___________________________________________________________________________
DISE DISE O DE DE MU MUROS ROS DE DE CON CONTE TENC NCII N ◘ PREDIMENSIONAMIENTO
e
DATOS H= h W= γc = γs = γ ss= γ w= Ø s= Øss= ß= µ= q a=
1.50 0.50 2.40 1.60 0.60 0.60 1.00 #### #### 0.00 0.60 2.50
m. m. t/m³ t/m³ t/m³ t/m³ t/m³ º º º
(B-c-a)Tag(ß) (B-c-a) Tag(ß)
ß
Suelo Seco
(Z-hw)
γss γs 1 H
Kg/cm²
Suelo saturado
hw
(B-c-a)
c a
hz B
DESARROLLO damos valores para el predimensionamiento del muro, luego, estas dimensiones deberán ser comprobadas, tanto a la falla por deslizamiento como por volteo y la capacidad del suelo. Predimensiones: e= 0.25 m a= 0.50 m c= 0.15 m B= 0.80 m hz= 0.25 m
Cálculos Previos: K a : Coeficiente Coeficiente para para el empuje empuje activo seg n Rankine Rankine K a s
cos ß cos ß cos ß
cos
2
cos
2
ß cos2 Øs Øs ß cos
2
Øs
Kas= ### (para (para sue suelo lo seco) seco)
K a ss Kass=
1 senØ ss 1 senØ ss
0.390 (para suelo saturado) saturado)
DIAGRAMA DE PRESIONES 0.00
0.25
ß
suelo seco 1.00 = 0.60 1.50 suelo saturado 0.50
0.15 0.25
0.15 0.50
0.12 sub-presión del agua 0.50 0.80
0.50
___________________________________________________________________________
DIAGRAMA DE CUERPO LIBRE F.S.= 1.50 (al deslizamiento) F.S.= 2.00 (al volteo) W1= 0.38 Tn W2= 0.75 Tn W3= 0.48 Tn W4= 0.02 Tn W5= 0.24 Tn W6= 0 Tn Esv1 0 Tn Esh1 0.3 Tn Esv2 0 Tn Esh2 0.11 Tn Ess= 0.03 Tn Ew= 0.13 Tn Eav= 0+0= 0 Tn. Eah= 0.3+0.11+0.03+0.13 ah= 0.57 Tn Sp= 0.20 Tn
Esv1 Esh1
Esv2 Esh2
Ess
Ew
VERIFICACI N AL DESLIZAMIENTO la fuerzas que se oponen al deslizamiento son el rozamiento de la base del muro con el suelo de cimentación y el eventual empuje pasivo frente al muro (no se esta considerando en este caso) N= 0.38+0.75+0.48+0.02+0.24+0+0-0.2 N= 1.67 Tn. µN= 1.00 Tn debe cumplirse: µ.N ≥ F.S. x Ea.h de los resultados tenemos: 0.6 x 1.67 = 1 > 1.5 x 0.57 = 0.85
(ok)
VERIFICACI N AL VOLTEO El momento actuante o momento volcador, es producido por la fuerza horizontal del empuje y el momento resistente o estabilizador viene dado por los momentos de las fuerzas verticales con respecto a la puntera del talon. calculamos el momento resistente Elem. uerz Brazo Mr 1 0.38 0.23 0.1 2 0.75 0.28 0.2 3 0.48 0.40 0.2 4 0.02 0.73 0 5 0.24 0.73 0.2 6 0.00 0.75 0 Eav 0.00 0.80 0 Sp 0.20 0.53 0.1 Mom. Resistente 0.8 t-m
Esh1
Esh2
Ess calculamos el momento actuante Elem. uerz Brazo Mr Esh1 0.30 1.05 0.3 Esh2 0.11 0.25 0 Ess 0.03 0.17 0 Ew 0.13 0.17 0 Mom. Actuante 0.37 t-m
1.1 Ew 0.2
0.3
0.2 0.3 0.40 0.7 0.8 0.80
Debe cumplirse que: Mr ≥F.S.x Ma
Mr=
0.8
>
2 x 0.37 = 0.74
No falla por volteo
___________________________________________________________________________
ESFUERZO MÁXIMO EN EL SUELO Llamando N a la resultante de fuerza normal a la base de contacto cimiento-suelo y en a la excentricidad respecto al punto medio de dicha base, si las tensiones del cimiento sobre el suelo son de compresión en todo el ancho de la base, se acepta que la distibución de tensión es lineal y viene dada por la aplicación de la ley de HOOKE al caso de flexión compuesta.para una porción de ancho unidad se tiene: N M×e q= B I donde M es el momento aplicado, producto de la excentricidad de la fuerza normal (M=Nxen) y e, es la excentricidad del punto considerado, positivo hacia la puntera.
