FÍSICA MODERNA CÓDIGO: 299003 TAREA 3- TRABAJO COLABORATIVO-UNIDAD 2 UNIDAD No 2
Presentado a: GABRIELA INES LEGUIZAMON SIERRA Tutor
Entregado por: Edwinson Javier Triana Código: 1016039534 John Alexander González Lozano Código: 1015435424 Andres Mauricio Muñoz Código: XXXXX Jhon Alexander Urrego Código: XXXXX Nombres y Apellidos (Estudiante 5) Código: XXXXX
Grupo: 299003_46
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD ESCUELA DE CIENCIAS BÁSICAS TECNOLOGÍA E INGENIERÍA I NGENIERÍA ABRIL BOGOTA
INTRODUCCIÓN
En el siguiente trabajo se van a tener los conceptos de Radiación de cuerpo negro e hipótesis de Planck, efecto fotoeléctrico, efecto Compton, fotones y ondas electromagnéticas, propiedades ondulatorias de las partículas, partícula cuántica y el principio de incertidumbre, en donde aplicando los diversos conceptos se logran desarrollar de manera adecuada los ejercicios planteados en el anexo 2, los cuales se plantean y comprueban de una manera idónea mediante software educativos.
INTRODUCCIÓN
En el siguiente trabajo se van a tener los conceptos de Radiación de cuerpo negro e hipótesis de Planck, efecto fotoeléctrico, efecto Compton, fotones y ondas electromagnéticas, propiedades ondulatorias de las partículas, partícula cuántica y el principio de incertidumbre, en donde aplicando los diversos conceptos se logran desarrollar de manera adecuada los ejercicios planteados en el anexo 2, los cuales se plantean y comprueban de una manera idónea mediante software educativos.
MARCO TEÓRICO Edwinson Javier Triana
John Alexander González Lozano
John Alexander González Lozano
Andres Mauricio Muñoz
TRABAJO COLABORATIVO DE LA UNIDAD 2: ACTIVIDAD 1
Suponga que una estrella gigante tiene una temperatura de T K en su superficie y es X veces el diámetro de nuestro Sol. Si consideramos que la estrella irradia como un cuerpo negro ideal calcule: a) La longitud de onda a la que irradia con máxima intensidad. b) Si la estrella irradiara toda esta energía en la longitud de onda de máxima intensidad, ¿cuántos fotones por segundo irradiaría? Para lo anterior tenga en cuenta que la potencia total es igual a la cantidad de fotones ( ) emitidos por segundo multiplicado por la energía de cada fotón, es decir, = .
c) Compruebe el resultado del ítem b) haciendo uso del simulador 2 que está en el entorno de aprendizaje práctico. (Anexe la imagen de la simulación obtenida en el informe). Ejercicio No 1. Nombre del estudiante: Andres Mauricio Muñoz Datos del problema: Temperatura: 14176 K Diámetro: 927´072.000 km
c h 3∗108 6.626∗1034 J∗s m/s 5.67∗10−
Constante de Planck: Velocidad de la luz:
Constante de Stefan- Boltzmann:
∗
Nombre de quien revisa: ……Desarrollo del paso a paso y explicación
a.
La longitud de onda a la que irradia con máxima intensidad.
λλ 22..8998∗10 89∗10−−∗∗ 14176 λ 2.0443∗10− 204.43
b. Si
la estrella irradiara toda esta energía en la longitud de onda de máxima intensidad, ¿cuántos fotones por segundo irradiaría? Para lo anterior tenga en cuenta que la potencia total es igual a la cantidad de fotones ( ) emitidos por segundo multiplicado por la energía de cada fotón, es decir, .
1 ℎ ∗ 3∗10 / λ 1.42.6∗10 0443∗10−− 1 6.26∗10− ∗ ∗1.−46∗10− 1 9.13∗10 ∗ 5.67∗10− ∗14176 2. 28∗10 2.2810/ − 9. 1 3∗10 2.50∗10 ∗ > ∗ 9. 2 7∗10 ∗ 2 2.1∗10∗ 2.50∗10 ∗ 4. 8 6∗10 5.37∗10 / Potencia emisiva: P=
=NE
*
c.
Compruebe el resultado del ítem b) haciendo uso del simulador 2 que está en el entorno de aprendizaje práctico. (Anexe la imagen de la simulación obtenida en el informe).
