduction Pg79-80 Super heaters Pg96-99 Pg101-102
16 17
18
19 20 21
22
Chapter 7: The circulating water systemPg266-267 Pg268 Pg220 Chapter 8: Introduction Pg249-251
No. of Hours: 52
Topics to be covered Unit I Introduction to Power Plant Engineering. Importance to Mechanical Engineers. Scope and objectives. Study resources and references. Different types of fuels used for steam generation. Coal as fuel. Equipment for burning Coal. Oil burners.
Pulverized fuel firing systems. Cyclone furnace. Coal and ash handling. Types of High pressure steam generators, La Mont boiler. Benson. Velox. Loeffler. Schmidt. Ramson. Unit 2 Steam generator accessories Super heaters. Concept of convection superheaters and radiant superheaters. Control of superheaters and Economisers. Air preheaters and Air reheaters. Chimneys and Cooling Towers Types of chimneys. Calculation of chimney heights. Chimneys and Cooling Towers Types of chimneys and Calculation of chimney heights. Cooling tower, wet cooling tower, dry cooling tower. Cooling tower calculation, condensers, Direct contact condensers. Surface condensers, open feed water heater, circulating water systems. UNIT – III III Diesel engine power plants Classification, Starting of diesel engines. Cooling and lubrication of diesel engines.
% of Portions covered Reference Cumulative chapter
2
2
2
4
2 2
6 8
2
10
2 2 2 2 2
12 14 16 18 20
2
22
2
24
2 2
26 28
2
30
2
32
2
34
2
36
2
38
2
40
2
42
2
44
23 24 25 26 27 28 29 30 31
32 33 34
Pg253 Pg254 Chapter9: Introduction Pg267-268 Pg270-273 Pg296-297 Chapter 11: Introduction Pg343-344 Pg345 Pg346
35 36 37 38 39 40
Pg347-348 Chapter12: Introduction Pg362 Pg381 Pg395
41 Pg398
42 43
44 45 46 47 48 49 50 51 52
Pg434 Chapter: Introduction Pg120 Pg132-134 Pg136 Pg122 Pg124 Pg126 Pg128
Filters, Centrifuges, oil heaters. Intake and exhaust systems. Super Charging, Diesel power plant lay out. Gasturbinepowerplants ComponentsofGasTurbinepowerplant. Gas turbine fuels,Gasturbinematerials. Openand closedcycletypeplantswithaccessories. Performance of gasturbine powerplants, Advantages/ disadvantages. UNIT – IV IV HydroElectricPowerPlants Optimization of Hydro-Thermal mix. Selection of Site for Hydroelectric plant,Hydrological plant,Hydrological cycle,Hydro cycle,Hydro graphs. graphs. Use of flow duration curve,Storage and pondage, Essential elements of Hydro electric power plant, Low, medium and high head plants, Pumped storage plants. Penstock, water hammer, surge tanks, gates and valves. Power house, general layout, some important hydel installations in India. NuclearPowerPlants: Nuclear energy, fission and fusion, Nuclear fuels used in reactors, Multiplication and thermal utilization factors. Elements of nuclear reactors — moderator, moderator, control rod, fuel rods, coolants, Pressurized water reactor, Boiling water reactor. Sodium graphite reactor, Fast breeder reactor, Homogeneous graphite reactor, gas cooled reactor. Radiation hazards, shieldings, Radioactive waste disposal. UNIT – VChoice VChoice of site for powerstation Choiceofsiteforpowerstations,Loadestimation. Loaddurationcurves, load factor Capacity factor,usefactor,diversityfactor,demandfactor. Variable load on power plants. Selection of the number and size of the units. Economic analysis of Power Plants Costofenergyproduction Selection of plant and generating equipments, Performanceand operatingcharacteristicsofpower plants. Tariffs forelectricalenergy
2 2 2
46 48 50
2
52
2
54
4
56
2
60
2
62
2
64
2
66
2
68
2
70
2
72
2
74
2
76
2
78
2
80
2
82
2
84
2
86
2
88
2
90
2
92
2
94
2
96
2
98
2
100
Text Book : ―Power Plant Technology‖, El Wakil, Tata McGraw-Hill International Edition, 2001 Reference Book: ―Power Plant Engineering‖, P.K.Na g, Tata McGraw-Hill 2008
14ME333: Introduction Introduction to Vehicle Dynamics Faculty: Prof. S S Patil Class #
1-2
3-4
5-6
7-8
9-10
11-12
13-14
15-16
17-18
19-20
Chapter Title/ Reference Literature Chapter 1: Introduction T1:page 39-24 Chapter 1: Introduction T3:page 40-45, 866-869 Chapter 2: Forward Vehicle Dynamics T3:page 39-59
Topics to be Covered Unit I Motivation and Background, Review of Rigid Body Dynamics. Vehicle dynamics Terminology, Vehicle Co-ordinate Systems.
4%
4%
Vehicle inertia Examples.
Numerical
4%
8%
Axle loads of vehicle – static static and dynamic d ynamic conditions – rear rear wheel, front wheel and 4 wheel drive
4%
12%
3%
15%
4%
19%
4%
23%
Simple model for lateral slip, Combined longitudinal/lateral slip (friction ellipse),
4%
27%
Magic Formula, Numerical Examples.