en
=
= B
Por tanto las tensiones en los bordes extremos se obtiene para e=±B/2 luego, considerando la inercia de la sección y reemplazando en la ecuación, tendremos: q1 = q2 =
N B N B
6.N×en
6.N×en
Debe comprobarse que la mayor no rebase la tensión admisible Ademas, para que no exista efuerzos de tensión en la base, debe B cumplirse que: N 6.N×en 0 en 2
B2 B2
B
B
6
La resultante de empujes y pesos debe pasar por el tercio central Determinamos entonces en:
en = B 2
--
Mr-Ma N
=
0.2
0.2 ^
B/6=
0.2 > 0.1 Ok. Entonces: Hallamos los esfuerzos en los bordes extremos con ecuaciones anteriores < 2.50 Kg/cm q1= 0.45 Kg/cm -0 Kg/cm < 2.50 Kg/cm q2=
1.6675
0.2
0.1 -0.3 4.5 OK OK
0.1521 0.4
0.4 0.8
UNFV-FIC
___________________________________________________________________________ MALLQUI AGUILAR FELIX
DISE O DE MUROS DE CONTENCI N ◘ DIMENSIONAMIENTO COMO ESTRUCTURA DE CONCRETO ARMADO
0 0.00
0.25
ß
PANTALLA Dimensiones H = 1.50 m. h W = 0.50 m. hs= 1.00 m. hss= 0.25 m. e= 0.25 m a= 0.50 m c= 0.15 m B= 0.80 m hz= 0.25 m ß = 0.00 º
1.00
1.00
0.6 1.50
0.25 0.50
0.15 0.25
0.50
0.1
0.3
0.25 0.80 Con las dimensiones indicadas, calculamos los momentos en los puntos necesario y elaboramos nuestro diagrama de fuerzas cortantes y momentos flectores, tomando como origen la parte inferior de la za ata, tendremos la si uiente tabla: X V(tn) M(t-m)
) m ( X
0.25 0.91 0.72
0.38 0.76 0.41
0.50 0.60 0.10
0.75 0.45 0.04
1.00 0.30 0.01
) m ( X
Diagrama de F.C.
6.0
6.0
5.0
5.0
4.0
4.0
3.0
3.0
1.25 0.15 0.00
1.50 0.00 0.00
Diagrama de M.F.
1.50 1.25 1.00 0.75 0.50 0.00 0.00 0.01 0.04 0.1
0.50 0.38 0.25 0.10 0.41 0.72 2.0
2.0
0.00
0.00 1.0
1.0
0.60
0.1
V (Tn) 0.91
0.0
M (T-m) 0.72
0.0 0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
UNFV-FIC
___________________________________________________________________________ MALLQUI AGUILAR FELIX
FLEXION LONGITUDINAL: teniendo en consideación el equilibrio en la sección, tenemos las siguientes ecuaciones con las que determinaremos el area de acero requerida para que nuestra sección resista los momentos ultimos
a=
A S f y β 3 .f c.b
ρ=
ωf c f y
.................... 1
AS =
Mu
a φ.f y d- 2
0.59.ω 2 - ω +
............ 4
◘ Calculo de los momentos resistentes DATOS: g cm c= 210 g cm y= ### w= 100 cm d= 42.5 cm Mu= 0.7 Tn-m (te rico) Ø= 0.9
.................... 2
Mu
φ.f c.b.d2
a=
ωd
.......... 3
β3
= 0 ........... α
hallamos el ρ b, que es igual a: 3 = 0.85 β .β .f 6000 ρ b = 1 3 c ρb = 0.02125 f y 6000+f y ρmax=0.01 ρmín.= 0.00180 Asmin= 7.65
2
Reemplazando datos en la ecuación α (cuadrática de la forma; aX +bX+c=0),hallamos ω, y luego el area de Acero. a= 0.59 (cuantía mecánica) x xρ b= -1.0 ω= 0.00 ρ = 0.000106 s= cm = c= 0.00 Entonces, el area de acero ser : 0.5 s Proporcionaremos un area de acero: X Nº # As AsTotal Mu r (t-m) Asmin M Asmin 0.70 18 4 1.29 23.22 34.91 9.00 5.59 1.50 4 4 1.29 5.16 12.96 4.50 2.89 ) m ( X
Diagrama de M.F.
6.0
X (Asmin) 0.70 5.59 1.50 2.89
5.8 5.6 5.4 5.2
X 0.70 1.50
Mu r 34.9 13.0
5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6
M(As min), 2.89
1.4
Mu r, 13.0
1.2 1.0 0.8 0.6 0.2 0.0
M(As min), 5.59
0.1
0.4
M (T-m)
0.72 0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
Web: e-mail:
http://mallqui.pe.kz
[email protected] [email protected]