…… simulación:
Ejercicio No 2. Nombre del estudiante: Edwinson Javier Triana Datos del problema:
T= 21342 X= 566
Nombre de quien revisa: Jhon Alexander González ……Desarrollo del paso a paso y explicación
a) La longitud de onda a la que irradia con máxima intensidad. Sabiendo que según la ley de Wien tenemos que la longitud de onda en el pico de la cuerva es inversamente proporcional a la temperatura, por ende la ecuación nos queda:
. ∗ λmax λmax .∗
Por ende nos queda que la longitud de onda que irradia a máxima intensidad tiene lugar al pico de la curva de radiación:
λpico 1.358∗10−
b) Si la estrella irradiara toda esta energía en la longitud de onda de máxima intensidad, ¿cuántos fotones por segundo irradiaría? Para lo anterior tenga en cuenta que la potencia total es igual a la cantidad de fotones ( ) emitidos por segundo multiplicado por la energía de cada fotón, es decir, .
Para este ejercicio se debe utilizar la ley de Stefan-Boltzman, en la cual lo primero que debemos hallar es el área, de la siguiente forma
∗. . ∗ . − ∗ ∗ . ∗ ∗. . λmax
Sabiendo que el sol tiene un diámetro de 1.3912 millones de km, entonces la ecuación no queda.
Ya sabiendo el área podemos reemplazar y hallar la potencia.
Al tener la potencia, podemos hallar la intensidad de fotones:
Despejamos
(.∗.∗)(.∗) 1.46∗10− 11.98/1.46∗10− 8.18∗10
Ya sabiendo la energía procedemos a hallar la cantidad de fotones emitidos por segundo
…… simulación:
Ejercicio No 3. Nombre del estudiante: Jhon Alexander Urrego Huertas Datos del problema: Nombre de quien revisa: ……Desarrollo del paso a paso y explicación
b) La longitud de onda a la que irradia con máxima intensidad. c) Si la estrella irradiara toda esta energía en la longitud de onda de máxima intensidad, ¿cuántos fotones por segundo irradiaría? Para lo anterior tenga en cuenta que la potencia total es igual a la cantidad de fotones ( ) emitidos por segundo multiplicado por la energía de cada fotón, es decir, .
d) Compruebe el resultado del ítem b) haciendo uso del simulador 2 que está en el entorno de aprendizaje práctico. (Anexe la imagen de la simulación obtenida en el informe). T=12262 X=651
a) La longitud de onda a la que irradia con máxima intensidad.
=... .. . = =,
b) Si la estrella irradiara toda esta energía en la longitud de onda de máxima intensidad, ¿cuántos fotones por segundo irradiaría? Para lo anterior tenga en cuenta que la potencia total es igual a la cantidad de fotones ( ) emitidos por segundo multiplicado por la energía de cada fotón, es decir,
651 651 ∗ 1,3914 ∗10 ∗ Calculamos la potencia
∙ 4 ∗
] 12,12,5664∗[ 4 52, 5 . 1 0 5 2.664∗204. 7 56, 2 5 573∙10 24∗ 2.573∗10121.0 ∗29∗1∗8296/ / ∗∗ / .∗ 5,670*10-8
ℎ 6,626∗ . ∗9.67∗10 . ∗− 10 -34
/ 29∗10− ,121..∗0∗10
N=18,,91*10^51 fotones por segundo
c) Compruebe el resultado del ítem b) haciendo uso del simulador 2 que está en el entorno de aprendizaje práctico. (Anexe la imagen de la simulación obtenida en el informe). simulación:
…… simulación:
Ejercicio No 4. Nombre del estudiante: John Alexander González Lozano Datos del problema:
23693 566
Nombre de quien revisa: Edwinson Javier Triana ……Desarrollo del paso a paso y explicación
a) La longitud de onda a la que irradia con máxima intensidad.
Para realizar esta solución usaremos la ley de desplazamiento de Wien
− 2 . 8 98∗10 2.898∗10 − 1. 22∗1023693− 122
b) Si la estrella irradiara toda esta energía en la longitud de onda de máxima
intensidad, ¿cuántos fotones por segundo irradiaría? Para lo anterior tenga en cuenta que la potencia total es igual a la cantidad de fotones ( ) emitidos por segundo multiplicado por la energía de cada fotón, es decir, = .
Primero calcularemos el área de la estrella gigante teniendo en cuenta que es X veces el diámetro del sol.