4%
31%
Aerodynamic forces and Moments,
3%
34%
4%
38%
properties,
Chapter 2: Axle loads of vehicle/trailer combinations Forward Vehicle – static and dynamic conditions – rear Dynamics wheel, front wheel and 4 wheel drives T3:page 60-64 Chapter 2: Forward Vehicle Numerical Examples Dynamics T1:page39-98 UNIT 2 Chapter 3: Overview, Terminology and Definitions, Tyre Mechanics Slip, Skid, Rolling Resistance, Elastic T1:Page 3-17 Band Model for longitudinal slip, Chapter 3: Tyre Mechanics T1: Page 18-47 Chapter 3: Tyre Mechanics T1: Page 48-65 Chapter 4: Vehicle Aerodynamics T2:Page 79-103 Chapter 4: Vehicle Aerodynamics T2:Page 103-123
% Portions Covered Referenc Cumulativ e Chapter e
Total road loads, Numerical Examples.
21-22
23-24
25-26
27-28
29-30
31-32
33-34
35-36
37-38
39-40
41-42
Chapter 4: UNIT 3 Equation of motion and maximum tractive Acceleration effort, Engine characteristics, Performance T1:Page: 203-206 Chapter 5: Acceleration Traction and Power limited calculations Performance T2:Page 45-74 Chapter 5: Fuel economy calculations, Numerical Acceleration Examples. Performance T2:Page 255-260 Chapter 5: Basic equations, Braking forces, Brakes, Braking Tyre and road friction, stopping distance Performance T2:Page 45-59 Chapter 6: Brake Proportioning, Braking efficiency, Braking Rear wheel lockup Performance T2:Page 60-74 Chapter 6: Antilock Brake system, Numerical Braking Examples. Performance T2:Page 67-76 Chapter 7: Handling UNIT 4 Characteristics Steering geometry, Handling of Road VehiclesT1:Page Characteristics of a two axle vehicles. 335-350 Chapter 7: Steady-State response to steering input, Handling Testing of handling characteristics such as Characteristics of Road Vehicles Constant Radius Test. T1:Page 350-355 Chapter 7: Testing of handling characteristics such as Handling Constant Radius Test, Constant speed Characteristics of Road Vehicles Test, Constant Steer Angle Test. T1:Page 355-359 Chapter 7: Handling Transient Response Characteristics Road Characteristics Vehicles of Road Vehicles T1:Page 359-363 Chapter 7: Handling Criteria for Directional Stability, Characteristics Numerical Examples. of Road Vehicles T1:Page 363-366
4%
42%
4%
46%
4%
50%
4%
54%
4%
58%
4%
62%
3%
65%
4%
69%
4%
73%
4%
77%
4%
81%
43-44
45-46
47-48
49-50
51-52
Chapter 8: Ride Characteristics of Road VehiclesT2:page 125-146 T1: Page 431-436 Chapter 8: Ride Characteristics of Road VehiclesT1:page 436-462 Chapter 8: Ride Characteristics of Road VehiclesT1:page 436-462 Chapter 8: Ride Characteristics of Road VehiclesT3:page 462-464 Chapter 8: Ride Characteristics of Road VehiclesT1:page 464-480
UNIT 5
4%
85%
Vehicle ride models – quarter quarter car model
3%
88%
Vehicle ride models – half half car model
4%
92%
Road profile roughness and modeling,
4%
96%
Evaluation of vehicle vibration in relation to the ride comfort criterion.
4%
100%
Ride excitation sources, Human response to vehicle vibration
Articles / Books: T1. J. Y. Wong, “Theory of Ground Vehicles” , John Willey & Sons NY, Third Edition, 2001 T2. Thomas D. Gillespie, “Fundamental of Vehicle Dynamics”, Society of Automotive Engineers International, USA 1992. T3. Reza N. Jazar , “Vehicle Dynamics: Theory and Applications” , Springer, Second edition, 2008.
14ME334: Mechanism Design Faculty: Dr. SHRIKANTH V. Hours: 52
Class No. 1, 2
Chapter Title / Reference Literature T3-Chapter 1: Mechanism and machines: Basic concepts
No. of
% Portions covered Topics to be covered
Lecture
Cumulative
4
4
4
8
4
12
4
16
4
20
UNIT – I
Planar mechanisms and geometry of motion:
Page 19-24
Definition, Basic concepts, classification of links and pairs.
T2-Chapter 2:
Mechanisms, Machine and Inversions.
Page 27-35
3, 4
T3-Chapter 1: Mechanism and machines: Basic concepts
Grashof’s Law, examples, problems.
Page 24-30 T2-Chapter 2: Page 36-38
5, 6
T2-Chapter 2: Page 38-43 T2-Chapter 2:
Transmission of torque and force in mechanisms, problems. Mobility, Degree of freedom (DOF), Gruebler criterion, problems. DOF permitted by turning and sliding.
Page 45-48
7, 8
T2-Chapter 2:
Equivalent mechanisms.
