ANÁLISIS DE CIRCUITOS POR NORTON O THEVENIN Estrella Marlon e-mail:
[email protected]
Ortiz Karen e-mail:
[email protected] Ingeniería Software, Primer Nivel, Universidad de las Fuerzas Armadas Armadas ESPE - Extensión ata!unga, "#r$uez de "aenza S%N ata!unga, E!uador&
Fecha de presentación: !"6"#16 RESUMEN:
cual)uier circuito a una orma e)ui+alente compuesta por una uente de +oltaje de 8 e)ui+alente en serie con una impedancia e)ui+alente.
$a% situaciones donde es desea&le poder sustituir una parte del circuito en un sólo componente u otro circuito mucho m's sencillo( antes )ue escri&ir las las ecua ecuaci cion ones es para para el circ circui uito to compl complet eto. o. Este Este precisa precisamen mente te es el propós propósito ito de los teorem teoremas as de *he+enin % ,orton. uando la uente de +oltaje( se util utiliz iza a el teor teorem ema a de *he+ *he+en enin in para para aisl aislar ar los los comp compon onen ente tess de inte inter/ r/s( s( pero pero si la uen uente te es de corriente se utiliza el teorema de ,orton.
7ecu 7ecuer erde de )ue )ue el circ circui uito to e)ui e)ui+a +ale lent nte e de *he+enin siempre es una uente de +oltaje dispuesta en serie con una impedancia( sin importar el circuito ori0inal )ue reemplaza. a importancia del teorema de *he+en *he+enin in es )ue el circuit circuito o e)ui+a e)ui+alen lente te puede puede reemplazar reemplazar al circuito circuito ori0inal por lo )ue concierne concierne a cual)uier car0a e3terna. ual)uier car0a conectada entre entre las termin terminale aless de un circui circuito to e)ui+a e)ui+alen lente te de *he+enin e3perimenta la misma corriente % el mismo +oltaje +oltaje como si estu+iera estu+iera conectada a las terminales del circuito ori0inal.
orriente( +oltaje % potencia entre0ados a un resistor particular de un circuito( el cual puede constar de un 0ran nmero de uentes % resistores.
1.
8 continuación( se proporciona un resumen de los pasos necesarios para aplicar el teorema de *he+enin.
INTR INTROD ODUC UCC CIÓN IÓN
*eorema de *he+enin: ual)uier red compuesta por resistores resistores lineales( uentes uentes independiente independientess % uentes uentes depend dependien ientes( tes( puede ser sustit sustituid uida a en un par de nodos por un circuito e)ui+alente ormado por una sola uente de +oltaje % un resistor serie.
2aso 1. 8&rir las dos terminales entre las )ue se desea determinar el circuito de *he+enin. Esto se lo0ra retirando el componente desde donde se +a a +er el circuito. 2aso #. 9eterminar el +oltaje entre las dos terminales a&iertas.
2or e)ui e)ui+a +ale lent nte e se ent entien iende )ue )ue su comportamiento ante cual)uier red e3terna conectada a dicho par de nodos es el mismo al de la red ori0inal 4i0ual comportamiento e3terno( aun)ue no interno5.
2aso 2aso <. 9ete 9eterm rmin inar ar la impe impeda danc ncia ia +ist +ista a desde las dos terminales terminales a&iertas con las uentes uentes de +oltaj +oltaje e ideale idealess ha&ien ha&iendo do sido sido reempla reemplazad zadas as por cortos % las uentes de cor corriente ideales reemplazadas con a&erturas 4ajustadas a cero5.
*eorema de ,orton: ual)uier red compuesta por resistores resistores lineales( uentes uentes independiente independientess % uentes uentes depend dependien ientes tes puede puede ser sustituid sustituida( a( en un par de nodos( por un circuito e)ui+alente ormado por una sola uente de corriente % un resistor en paralelo.