1. 3 914∗10 566 2 8.606∗10 8.606∗10 5.670∗10− ∗ 8.606∗10 ∗ 1∗23693 1.537∗10 ℎ (6.626∗10−1.2 2∗10∗)−2.998∗10 1.628∗10−
Usaremos la ley de Stefan para hallar la potencia
Procedemos hallar a energía de un fotón
Procedemos a calcular la cantidad de fotones emitida
…… simulación:
− 11..5637∗10 28∗10 9.44∗10 /
c) Compruebe el resultado del ítem b) haciendo uso del simulador 2 que está
en el entorno de aprendizaje práctico. (Anexe la imagen de la simulación obtenida en el informe).
Ejercicio No 5. Nombre del estudiante: Datos del problema: Nombre de quien revisa: ……Desarrollo del paso a paso y explicación …… simulación:
ACTIVIDAD 2
Una superficie de un material limpia se expone a luz de nm de longitud de onda. Si la función de trabajo del material es de eV ¿Cuál es la velocidad máxima de los fotoelectrones emitidos por esa superficie? Exprese el resultado en m/s Ejercicio No 1.
Nombre del estudiante: Andres Mauricio Muñoz Datos del problema:
∈λ 3.135 8 ∗10− ∗10− =6.05
Masa de electrón= 9.1
Nombre de quien revisa:
……Desarrollo del paso a paso y explicación
a. ¿Cuál es la velocidad máxima de los fotoelectrones emitidos por esa superficie? Exprese el resultado en m/s.
12 ∗ ℎ∗ ℎ∗ + ∗ ℎ ∗ ∈ ∗ /λ 1. 33∗105∗10− 2.2210ℎ − − 6 . 6 26∗10 ∗ 2. 2 ∗10 6. 0 5∗10 V 4.55∗10− V √ 1.89∗10 +
+
V= 13766565.7 m/s
Ejercicio No 2. Nombre del estudiante: Edwinson Javier Triana Datos del problema: - 129 nm Longitud de onda - 44.6 eV función de trabajo del material Nombre de quien revisa: John Alexander González ……Desarrollo del paso a paso y explicación
Para poder despejar aplicamos el modelo de Einsten del efecto fotoeléctrico
ℎ∗ / +
Despejando Ec, nos queda:
Ec h∗ W −7.1457∗10− 6.63∗10−− ∗∗3 ∗10//1. 2 9∗10 Ec 6.63∗10− J∗s ∗2.325∗107.1457∗10− Ec 5.80∗10 /2 √∗ 2∗/ √ 2∗5.80∗10− /9.11∗10− . ∗ /
Ya teniendo este resultado, podemos decir que la velocidad máxima de los electrones será:
Ejercicio No 3. Nombre del estudiante: Jhon Alexander Urrego Datos del problema: Nombre de quien revisa: ……Desarrollo del paso a paso y explicación
Velocidad de la luz: 193 Longitud de onda: 2,61 Inicialmente hallaremos el efecto fotoeléctrico, que es
Remplazamos,
∙ ℎ∙ 6,63101,9310− ∗−3∙10 ℎ∙ 6,63101,9310− ∗−3∙10 1,193∙989 1∙100−− ℎ∙ 1,03056 10− 2(1,03056 10− 2−,61∗ 1,610−) :
9,110 − − 2 1 , 0 3056∙ 1 0 4, 1 7610 9,110−
− 3,9,114510 − 10 √ 0,345610 √0, 50,878345610 10 Ejercicio No 4. Nombre del estudiante: John Alexander González Lozano Datos del problema:
1432.70
Nombre de quien revisa: Edwinson Javier Triana ……Desarrollo del paso a paso y expl icación
Para comenzar buscaremos la energía cinética de un electrón
ℎ 1240 ℎ∗ 143 2.70 5.97 9.56∗10−
Una vez calcula la energía cinética usamos la formula general de ella para hallar la velocidad en esta usaremos la masa de un electrón que equivale a 9.1 x 10-31 kg
12 2 2 2 − 2 ∗9. 5 6∗10 9.1∗10− 1449516.78 1449.51
Ejercicio No 5. Nombre del estudiante: Datos del problema: Nombre de quien revisa: ……Desarrollo del paso a paso y explicación
ACTIVIDAD 3
Haciendo uso del simulador 3, obtenga para cada valor de temperatura : a) La energía total emitida que aparece en el simulador, es decir , exprese dicho valor en unidades de [ 2 ]. (Anexe una imagen en el informe de una sola simulación para cualquiera de los 5 datos).