Page 48-49 T2-Chapter 2:
Unique mechanisms.
Page 49-50
9, 10
T2-Chapter 2:
Number synthesis:
Page 50-51
DOF and effect of odd and even number of links.
T2-Chapter 2:
Minimum number of binary links in a mechanism.
Page 50-51
11, 12
T2-Chapter 2: Page 51-52 T2-Chapter 2: Page 50-51
13, 14
T3-Chapter 11: Synthesis Page 775-777
15, 16
Possibility of minimum number of turning pairs in a mechanism.
Type, number and dimensional synthesis.
T2-Chapter 6: Elements of kinetic synthesis of mechanisms
Path generation, rigid body guidance.
Page 241-243
17-18
T1-Chapter 11: Page 349-351
19 - 20
T3-Chapter 1: Mechanism and machines
28
4
32
4
36
4
40
4
44
Two-position synthesis of slider-crank mechanisms. Precision points, structural Chebyshev spacing, problems.
error,
Crank-rocker mechanisms optimum transmission angle.
with
Page 33-40
21 - 22
4
Synthesis of linkages:
Function generation, problems.
Page 340
24
UNIT – II
T1-Chapter 11: Synthesis of linkages Page 339-340
T1-Chapter 11:
4 Enumeration of kinematic chain, DOF of spatial mechanisms.
T2-Chapter 6:
Motion generation:
Page 208
Poles and relative poles.
T2-Chapter 6:
Relative pole of a 4-bar mechanism.
Page 212 T2-Chapter 6: Page 214
Relative pole mechanism.
of
a
slider-crank
23-24
25-26
T1-Chapter 11:
UNIT – III
Page 349-351
Graphical method for synthesis: Two-position synthesis of 4-bar and slider crank mechanisms, problems.
T1-Chapter 11:
Three-position synthesis of 4-bar and slider crank mechanisms, problems.
Page 345
27-28 &
T1-Chapter 11: Page 347
3
49
3
52
4
56
4
60
4
64
4
68
Graphical synthesis for path generation, examples.
4
72
Robert-Chebyshev theorem (cognate linkages)
4
76
Coupler curves for 5-bar mechanisms, problems
4
80
Analytical method for synthesis:
4
84
Freudenstein’s equation for 4-bar mechanism, problems.
4
88
Four position synthesis, precision point reduction, problems. prob lems.
29-30 31-32
T1-Chapter 11:
Overlay method, problems.
Page 351
33-34
T3-Chapter 11: Synthesis Page 804-810
35-36
T2-Chapter 6: Elements of kinetic synthesis of mechanisms
UNIT – IV
Coupler curves:
Equation of coupler curves, examples, problems. Synthesis for path generation, examples.
Page 230
37-38
T2-Chapter 6: Page 231
39-40
T2-Chapter 6: Page 232
41-42
T2-Chapter 6: Page 235
43-44
45-46
T1-Chapter 11: Synthesis of linkages Page 363
UNIT – V
47-48
T1-Chapter 11: Page 364
49-50
T1-Chapter 11: Page 361
51-52
Freudenstein’s equation for slidercrank mechanism, problems.
4
92
Bloch’s method of synthesis, problems.
4
96
2
100
Revision problems
Text Books:
T1. ―Theory of machines and mechanisms‖ by J. J. Uicker, J. E. Shigley, McGraw Hill, 2nd Edition, 1995. T2. ―Mechanism and Machine theory‖ by A.G. Ambekar, Prentice Hall, 2007. Reference Books:
―Kinematics and dynamics of machinery‖ by C. E. Wilson and J. P. Sadler, Pearson Education India, 3rd edition, 2008.
14ME335: COMPOSITE MATERIALS Faculty: Dr. VPR/Dr. MS No. of Hours: 52
Class No.
