Área: Profesor:
Matemáticas Grado: 6º Luis H. Cuesta Perea
Tema: Unidades de medida. Guía N° 3 Fecha de Entrega: _________________
UNIDADES DE SUPERFICIE RECORDEMOS: Una SUPERFICIE es una porción de plano bien delimitada; por ejemplo:
• •
Llamamos ÁREA de una figura plana a la medida de su SUPERFICIE. Para Para medi medirr supe superf rfic icie iess eleg elegim imos os como como unid unidad ad la supe superf rfic icie ie de unos unos CUAD CUADRA RADO DOS S cuyos lados son el metro, metro, sus múltiplos múltiplos o sus submúltiplos. submúltiplos. Estos cuadrados cuadrados se de nominan nominan metro cuadrado, centímetro cuadrado, kilómetro cuadrado, etc. Por ejemplo:
Para medir superficies más grandes se utilizan otros cuadrados como unidad: dm 2, m2, km2.
También se utilizan el hectómetro cuadrado (hm 2) y el decámetro cuadrado cuadrado (dam2). Cada unidad de superficie equivale a 100 unidades de la inmediatamente inferior y a una centésima parte de la inmediatamente superior. Por esta razón decimos que las unidades de superficie varían de 100 en 100: Para pasar de una unidad de superficie a otra inmediatamente inferior se multiplica por 100.
Ejemplo 1: 2,12 dam 2 = 2,12 x (100 m 2) = 212 m 2. Para pasar de una unidad de superficie a otra inmediatamente superior se divide por 100. Ejemplo 2: 38.500 mm 2 = (38.500 * 100 ) cm 2 = 385 cm2. 1
No olvidemos, por tanto: 1 km2 = 100 hm2 = 10.000 dam 2 = 1,000.000 m 2 1 m2 = 100 dm2 = 10.000 cm 2 = 1,000.000 mm 2 • •
Ejemplo 3: El terreno de una finca mide 27hm 2 16 dam2 23 m2 35 dm2, ¿cuánto mide la finca? SOLUCIÓN: Para facilitar la solución del problema vamos a construir una tabla como la siguiente, teniendo en cuenta que debemos reservar dos cifras en cada columna de la tabla ya que para pasar de una unidad a la siguiente, multiplicamos o dividimos por 100: Si tomamos como unidad el m 2, entonces separamos con una coma los m2 del resto de las unidades. hm2 dam2 m2 dm2 cm2 27 16 23, 35 35 hm2 dam2 m2 dm2 cm2 27 16 23 35 Si tomamos como unidad el dm2, entonces separamos mediante una coma los dm2 del resto de las unidades. Como desp despué uéss de los los dm2 no qued quedan an más más cifras, entonces la coma no se escribe; por lo tanto, nos queda: 27,162.335 dm2 hm2 dam2 m2 dm2 cm2 27 16 23 35 00 Si tomamos como unidad el cm 2, entonces en lugar de correr la coma debemos agregar dos ceros correspondientes a la casilla de los cm2. •
•
Cuando transformamos unidades de superficie, la coma se escribe a continuación de las dos cifras correspondientes a la unidad escogida. Recordemos, igualmente, cómo se calculan las áreas de algunas figuras planas: rectángulo, cuadrado, paralelogramo, triángulo, trapecio y polígono regular.