⁄
b) La longitud de onda máxima , exprese dicho valor en metros. (Anexe una imagen en el informe de una sola simulación para cualquiera de los 5 datos). c) Con los datos obtenidos grafique la cuarta potencia de la temperatura vs la energía total emitida, (utilice Excel para hacer la gráfica): d) Con los datos obtenidos grafique el inverso de la temperatura vs la longitud de onda, (utilice Excel para hacer la gráfica): e) Obtenga ya sea mediante Excel o de manera manual la pendiente de las dos gráficas. f) A partir de las pendientes encontradas, ¿qué representa cada pendiente? Ejercicio No 1. Nombre del estudiante: Andres Mauricio Muñoz Datos del problema: Datos Tabla
Datos introducidos Energía en el simulador Total
Longitud de onda
…… simulación (en una imagen colocar todas las simulaciones):
Haciendo uso del simulador 3, obtenga para cada valor de temperatura T: T1=3824 K T2=4802 K T3=5254 K T4=3849 K T5=5945 K
a. La energía total emitida que aparece en el simulador, es decir E T, exprese dicho valor en unidades de W/m 2. (Anexe una imagen en el informe de una sola simulación para cualquiera de los 5 datos). b. La longitud de onda máxima, exprese dicho valor en metros. (Anexe una imagen en el informe de una sola simulación para cualquiera de los 5 datos).
temperatura 3824 4802 5254 3849 5945 simulación
Energía total emitida (W/m2) 12100000 30200000 43200000 12500000 70800000
1010−−− 1010−− 10
Longitud de onda máxima (m) 7.58* 6.03* 5.51* 7.53* 4.87*
Simulación para temperatura 3849K
Simulación para temperatura 5945K TABLA 1. Simulación de radiación en cuerpo negro. fuente: c. Con los datos obtenidos grafique la cuarta potencia de la temperatura vs la energía total emitida:
10− 5.67∗10− ∗ Pendiente: 5.97*
La pendiente es un aproximado de la constante de Stefan- Boltzmann:
d. Con los datos obtenidos grafique el inverso de la temperatura vs la longitud de onda:
10− 2.989∗10− ∗
Pendiente= 2.90*
La pendiente es un aproximado de la constante de Wien: W=
e. Obtenga ya sea mediante Excel o de manera manual la pendiente de las dos gráficas. f. A partir de las pendientes encontradas, ¿qué representa cada pendiente?
Nombre de quien revisa: Ejercicio No 2. Nombre del estudiante: Edwinson Javier Triana Datos del problema: Datos Tabla
Longitud de onda (m)
5400 5039 4997 5619
Datos introducidos Energía en el simulador Total (W/m2) 5397 481 5043 367 4991.5 352 5616.5 564
3842
3841
7.54*10^-7
123
5.37*10^-7 5.74*10^-7 5.80*10^-7 5.16*10^-7
…… simulación (en una imagen colocar todas las simulaciones):
C) Con los datos obtenidos grafique la cuarta potencia de la temperatura vs la energía total emitida, (utilice Excel para hacer la gráfica):
Energia Total (W/m2) 481 367
Temperatura T^4 8.50306E+14 6.44729E+14
352 546 123
6.23501E+14 9.96864E+14 2.17886E+14
ET Vs T^4
y = 6E-13x - 0.2634
600 500 400 300 200 100 0 0
5E+14
1E+15
1.5E+15
Energia Total (W/m2) vs Temperatura T^4 600 500
546 481
L A400 T O T A300 I G R E N200 E
367
352
123
100 0 8.50306E+14
6.44729E+14
6.23501E+14
9.96864E+14
2.17886E+14
TEMPERATURA
D) Con los datos obtenidos grafique el inverso de la temperatura vs la longitud de onda, (utilice Excel para hacer la gráfica):
Longitud de onda (m)
Temperatura 1/T
0.000000537
0.000185185
0.000000574
0.000198452
0.00000058
0.00020012
0.000000516
0.000177968
0.000000754
0.000260281
Lmax Vs 1/T 8.00E-07 y = 0.0029x + 7E-10
7.00E-07 6.00E-07 5.00E-07 4.00E-07 3.00E-07 2.00E-07 1.00E-07 0.00E+00 0