Chapter Title / Reference Literature
% of Portions covered Topics to be covered
Reference chapter
Cumulative
4
4
4
4
Unit I : Introduction
1-2
41) R1 (Page 39 – 41) T2
49) R1 (Page 46 – 49) 3-4
5-6
7-8
9 - 10
11 – 12 12
Definition, Classification matrices & Reinforcements
&
Types
of
418) R1 (Page 416 – 418)
Characteristics & selection of reinforcements and matrix materials for Fiber composites, Laminated composites, particulate, composites, pre-pegs, sandwich construction
T2
Carbon-carbon composite materials
509) R1 (Page 507 – 509)
Generalized Hooke’s law for orthographic lamina, Macro mechanics of a lamina
4
8
Micro-mechanics of Evaluation of the four elastic moduli – Rule Rule of mixture
4
12
Laminate code
4
16
Failure criterion for orthotropic composites
4
20
Hand lay up & spray up processing
4
24
Bag moulding
4
28
454) R1 (Page 450 – 454)
T2 T1 (Page 204 - 212) T2 T1 (Page 216 - 217) T2 T1 (Page 244 - 247) T2
Unit II : Manufacturing Manufacturing of Polymer Matrix Composites
13 - 14
R1 (Page 1075 1079
Open and closed mould processing
T2
15 - 16
R1 (Page 1080 1090 T2
17 - 18
R1 (Page 1110 1119 T2
19 - 20
R1 (Page 1266 – 1330)
Filament winding, Pultrusion, Pulforming
4
32
Thermoforming, Injection moulding, Blow moulding
4
36
4
44
4
48
Mechanical fastening of Polymer Composites
4
52
Adhesive Bonding of Polymer Composites
4
56
Joining methods of Polymer Composites
4
60
4
64
4
68
4
72
4
76
T2
21 - 22
R1 (Page 1343 1358 T2
Unit III : Fabrication of Composites
23 – 24 24
R1 (Page 1443 1444
Important issues in fabrication of PMC’s
T2
25 - 26
R1 (Page 1444 – 1451) T2
27 - 28
R1 (Page 1518 – 1534)
Cutting, machining, Composites
drilling
of
Polymer
T2
29 - 30
R1 (Page 1451 – 1480) T2
31 - 32
R1 (Page 1481 – 1502) T2
Unit IV : Application of Composites
33 – 34 34
R1 (Page 2407 2426) T2
35 - 36
R1 (Page 2322 2340) T2
37 - 38
R1 (Page 2322 2340) T2
39 - 40
R1 (Page 2465 2480
Application of Composite Materials in Aircrafts, missiles, space hardware,
Application of Composite automobile sector,
Materials
in
Application of Composite Materials electrical and electronics Engineering
in
Application of Composite Materials in marine, recreational and sports equipments
T2
41 - 42
T1 (Page 98 - 100)
Future potential of composites
4
80
Reinforcement materials in Metal Matrix Composites
4
84
Types, Characteristics & Selection of matrix and reinforcement materials
4
88
Application of Powder metallurgy technique for making Metal Matrix Composites
4
92
Application of liquid metallurgy technique for making Metal Matrix Composites
4
96
4
100
Unit V : Metal Matrix Composites
43 – 44 44
45 - 46
47 - 48
49 - 50
51 - 52
R1 (Page 380 - 400) T2 R1 (Page 400 - 405) T2 T1 (Page 103 - 105) T2 T1 (Page 106 - 107) T2 T1 (Page 125 - 130) T2
Applications of Metal matrix composites
Text Book : T1: Composite Materials by Krishnan Chawla, Springer Verlag New York Inc 1987
Material prepared by Dr V.P. Raghupathy T2: Course Material prepared Reference Book:
R1: ASM Metals Hand Book Vol. 21 Composites Edition 2001
14ME341: INTRODUCTION TO GAS DYNAMICS (4-0-0-0-4) Faculty: Dr. TSP
Class #
Chapter Title / Reference Chapter
No. of Hours: 52
Topics to be covered
% of Portions covered reference chapter
Cumulative
1,2
Review of Thermodynamics, Continuity, Momentum and Energy equations for Steady One Dimensional Flow
4.00%
4.00%
3,4
Isentropic Flow, Sonic Velocity, Mach Number and its Significance, Mach Waves, Mach Cone and Mach Angle
4.00%
8.00%
Static and Stagnation States, Thermodynamic Properties in terms of Mach Number
4.00%
12.00%
Various Regions of Flow, Effect of Mach Number on Compressibility
4.00%
16.00%
9, 10
Energy Equation and its Importance for Compressible Flow
4.00%
20.00%
11, 12
Introduction, Isentropic Flow Through a Duct of Varying CrossSectional Area
4.00%
24.00%
13, 14
Critical Speed of Sound, Critical Flow Area, Area Choking
4.00%
28.00%
4.00%
32.00%
4.00%
36.00%
4.00%
40.00%
4.00%
44.00%
Unit 1 Fundamentals of Compressible Compressible Flow
5, 6 T1: Chapter 1, 2 and 3
7,8
15, 16
17, 18
19, 20
21,22
Unit 2 Development of Shock Wave, Varying Area Normal Shock Equations, Isentropic Hugoniot Equation Flows and Normal Shocks Calculation of Thermodynamic and Flow Properties across the T1: Chapter 3 Normal Shock
Flow through Nozzle and Diffusor, Flow through a Converging Diverging Nozzle (De Laval Nozzle) Effect of Back Pressure, Convergent-Divergent Nozzle Flows and Applications
23, 24 25, 26 27, 28 29, 30
Unit 3 Oblique Shocks and Expansion Waves T1: Chapter 3
Introduction, Oblique Shock Formation, Oblique Shock Relations θ-β-M Relation, Supersonic Flow over Wedges and Cones Regular Reflection from a Solid Boundary, Interaction of Shocks of Same and Opposite Families Governing Equation of PrandtlMeyer Flow
4.00%
48.00%
4.00%
52.00%
4.00%
56.00%
4.00%
60.00%
31, 32
Prandtl Meyer Function, Prandtl Meyer Expansion Fan
4.00%
64.00%
33, 34
Fanno Flow: Introduction, Governing Equations
4.00%
68.00%
35, 36
Flow in Constant Area Duct with Friction (without Heat Transfer), Friction Choking
4.00%
72.00%
Rayleigh Flow: Introduction, Governing Equations
4.00%
76.00%
4.00%
80.00%
4.00%
84.00%
Unit 4 Fanno and Rayleigh Flows
37, 38 R3: Chapters 8 and 9
39, 40 41, 42
Flow in Constant Area Duct with Heat Transfer (without Friction), Thermal Choking A brief introduction to Hypersonic Flow
43, 44
Introduction, Pressure Measurements,
4.00%
88.00%
45, 46
Temperature Measurements Velocity Measurements,
4.00%
92.00%
High-Speed Wind Tunnels
4.00%
96.00%
Interference, Shadowgraph and Schlieren Techniques of Flow Visualization in Compressible Flows
4.00%
100.00%
47,48
49, 50
51, 52
Unit 5 Measurements in Gas Dynamics R1: Chapter 6
Revision Class
Text Book: T1: "Modern Compressible Flow", Anderson, J. D., McGraw-Hill & Co., 2002.