2aso =. onectar
Z th
en serie
para para produc producir ir el circui circuito to e)ui+a e)ui+alen lente te de *he+en *he+enin in completo. 4Flo%d( #>5
a resistencia se calcula 4i0ual )ue para el e)ui e)ui+a +ale lent nte e de *he+ *he+en enin in55 anul anulan ando do las las uen uente tess independientes del circuito 4pero no las dependientes5 % reduciendo el circuito resultante a su resistencia e)ui+alente +ista desde el par de nodos considerados.
2.
V th %
DESARR RRO OLLO
*EO7EM8 9E *$EE,;, El teorema de *he+enin( tal como se aplica a circuitos circuitos de 8( proporciona proporciona un m/todo para reducir
1
Fi0ura 1. ircuito )ue e3plica el teorema de *he+enin. Fuente: 4?;O8,; $O?A, 7OB8C( #1D5 .
Fi0ura <. ircuito )ue e3plica el teorema de ,orton. Fuente: 4?;O8,; $O?A, 7OB8C( #1D5 . Fi0ura #. E)ui+alente del teorema de *he+enin. Fuente: 4?;O8,; $O?A, 7OB8C( #1D5 . *EO7EM8 9E ,O7*O, ;0ual )ue el teorema de *he+enin( el teorema de ,orton proporciona un m/todo til para reducir un circuito complejo a una orma m's simple % maneja&le con ines de an'lisis. a dierencia &'sica es )ue el teorema de ,orton proporciona una uente de corriente e)ui+alente 4en lu0ar de una uente de +oltaje5 dispuesta en paralelo 4en lu0ar de en serie5 con una impedancia e)ui+alente. ual)uier car0a conectada entre las terminales de un circuito e)ui+alente de ,orton e3perimentar' la misma corriente a tra+/s de ella % el mismo +oltaje entre sus e3tremos como si estu+iera conectada a las terminales del circuito ori0inal.
Fi0ura =. E)ui+alente del teorema de ,orton. Fuente: 4?;O8,; $O?A, 7OB8C( #1D5 .
3. CONCLUSIONES Y RECOMENDACIONES
n resumen de los pasos para la aplicación teórica del teorema de ,orton es como si0ue:
-
2aso 1. 7eemplazar la car0a conectada a las dos terminales entre las cuales se +a a determinar el circuito de ,orton con un corto.
-
2aso #. 9eterminar la corriente a tra+/s del corto. sta es ;n. 2aso <. 8&rir las terminales % determinar la impedancia entre las dos terminales a&iertas % con todas las uentes reemplazadas por sus impedancias internas. sta es n.
-
2aso =. onectar ;n % n en paralelo. 4Flo%d( #>5 -
4.
El nue+o % m's simple circuito permite lle+ar a ca&o c'lculos r'pidos de +oltaje( corriente o potencia )ue el circuito es capaz de entre0ar a la car0a 7. Este nue+o circuito tam&i/n a%uda a ele0ir el mejor +alor para la resistencia de car0a( %a sea el +alor de 7 para el cual la potencia es m'3ima o el +alor de 7 para el cual la uente se comporta de orma cercana a la uente real( usando el concepto de lGnea de car0a. os teoremas de *he+enin % ,orton permiten encontrar el circuito e)ui+alente mucho m's r'pida % 'cilmente an en circuitos m's complicados. Estos teoremas se pueden aplicar a cual)uier elemento del circuito.
REFERENCIAS:
(2007). Mexico: Pearson. Floyd, T. L. (2007). TEOREMA E T!E"E#$#. En T. L. Floyd, 2
PRINCIPIOS DE CIRCUITOS ELÉCTRICOS (%&'s. 1*2). Mexico: Pearson.
3irci4os en $n'enieria: 544%s:66analisisdecirci4os1.ord %ress.co86%ar4e*1*circi4os* resis4i9os*ca%*21*a*0*en* cons4rccion6ca%i4lo*2* 4eore8as*de*45e9enin*y*nor4on6
+$O"A#$ !OL+-# ROA/. (2 de 07 de 201). Analisis de Circuitos en Ingenieria. Rec%erado el 07 de 0 de 201, de Analisis de