0.00005
0.0001
0.00015
0.0002
0.00025
0.0003
Longitud de onda (m) vs Temperatura 1/T 0.000000754
0.0000008 0.0000007 A0.0000006 D N O0.0000005 E D D0.0000004 U T I G0.0000003 N O L 0.0000002
0.000000537
0.000000574
0.00000058 0.000000516
0.0000001 0 1.852.E-04
1.985.E-04
2.001.E-04
TEMPERATURA
1.780.E-04
2.603.E-04
E-) Obtenga ya sea mediante Excel o de manera manual la pendiente de las dos gráficas. Energia Total (W/m2)
Temperatura T^4
Longitud de onda (m)
Temperatura 1/T
481
8.50306E+14
0.000000537
1.852.E-04
367
6.44729E+14
0.000000574
1.985.E-04
352
6.23501E+14
0.00000058
2.001.E-04
546
9.96864E+14
0.000000516
1.780.E-04
123
2.17886E+14
0.000000754
2.603.E-04
Pendiente de gráfica:
5.48887E-13
Pendiente de grafica:
2.8926.E-03
Pendiente de las dos graficas 0.0035 2.89256.E-03
0.003 0.0025 0.002 0.0015 0.001 0.0005 5.48887E-13 0 1
2
F) A partir de las pendientes encontradas, ¿qué representa cada pendiente? La pendiente de las dos graficas representan las variables dependientes, es decir que se obtienen la relación de longitud de onda vs inversa de temperatura y curta potencia de temperatura vs energía total, lo cual permite conocer en las dos graficas los puntos de la pendiente, que al graficarlos se observa una perpendicular ascendente. Nombre de quien revisa: Ejercicio No 3. Nombre del estudiante: Datos del problema: Datos Tabla
Datos introducidos Energía en el simulador Total
Longitud de onda
…… simulación (en una imagen colocar todas las simulaciones):
Nombre de quien revisa: Jhon Alexander gonzales Ejercicio No 4. Nombre del estudiante: John Alexander González Lozano Datos del problema: Datos Tabla (K) 3082 5380 5631 4597 5511
Datos introducidos en el simulador (K) 3805.5 5385 5632.5 4595 5519
Energía Longitud Total de onda 2 (MW/m ) (nm) 11.9 761 47.7 538 57.1 514 25.3 630 52.6 525
⁄
a) La energía total emitida que aparece en el simulador, es decir
, exprese dicho valor en unidades de [ 2 ]. (Anexe una imagen en el informe de una sola simulación para cualquiera de los 5 datos).
b) La longitud de onda máxima
, exprese dicho valor en metros. (Anexe una imagen en el informe de una sola simulación para cualquiera de los 5 datos). Datos Tabla (K)
Datos introducidos en el simulador (K)
Energía Longitud Total de onda (MW/m2) (m)
3082 5380 5631 4597 5511
3805.5 5385 5632.5 4595 5519
11.9 47.7 57.1 25.3 52.6
761*10-7 538*10-7 514*10-7 630*10-7 525*10-7
c) Con los datos obtenidos grafique la cuarta potencia de la temperatura vs la
energía total emitida, (utilice Excel para hacer la gráfica): Datos introducidos en el simulador (K) 3805,5 5385 5632,5 4595 5519
Energía Total (MW/m2) 11,9 47,7 57,1 25,3 52,6
Temperatura (T4 (K4)) 2,09723E+14 8,40897E+14 1,00648E+15 4,45802E+14 9,27773E+14
ENERGÍA TOTAL (MW/M2) VS TEMPERATURA T^4 ) 2 m /
0.206482229
W M ( l a t o T a í g r e n E
0.01 Temperatura T^4
d) Con los datos obtenidos grafique el inverso de la temperatura vs la longitud
de onda, (utilice Excel para hacer la gráfica):
Datos introducidos Longitud de Temperatura en el onda (m) (1/T) simulador (K) 3805,5 0,0000761 0,000262778 5385 0,0000538 0,000185701 5632,5 0,0000514 0,000177541 4595 0,000063 0,000217628 5519 0,0000525 0,000181192
Datos Tabla (K) 3082 5380 5631 4597 5511
LONGITUD DE ONDA (M) VS INVERSO DE TEMPERATURA ) m ( a d n o e d d u t i g n o L
0
0
0
0
0
Inverso de temperatura 1/T
e) Obtenga ya sea mediante Excel o de manera manual la pendiente de las
dos gráficas.