Reference Books: R1: ―Elements of Gas Dynamics‖, H W Liepmann and A Roshko, Dover Publications, 2007. R2: "Gas Dynamics", Rathakrishnan, E., Prentice Hall of India, 2004. R3: ―Fundamentals of Compressible Flow‖, Yahya, S. M., New Age International Publishers, 4th Edition, 2009. R4: ―Fundamentals of Gas Dynamics‖, Zucker, R. D., Biblarz, O., John Wiley & Sons Ltd, 2nd Edition, 2002. nd R5: ―Fundamentals of Gas Dynamics‖, Babu, V., John Wiley & Sons Ltd, 2 Edition, 2015.
14ME342: COMPUTATIONAL FLUID DYNAMICS (4-0-0-0-4) Faculty: KSR
Class #
No. of Hours: 52
Chapter Title / Reference Chapter
1,2
Unit I 3,4
5,6 7,8
Unit II 11,12
13,14
15,16
17,18 Unit III
21,22
reference chapter
Cumulative
3.00%
3.00%
3.00%
7.00%
One-dimensional computations by finite volume methods; Boundary conditions – Neumann and Dirichlet boundary conditions conditio ns
4.00%
10.00%
Classification of Differential Equations;
4.00%
24.00%
4.00%
28.00%
4.00%
32.00%
4.00%
36.00%
4.00%
40.00%
4.00%
44.00%
4.00%
48.00%
4.00%
52.00%
Historical background; One-dimensional computations by finite difference methods; One-dimensional computations by finite element methods; method s;
Partial
Navier-Stokes System of Equations; Boundary conditions
9,10
19,20
Topics to be covered
% of Portions covered
Derivation of Finite Difference Equations – Simple Simple methods, general methods, higher order derivatives. multi-dimensional Finite Difference Formulas, mixed derivatives,. higher order accuracy schemes, accuracy of finite difference solutions. Elliptic equations – Finite Finite difference formulations, Iterative Solution Methods, Direct method with Gaussian Elimination; Parabolic Equations – Explicit Explicit Schemes and Von Neumann Stability Analysis, Implicit Schemes, ADI Schemes, Approximate Factorization,
23,24
4.00%
56.00%
4.00%
60.00%
25,26
, Fractional Step Methods; Three Dimensions, Direct Method with Tridiagonal Matrix Algorithm.
4.00%
64.00%
27,28
Hyperbolic Equations – Explicit Explicit Schemes and von Neumann Stability Analysis
4.00%
68.00%
29,30
Implicit Schemes, Multistep (Splitting, Predictor – Corrector) Corrector) Methods,
31,32
Numerical Examples.
4.00%
72.00%
Nonlinear Problems,
4.00%
76.00%
4.00%
80.00%
4.00%
84.00%
37,38
Second order One Dimensional Wave Equations; Burgers Equation – Explicit Explicit and Implicit Schemes, Runge-Kutta Method
4.00%
88.00%
39,40
Transformed Equations, Application of Neumann Boundary Conditions,
4.00%
92.00%
4.00%
96.00%
43,44
Solution by MacCormack Method Example Problems for Elliptic Equation (Heat Conduction), Parabolic Equation (Couette Flow),
45,46
for Hyperbolic Equation (Second Order Wave Equation),
2.00%
98.00%
Unit IV
33,34 35, 36
41,42 Unit V
for Non-linear Wave Equation
2.00%
100.00%
47,48 Revision Class-1 49,50 Revision Class-2 51,52 Reference Books:
1. ―Computational Fluid Dynamics ‖,T.J.Chung, Cambridge University Press, 1 st South Asian Edition, 2003.
2. ‖Computational Fluid Dynamics – A Practical Approach‖, Jiyuan Tu, Guan Heng Yeoh and Chaoqun Liu, Butterworth- Heineman, 2008. 3. ―Computational Fluid Dynamics‖, John D Anderson, M cGraw-Hill International Edition, 1995.