2
UNIDADES DE VOLUMEN RECORDEMOS: EL VOLUMEN de un cuerpo es la cantidad de espacio que ocupa. Hallar el volumen de un cuerpo consiste en contar el número de unidades (cúbicas) de que está formado el cuerpo. Para medir el VOLUMEN de un cuerpo en el sistema métrico decimal se utilizan CUBOS cuyas aristas se miden en metros, en sus múltiplos o en sus submúltiplos. Estas unidades son: •
•
La unidad principal: el metro cúbico (m3) Los múltiplos del metro cúbico: El decámetro cúbico (dam3) El hectómetro cúbico (hm3) El Kilómetro cúbico (Km3) Los submúltiplos del metro cúbico-. El decímetro cúbico (dm3) El centímetro cúbico (cm3) El milímetro cúbico (mm 3) •
•
•
Una unidad de volumen es 1000 veces mayor que la del orden inmediatamente inferior y 1000 veces menor que la del orden inmediatamente superior; es decir Cuando transformamos unidades de volumen, la coma se escribe a continuación de las tres cifras correspondientes a la unidad elegida. En 5o. grado aprendimos que para calcular el VOLUMEN DE UN PRISMA RECTANGULAR debemos multiplicar el área de la base por la altura; es decir: V = Área de la base x altura = B x h
1. Contesta: a) ¿Qué ¿Qué es una superfi superficie cie?. ?. b) ¿Qué ¿Qué es área área de una supe superfi rficie cie?. ?. c) ¿Cuál es la la unidad de de medida patrón patrón en el el Sistema Sistema Métrico Métrico Decimal?. Decimal?. 2 d) ¿Qué es el m ?. e) ¿Cuáles son son los múltiplos múltiplos del metro metro cuadrado? cuadrado? ¿y los submúlti submúltiplos?. plos?. f) ¿Cómo ¿Cómo varían varían las unidad unidades es de de superf superfici icie?. e?. g) ¿Qué ¿Qué es volume volumen n de un cuerp cuerpo? o? h) ¿Cuál es la unidad unidad de medida medida patrón de volumen volumen en el Sistema Sistema Métrico Métrico Decimal? Decimal? 3 i) ¿Qué es el m ? j) ¿Cuáles son los múlti múltiplos plos del del metro metro cúbico? cúbico? ¿Y los los submúlti submúltiplos? plos? k) ¿Cómo ¿Cómo varían varían las las unidad unidades es de volu volumen? men? 2. Completa:
a) 1 dm2 = ______ cm2 c) 15 dam = ______ dm2 e) 0, 01 dam = ______ m2 g) 45, 83 m= ______ hm2 2
2
2
b) 4 hm2 = _____ m2 d) 204 km2 = _____ dam2 f) 4,3 dm2 = _____ m2 h) 0,035 km2 = _____ km2 3
3. Transforma 87,073 m 2 en: a) km2 b) dam2
c) cm2
d) mm2
4. Un lote cuadrado tiene un perímetro de 36 hm. Si se venden los
3
a $15.000 el m 2, ¿Cuál es el
9
valor de la parte vendida? 5. Gabriel compró un terreno de 2.300 dam2 a $1.200 el m 2. Si lo vende a $150.000 el dam 2, ¿cuál es la ganancia? 6. En nuestro país son corrientes dos unidades de superficie que no corresponden al Sistema Métrico Decimal: la HECTÁREA (ha) y la CUADRA o FANEGADA. Estas son sus equivalencias con las unidades del Sistema Métrico Decimal: 1 hectárea (ha) = 1 hm 2 = 10.000 m2 1 Cuadra (o Fanegada) = 6.400 m 2 Una finca tiene 20 cuadras y otra tiene 12,8 hectáreas, ¿cuál de las dos es más extensa? 7. Para cubrir el piso de una sala se emplean 360 baldosas cuadradas de 20 cm de lado. ¿Cuántas baldosas de 30 cm de lado se necesitan para cubrir la misma sala?. 8. Completa las tablas: a) Rectángulos:
LONGITUD 24,2cm 3,5dm 18m
ANCHURA PERÍMETRO 20,03 cm 23 m 44 m 3 km
ÁREA
22,5 km2
b) Cuadrados:
LADO 50 m
PERÍMETRO
ÁREA
50 m 64 cm2 200 m2 c) Trapecios: BASE 12 cm 2m 20 m
BASE 8cm 10cm
ALTURA 45 mm 4m
ÁREA 120m2 60 m2
9. Calcula el área de la zona de andenes y el área de los jardines:
4
10. La autopista va a pasar por la finca del tío Juan. El municipio debe pagarle $25.000 por cada m 2. ¿Cuánto recibirá el tío Juan?
11. Expresa en cm3: a) 0, 225 m 3 d) 0, 432 dam3
b) 0, 5 m 3 e) 0, 00054 km3
c) 5, 000.000 mm 3 f) 83, 52 m3
12. Completa los números y las unidades que faltan: a) 465 cm3 = 0,465 __________ b) 0,038 dm3 = __________ c) 0,8 m3 = __________ dm3 d) 41000. 000 cm3 = 4__________ 13. Una piscina tiene el fondo y todas sus paredes rectangulares. Las dimensiones del fondo son 12m y 8m, y la profundidad es 1,5 m. Expresa el volumen de la piscina en: a) m3 b) km3 c) dm3 d) cm3 14. Observa las medias de la piscina: a) b)
m2? cuesta
¿Cuánto cuesta pintar el interior a $ 3500 el ¿Cuánto cuesta llenarla de agua si el m 3 $12500?
15. Se quiere fabricar un prisma rectangular de dimensiones 3cm, 4cm y 5,5 cm. a) Dibuja Dibuja el el prisma prisma según según el model modelo. o. b) Calcula el área área total total y el el volumen volumen del del prisma. prisma.
DIVIÉRTETE MIENTRAS PIENSAS Si de una soga de 40 metros de longitud se cortan tres partes iguales de 5 de longitud, ¿cuánto falta a lo que queda para tener 31
5 8
2 3
metros
metros?
5