Energía Total (MW/m2) 11,9 25,3 47,7 52,6 57,1
Temperatura (T4 (K4)) 2,09723E+14 4,45802E+14 8,40897E+14 9,27773E+14 1,00648E+15
Energía Total (MW/m2) Vs Temperatura 1.2
) 1 2 m / W0.8 M ( l a t 0.6 o T a 0.4 í g r e n E 0.2 0 0
0.2
0.4
0.6
0.8
1
1.2
Temperatura T^4
Longitud de Temperatura onda (m) (1/T) 0,0000514 0,000177541 0,0000525 0,000181192 0,0000538 0,000185701 0,000063 0,000217628 0,0000761 0,000262778 Longitud de onda (m) inverso de temperatura 1.2 1
a d n 0.8 o e d d 0.6 u t i g 0.4 n o L 0.2
0 0
0.2
0.4
0.6
0.8
1
1.2
Inverso de temperatura 1/T
f) A partir de las pendientes encontradas, ¿qué representa cada pendiente?
La pendiente de la gráfica de energía total y la temperatura a la cuarta potencia nos da una aproximación de la constante de Stefan-Boltzmann La pendiente de la de longitud de onda máxima y el inverso de la temperatura nos da una aproximación de la constante de Wien.
…… simulación (en una imagen colocar todas las simulaciones):
Nombre de quien revisa: Edwinson Javier Triana Ejercicio No 5. Nombre del estudiante: Datos del problema: Datos Tabla
Datos introducidos Energía en el simulador Total
Longitud de onda
…… simulación (en una imagen colocar todas las simulaciones):
Nombre de quien revisa:
ACTIVIDAD 4
Antes de iniciar esta actividad, es fundamental que identifique claramente que es la longitud de onda de corte y la frecuencia de corte para el efecto fotoeléctrico. a) Seleccione un material y a partir de las funciones de trabajo que se dan a continuación establezca la frecuencia de corte teórica en Hz (mostrar el paso a paso del cálculo en el informe) Material
b) Con el resultado anterior explique qué entiende por frecuencia de corte. c) Para el material seleccionado y utilizando el simulador del efecto fotoeléctrico encuentre la frecuencia de corte experimental, recuerde que esta corresponde justo al límite donde empieza el desprendimiento de electrones. (Para este punto utilice una intensidad mayor al 50% y anexe la imagen en el informe). En caso de haber diferencia entre el valor teórico y el valor experimental encuentre el error relativo porcentual. d) Para el material seleccionado, identifique en el simulador la gráfica “ENERGÍA DE ELECTRÓN FRENTE A FRECUENCIA LUMÍNICA” y a partir de ella encuentre la constante de Planck y la función de trabajo experimental , con su respectivo error porcentual. Para lo anterior es necesario identificar mínimo cuatro puntos de la gráfica, para ello complete la tabla siguiente: Ejercicio No 1. Nombre del estudiante: Andres Mauricio Muñoz Datos del problema: Nombre de quien revisa: ……Desarrollo del paso a paso y explicación
a. Seleccione un material y a partir de las funciones de trabajo que se dan a continuación establezca la frecuencia de corte teórica en Hz (mostrar el paso a paso del cálculo en el informe)
Material
El material seleccionado es Datos: -
− 10 10−
Función de trabajo: 2.36 eV= 3.78* Constante de Planck: 6.626 * J*s
Formulas: -
∅∅ h∗
=frecuencia de corte teorica
.∗∅ 5..70∗10∗ ∗ =
=
b. Con el resultado anterior explique qué entiende por frecuencia de corte.
La frecuencia de corte ( ) es la frecuencia mínima o frecuencia umbral de la radiación electromagnética, es única para cada sustancia y por dejado de ella no se produce el efecto fotoeléctrico, aunque exista radiación.
c. Para el material seleccionado y utilizando el simulador del efecto fotoeléctrico encuentre la frecuencia de corte experimental, recuerde que esta corresponde justo al límite donde empieza el desprendimiento de electrones. (Para este punto utilice una intensidad mayor al 50% y anexe la imagen en el informe). En caso de haber diferencia entre el valor teórico y el valor experimental encuentre el error relativo porcentual.
Funciones de trabajo ( en eV
Frecuencia de corte teórica [Hz].
Frecuencia de corte experimental [Hz].