14ME343: Electric Electric Hybrid and Fuel Cell Vehicles Faculty: Mr.PBR Class #
1-2
3-4
5-6
7-8
9-10
11-12
13-14
15-16
17-18
Chapter Title/ Reference Literature Chapter 1: Introduction T1: Page 1-13
Chapter 1: Introduction T1: Page 13-18 Chapter 2: Types of Electric Vehicles – EV EV Architecture T1: Page 19-24 Chapter 2: Types of Electric Vehicles – EV EV Architecture T1: Page 25-26 Chapter 2: Types of Electric Vehicles – EV EV Architecture T1: Page 26-27 Chapter 3: Hybrid Electric Vehicles T2: Page 243-245 Chapter 3: Hybrid Electric Vehicles T2: Page 245-247 Chapter 3: Hybrid Electric Vehicles T2: Page 247-254 Chapter 3: Hybrid Electric Vehicles T2: Page 254-257
Topics to be Covered Unit 1 A Brief History, Early Days, The Middle of the Twentieth Century, Developments towards the End of the Twentieth Century and the Early Twenty-First Century, Electric Vehicles and the Environment, Energy Saving and Overall Reduction of Carbon Emissions, Reducing Local Pollution, Reducing Dependence on Oil, Usage Patterns for Electric Road Vehicles.
% Portions Covered Referenc Cumulativ e Chapter e
4%
4%
4%
8%
Battery Electric Vehicles, The IC Engine/Electric Hybrid Vehicle, Fueled EVs
4%
12%
EVs using Supply Lines, EVs which use Flywheels or Supercapacitors
3%
15%
Solar-Powered Vehicles, Vehicles using Linear Motors, EVs for the Future
4%
19%
Unit 2 Types of Hybrids, Series and Parallel HEV’s, Advantages and disadvantages
4%
23%
Series-Parallel Combination, Internal Combustion Engines
4%
27%
Reciprocating Engines, Practical and AirStandard Cycles, Air-Standard Otto Cycle, Air-Standard Diesel Cycle, Example of IC Engines in HEVs
4%
31%
Gas Turbine Engine, Design of HEV, Hybrid Drive Trains,
4%
35%
19-20
21-22
23-24
25-26
27-28
29-30
31-32
33-34
35-36
Chapter 3: Hybrid Electric Vehicles T2: Page 257-261 Chapter 4: Electric Vehicle Modelling T1: Page 187-191 Chapter 4: Electric Vehicle Modelling T1: Page 191-197 Chapter 4: Electric Vehicle Modelling T1: Page 197-204 Chapter 4: Electric Vehicle Modelling T1: Page 204-212 Chapter 4: Electric Vehicle Modelling T1: Page 212-216 Chapter 5: Energy Storages T3: Page 300-304 Chapter 5: Energy Storages T3: Page 304-311 Chapter 5: Energy Storages T3: Page 311-313
37-38
Chapter 5: Energy Storages T3: Page 313-315
39-40
Chapter 5: Energy Storages T3: Page 315-321
41-42
Chapter 5: Energy Storages T3: Page 322-332
Sizing of Components, Rated Vehicle Velocity, Initial Acceleration, Maximum Velocity, Maximum Gradability
3%
38%
4%
42%
4%
46%
Modelling the Acceleration of a Small Car, Modelling Electric Vehicle Range,Driving Cycles,
4%
50%
Range Modelling of Battery Electric Vehicles, Constant Velocity Range Modelling, Other uses of Simulations
4%
54%
Range Modelling of Fuel Cell Vehicles, Range Modelling of Hybrid Electric Vehicles, Simulations – A A Summary
4%
58%
4%
62%
3%
65%
4%
69%
4%
73%
4%
77%
4%
81%
Unit 3 Introduction, Tractive Effort, Rolling Resistance Force, Aerodynamic Drag, Hill Climbing Force, Acceleration Force, Total Tractive Effort Modelling Vehicle Acceleration, Acceleration Performance Parameters, Modelling the Acceleration of an Electric Scooter
Unit 4 Electrochemical Batteries, Electrochemical Reactions, Thermodynamic Voltage Specific Energy, Specific Power, Energy Efficiency, Battery Technologies, LeadAcid Batteries Nickel-based Batteries, Nickel/Iron Nickel/ Iron System, Nickel/Cadmium System, Nickel – – Metal Hydride (Ni – MH)Battery – MH)Battery Lithium-Based Batteries, Lithium – Polymer (Li – P) Battery, Lithium-Ion (Li – P) Ion) Battery, Ultracapacitors, Features of Ultracapacitors, Basic Principles of Ultracapacitors, Performance of Ultracapacitors, Ultracapacitor Technologies Ultrahigh-Speed Flywheels, Operation Principles of Flywheels, Power Capacity of Flywheel Systems, Flywheel Technologies, Hybridization of Energy Storages
43-44
45-46
47-48
Chapter 6: Fuel cell vehicles T3: Page 348-355 Chapter 6: Fuel cell vehicles T3: Page 355-359 Chapter 6: Fuel cell vehicles T3: Page 359-363
49-50
Chapter 6: Fuel cell vehicles T3: Page 363-368
51-52
Chapter 6: Fuel cell vehicles T3: Page 368-373
Unit 5 Operating Principles of Fuel Cells, Electrode Potential and Current – Voltage – Voltage Curve, Fuel and Oxidant Consumption Fuel Cell System Characteristics, Fuel Cell Technologies, Proton Exchange Membrane Fuel Cells Alkaline Fuel Cells, Phosphoric Acid Fuel Cells, Molten Carbonate Fuel Cells, Solid Oxide Fuel Cells, Direct Methanol Fuel Cells, Fuel Supply, Hydrogen Storage, Compressed Hydrogen, Cryogenic Liquid Hydrogen, Metal Hydrides Hydrogen Production, Steam Reforming, POX Reforming, Auto thermal Reforming, Ammonia as Hydrogen Carrier, Nonhydrogen Fuel Cells.
4%
85%
3%
88%
4%
92%
4%
96%
4%
100%
Text Books: T1. T2. T3.
Electric Vehicle Technology Explained, James Larminie, John Lowry, John Wiley & Sons, Ltd., New York, 2003 Electric and Hybrid Vehicles Design Fundamentals, Iqbal Husain, CRC Press, Washington D. C., 2005 Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, Mehrdad Ehsani, Ali Emadi, CRC Press, Washington D. C., 2005
Reference Books: R1. Fuel Cell Systems Explained, Larminie, J. and Dicks, A., John Wiley & Sons, Ltd., New York, 2001. R2. Vehicular Electric Power Systems, Ali Emadi, MehrdadEhsani, John M. Muller, Marcel Dekker, Inc., 2004. R3. Recent Trends in Fuel cell Science and Technology , Basu .S, Anamaya Publishers, New Delhi., 2007. R4. Fuel Cells Principles and Applications, Viswanathan, B. and AuliceScibioh, M., Universities Press (India) Pvt. Ltd., Hyderabad, 2006. R5. Fuel Cell Technology Handbook, Hoogers, G., Edr. CRC Press, Washington D. C., 2003.
14ME344: THEORY OF PLASTICITY(4-0-0-0-4) PLASTICITY(4-0-0-0-4) Faculty: Mr. TPG
Class No.
Chapter Title / Reference Literature
1,2
Chapter 1: pg 1-8
3,4 Chapter 1: pg 9-16
5,6 Chapter 1: pg 17-25
7,8 Chapter 1: Pg 26-33
9,10 Chapter 1: pg 34-39
11 12 Chapter 1: T1 page – 11-16 11-16
13 14 Chapter 1: Pg: 11-16
No. of Hours: 52
Topics to be covered
Review of stress, stress transformation laws, spherical and deviator stress tensors, equilibrium equations, octahedral stresses,
% of Portions covered Reference Cumulative chapter 2 2
2
4
2
6
2
8
2
10
2
12
Plastic Deformation Of Crystalline Metals: structure in metals, mechanism of plastic deformation, factors affecting plastic deformation, strain hardening, recovery, recrystallization and grain growth, flow figures or Luder’s cubes.
2
14
2
16
2
18
2
20
UNIT II Cubical Dilation, True Stress And Strain: Strain tensor, principal strain, plane strain, substance.
2
22
2
24
2
26
2 2
28 30
Concept of strain, deviator and spherical strain tensors, strain transformation laws, octahedral strains, Generalized Hooke’s law, elastic strain energy, compatibility equations, theories of strength, Problems.
Spherical and deviator strain, octahedral strain and representative strain, problems.
15,16 Chapter 3: Pg 40-45
17, 18
19, 20
Chapter 3: 53-57
Chapter 3: Pg 57-62
21,22 Chapter 4: Pg 63-65
23,24 Chapter 3: Pg 65-66
25,26
27,28
29,30
Chapter 3: Pg 65-66 Chapter 3: Pg 66-67 Chapter 3: Pg 64-66
31,32 Chapter 10: page 232-235
33,34
Chapter 10: page 236-241
35,36 Chapter 10: page 241-242
37,38 39,40
Chapter 10: page 247-250 Chapter 10: page 250-253
Stress Strain Relations: Introduction, types of materials, empirical equations, theories of plastic flow, experimental verification of St. Venant’s theory of plastic flow, the concept of plastic potential The maximum work hypothesis, mechanical work for deforming a plastic UNIT 3 Yield Criteria: Introduction, yield or plasticity conditions, condition s, Von Mises and Tresca criteria, Geometrical representation,
2
32
2
34
2
36
2
38
2
40
2
42
2
44
2
46
2
48
yield surface, yield locus (two dimensional stress space), Experimental evidence for yield criteria,
2
50
2
52
2
54
2
56
Energy required to change the shape with basic principle problems proble ms UNIT 4 Slip Line Field Theory: Introduction, basic equations for incompressible two dimensional flows, continuity equations Stresses in conditions of plain strain, convention for slip lines, Solutions of plastic deformation problem,
2
58
2
60
2
62
2
64
2
66
2
68
4
72
4
76
2
78
2
80
Geometry of slip line field Properties of the slip lines, construction of slip line
41,42
43,44
45, 46
47,48
49,50 51,52
Chapter 6:Bending of Beams T1: page 101-102 Chapter 6:Bending of Beams T1: page 102-111 Chapter 6:Bending of Beams T1: page 112-114 Chapter 7:Torsion of bars T1: page 136-144 Chapter 7:Torsion of bars T1: page 136-144 Chapter 7:Torsion of bars T1: page 136-144
UNIT 5 Bending Of Beams: Analysis for stresses, Non linear stress strain curve, shear stress distribution,
residual stresses in plastic bending, problems. Torsion of Bars: Introduction, plastic torsion of a circular bar, elastic perfectly plastic material, elastic work hardening of material, residual stresses and problems
2
82
2
84
2
86
2
88
2
90
2 2
92 94
2
96
1 1 1
97 98 99
1
100
TEXT BOOK: 1. ―Theory of Plasticity and Metal Forming Process‖, Sadhu Singh, Khanna Publishers. Reference Books:
1. "Theory of Plasticity", Chakraborty, Elsevier, 3rd Edition, 2006. 2. "Engineering Plasticity", W. Johnson and P. B. Mellor D Van N.O Strand Co. Ltd, 2000. 3. "Basic Engineering Plasticity‖, DWA Rees, Elsevier, 1st Edition, 2006. 4. "Theory of Plasticity", L. S. Srinath, TMH, 2009.