Error experimental porcentual.
, 5.70∗10 5.55∗10 λ 5. 43∗100∗10− 5.55∗10 .∗− −.∗ .∗ 2.63%
Material
2.6
Se empleó una intensidad de 55% obteniendo una longitud de onda de 540nm, en la cual ya no se observa desprendimiento de electrones:
x100%
x100%
Figura 1. Simulador efecto fotoeléctrico.
d) Para el material sele ccionado, identifique en el simulador la gráfica “ENERGÍA DE
ELECTRÓN FRENTE A FRECUENCIA LUMÍNICA” y a partir de ella encuentre la constante de Planck y la función de trabajo experimental, con su respectivo error porcentual.
Dato
1
Frecuencia (Hz)
1.25×10
Energía (eV) 2.5
∅ 4.005×10− 8.28×10− Energia (J)
Función del trabajo experimental (J)
Constante de Planck 5.006
×10−
Ejercicio No 2. Nombre del estudiante: Edwinson Javier Triana Datos del problema:
4.3
Nombre de quien revisa: Jhon Alexander Gonzales ……Desarrollo del paso a paso y explicación
a) Seleccione un material y a partir de las funciones de trabajo que se dan a continuación establezca la frecuencia de corte teórica en Hz (mostrar el paso a paso del cálculo en el informe.
.
Para poder despejar la ecuación de corte lo primero que debemos hallar es la longitud de corte, la cual es la siguiente formula:
λc φ
n∗ev .ev 288.3
Ya teniendo la ecuación de longitud de corte, procedemos a hallar mediante la siguiente formula la frecuencia de corte:
/ ∗ .∗^− 1.041∗10
B) Con el resultado anterior explique qué entiende por frecuencia de corte Es la frecuencia mínima de los fotones para que tenga lugar un efecto fotoeléctrico, es decir que si no es suministrada esta frecuencia no hay una expulsión de electrones al chocar los fotones con el material. C) Para el material seleccionado y utilizando el simulador del efecto fotoeléctrico encuentre la frecuencia de corte experimental, recuerde que esta corresponde justo al límite donde empieza el desprendimiento de electrones. (Para este punto utilice una intensidad mayor al 50% y anexe la imagen en el informe). En caso de haber diferencia entre el valor teórico y el valor experimental encuentre el error relativo porcentual.
Material Zn
Funciones de trabajo ( en eV
Frecuencia de corte teórica [Hz].
Frecuencia Error de corte relativo experimental porcentual. [Hz]. 4.54 %
. .∗ .∗
D) Para el material seleccionado, identifique en el simulador la gráfica “ENERGÍA DE ELECTRÓN FRENTE A FRECUENCIA LUMÍNICA” y a partir de ella encuentre la constante de Planck y la función de trabajo experimental, con su respectivo error porcentual. Para lo anterior es necesario identificar mínimo cuatro puntos de la gráfica, para ello complete la tabla siguiente:
Dato 1 2 3 4
Frecuencia 1.50*10^15 1.90*10^15 2.05*10^15 2.25*10^15
Energía 1.8 eV 3.5 eV 4 eV 5 eV
2.40E+15 y = 2E+14x + 1E+15
2.20E+15 2.00E+15
v E a i g r 1.80E+15 e n E 1.60E+15 1.40E+15 1.20E+15 0
1
2
3
4
5
6
Frecuencia Hz
Constante Constante de Frecuencia de Constante Error de Planck Planck corte de Planck relativo experimenta experimenta experimental J*s porcentual eV*s J*s Hz
6,623E-34
2E-14
6,40E-34
0.80E+15
3,35%
Ejercicio No 3. Nombre del estudiante: Datos del problema: Nombre de quien revisa: ……Desarrollo del paso a paso y explicación
Ejercicio No 4. Nombre del estudiante: John Alexander González Lozano Datos del problema: Material: Pt Nombre de quien revisa: Edwinson Javier Triana
……Desarrollo del paso a paso y explicación
a) Seleccione un material y a partir de las funciones de trabajo que se dan a
continuación establezca la frecuencia de corte teórica en Hz (mostrar el paso a paso del cálculo en el informe)
Primero vamos a hallar la longitud de corte una vez hallada podemos usarla para hallar la frecuencia de corte de material correspondiente, utilizaremos la función de trabajo del platino.