3D PRINTING TECHNOLOGY: 14ME345/14ME345(4-0-014ME345/14ME345(4-0-0-0-4) 0-4)
Faculty: NR/SS Hours: 52
Class #
Chapter Title / Reference Chapter
1-2
Topics to be covered
Introduction to 3D printing Technology History of 3DP systems, Need for the compression in product development,
3-4
5-6
No. of
UNIT 1 Chapter: 1, 2 T1: Introduction Page 1, 2-6,7-12,12-17, 19,21-40
% of Portions to be covered Reference Cumulative chapter
4%
4%
4%
8%
Rapid Prototyping - An Integral Part of Time Compression Engineering 4%
12%
4%
16%
Classification of Rapid Prototyping Processes,Processes Involving a Liquid
4%
20%
Stereolithography system, Working Principal, Technical characteristics, data preparation, Advantages, Advanta ges, Disadvantages, Applications.
4%
24%
Solid Ground Curing system, Working Principal, Process parameters data preparation, preparati on, Advantages, Disadvantages, Applications.
4%
28%
Geometrical Modelling Techniques RP Data Formats
7-8
RP Information Workflow
9-10
11-12
13-14
UNIT 2 Chapter:3 T1:Technical Characteristics and Technological Capabilities of Rapid Prototyping Systems Page 43-47,48-51,5255,55-59,59-62
Fused Deposition modelling Working Principal, Process parameters.data preparation, preparati on, Advantages, Disadvantages, Applications 4%
15-16
4%
32%
4%
36%
19-20
Data preparation for SLS, Applications of SLS, Materials.
4%
40%
21-22
Principal of operation, LOM materials, Process details, application
4%
Data files, machine details, Applications, Principle of operation, process parameters of SLS
17-18
23-24
25-26
27-28
29-30
31-32
UNIT 3 Chapter :4 T1: Technical characteristics and technological capabilities of concept modelers Page 72-75,76-78,7879,80-82,82-85.
Chapter-5 T1:Applications of 3D Printing Technology Page 87-92, 92-95,97109
Process, Specifications and examples of 3D Systems ThermoJet™ Printer Process, Specifications and examples of Sanders ModelMaker II (Inkjet Modelling Technology) Process, Specifications and examples of Z-Corporation Z402 3D Printer (Three Dimensional Printing) Process, Specifications and examples of Stratasys Genisys Xs 3D Printer,JP System 5,Objet Quadra System
Functional Models ,Pattern for Investment and Vacuum Casting , Medical Models Art Models, Engineering Analysis Models
44% 4% 48% 4%
52%
4%
56%
4%
60%
4% 64%
Role of Indirect Methods in Tool Production Metal Deposition Tools
33-34
35-36
37-38
39-40
UNIT-4 Chapter 6 T1:Indirect Methods for Rapid Tool Production Page 111-113,115120,121,122-128, 128130,131-133,
Chapter 7 T1:Direct Methods for Rapid Tool Production Page 135-159
41-42
43-44
45-46
47-48
49-50
51-52
UNIT-5 Chapter 9 T1:Rapid Prototyping Process Optimisation Page 184-187,187191,191-193, 193197,198-200,201-203
4%
68%
RTV Tools Epoxy Tools,Ceramic Tools
4%
72%
Cast Metal Tools, Investment Casting, Fusible Metallic Core
4%
76%
4%
80%
2%
82%
4%
86%
Sand Casting Keltool™ Process,DTM RapidToo1™ Process Direct Metal Tooling using 3Dp™ Topographic Shape Formation
Factors Influencing Accuracy Data Preparation Errors due to Tessellation Errors due to SlicingPart Building Part Building Errors in the SL Process
Part Building Errors in the SLS Process Part finishing,Selection of Part Build Orientation Orientation Constraints of the SL Process Orientation Constraints of the SLS Process Case studies
4%
90%
4%
94%
4%
98%
2%
100%
Reference Books: T1 Rapid Manufacturing, D.T.Pham and S.S Dimov Springer, London T2 Rapid prototyping principles and applications C K CHUA, K F LEONG AND C S LIM Third edition.