1240 ℎ∗∗ 5.93 209.12 2. 0912∗10− 2. 9 98∗10 2.0912∗10− 1.43∗10
b) Con el resultado anterior explique qué entiende por frecuencia de corte. Es la frecuencia mínima para el platino, por debajo de ella no se producen fotoelectrones por mas intensa que sea la radiación. c) Para el material seleccionado y utilizando el simulador del efecto
fotoeléctrico encuentre la frecuencia de corte experimental, recuerde que esta corresponde justo al límite donde empieza el desprendimiento de electrones. (Para este punto utilice una intensidad mayor al 50% y anexe la imagen en el informe). En caso de haber diferencia entre el valor teórico y el valor experimental encuentre el error relativo porcentual.
Material
Función de trabajo en eV
Frecuencia de corte teórica Hz
Pt
5,93
1,43E+15
Frecuencia de Error corte relativo experimental porcentual Hz 1,5E+15 4,895%
d) Para el material seleccionado, identifique en el simulador la gráfica “ENERGÍA DE ELECTRÓN FRENTE A FRECUENCIA LUMÍNICA” y a partir de ella encuentre la constante de Planck y la función de trabajo experimental, con su respectivo error porcentual. Para lo anterior es necesario identificar mínimo cuatro puntos de la gráfica, para ello complete la tabla siguiente: Frecuencia
Energía
1,5E+15
0
1,75E+15
1
2E+15
2
2,5E+15
3,75
Energia Vs Frecuencia 1 0.9 0.8 0.7
a 0.6 i g r 0.5 e n E 0.4 0.3 0.2 0.1 0 0
0.2
0.4
0.6
0.8
1
Frecuencia
Constante Constante de Frecuencia de Constante Error de Planck Planck corte de Planck relativo experimenta experimenta experimental J*s porcentual eV*s J*s Hz 6,623E-34
4E-15
6,408E-34
1,5E+15
3,246%
Ejercicio No 5. Nombre del estudiante: Datos del problema: Nombre de quien revisa: ……Desarrollo del paso a paso y explicación
ACTIVIDAD 5
Se producen rayos x en un tubo que trabaja a keV. Después de salir del tubo, los rayos x con la longitud de onda mínima producida llegan a un blanco y se dispersan por efecto Compton en un ángulo de °. a) ¿Cuál es la longitud de onda del rayo x original? b) ¿Cuál es la longitud de onda de los rayos x dispersados? Ejercicio No 1. Nombre del estudiante: Andres Mauricio Muñoz Datos del problema: E= 309kV= 309000J
2°
Nombre de quien revisa:
λ λ 2.42∗10−∗1 ℎ 309000J− / 4.66∗10 ℎ 6. 626∗10 λ 3 ∗10 / λ 4.66∗10 λ 6.437∗10− λλ 2.2.442∗102∗10−−∗1+ λ −m ∗ 1 2+6. 4 37∗10 1.47∗10−
……Desarrollo del paso a paso y explicación
a. ¿Cuál es la longitud de onda del rayo x original?
m
b. ¿Cuál es la longitud de onda de los rayos x dispersados?
Ejercicio No 2. Nombre del estudiante: Edwinson javier Triana Datos del problema:
16284
Nombre de quien revisa: John Alexander González Lozano ……Desarrollo del paso a paso y explicación
a) ¿Cuál es la longitud de onda del rayo x original?
∗ 1∗10− 1.47∗10−
b) ¿Cuál es la longitud de onda de los rayos x dispersados?
′′ 1cos 1cos+ −1cos162+1∗10− ′′ 2.1.41262∗10 9∗10−
Ejercicio No 3. Nombre del estudiante: Datos del problema: Nombre de quien revisa: ……Desarrollo del paso a paso y explicación
Ejercicio No 4. Nombre del estudiante: John Alexander González Lozano Datos del problema:
90320
Nombre de quien revisa: Edwinson Javier Triana ……Desarrollo del paso a paso y explicación
c) ¿Cuál es la longitud de onda del rayo x original?
1240 ℎ∗ 32010001 3.875∗10− 3.8475∗10− ′′ 1cos 1cos+ − −101 ′ 2.4262∗10−1′cos90+3. 8 75∗10 6.30∗10−
d) ¿Cuál es la longitud de onda de los rayos x dispersados?
Ejercicio No 5. Nombre del estudiante: Datos del problema: Nombre de quien revisa: ……Desarrollo del paso a paso y explicación