LKPD Persamaan garis singgung dan garis normal kurvaDeskripsi lengkap
mencari garis singgung
hsdFull description
LKS Matematika persamaan garis singgung lingkaran
LKS Matematika persamaan garis singgung lingkaranDeskripsi lengkap
Persamaan Lingkaran Dan Garis Singgung
Lingkaran Dan Garis Singgung LingkaranDeskripsi lengkap
Persamaan Lingkaran Dan Garis SinggungDeskripsi lengkap
Deskripsi lengkap
Full description
asdasdasdasadasdadsaDeskripsi lengkap
mencari garis singgungFull description
hmDeskripsi lengkap
Full description
rpp garis singgung lingkaranFull description
Deskripsi lengkap
kumpulan soal dan pembhasan materi matematika persamaan garis singgung lingkaranFull description
Kumpulan Soal Dan Pembahasan Garis Singgung LingkaranDeskripsi lengkap
MIFull description
MIDeskripsi lengkap
Matematika
Garis Singgung dan Garis Normal
Pengertian Garis Singgung dan Garis Normal Pada materi 1 ini Anda akan mempelajari pengertian garis singgung dan garis normal. Masih ingatkah kalian tentang turunan pertama suatu fungsi? Jika y = f(x) suatu f(x) suatu fungsi maka turunan pertama dari f(x) , yaitu f '(x)= m adalah gradien garis singgung di suatu titik pada
Pendahuluan Pendahuluan (index.html) (index.html)
kurva.
Indikator Indikator (menu2.html)
Garis Singgung
Pengertian Garis Singgung dan Garis Garis Normal (menu3.html) (menu3.html)
Sebuah garis disebut sebagai garis singgung kurva jika garis tersebut
Persamaan Persamaan garis singgung kurva kurva dan persamaan dan persamaan garis normal di normal di suatu suatu titik pada kurva (menu4.html) (menu4.html)
Karena garis singgung hanya memiliki satu titik persekutuan dengan
Persamaan Persamaan garis singgung kurva kurva dengan dengan gradien dan titik tertentu tertentu (menu5.html) (menu5.html)
menjadi garis singgung, coba Anda amati animasi berikut ini:
Latihan (menu6.html) Tes (menu7.html) Daftar Pustaka (menu8.html) Tim (menu9.html)
Kurikulum 2013
Dilihat: 185 Diunduh: 115
hanya memiliki satu titik persekutuan (titik singgung) dengan kurva. kurva, maka untuk mendapatkan nilai kemiringannya dapat kita dekati dengan garis lain (garis secan) yang gradiennya dapat ditentukan secara langsung. Untuk melihat pergerakan garis lain (garis secan)
Mudah-mudahan Anda dapat memahami animasi tersebut. Pada animasi tentang kurva, garis singgung dan titik singgung, titik B menyusuri kurva f (x) mendekati titik A, membuat nilai x, semakin kecil, kecil, dan kecil, mendekati 0. sehingga gradien garis secan (msecan) akan mendekati gradien garis singgung (mtangen ).
Jadi gradien garis singgung kurva f(x) pada titik singgung (xo, f(xo)) adalah:
Sesuai dengan definisi turunan di mana maka dapat disimpulkan bahwa gradien garis singgung kurva f(x) pada titik (xo, f(xo)) adalah nilai turunan pertama f(x) pada titik (xo, f(xo)).
Garis Normal Setelah memahami garis singgung dan gradien garis singgung, belum lengkap jika Anda belum mengetahui tentang garis normal. Karena pada setiap garis singgung suatu kurva, terdapat garis normal yang tegak lurus dengan garis singgung tersebut. Perhatikan gambar berikut:
Garis Normal
Coba Anda amati gambar garis normal diatas. Menurut Anda, bagaimana hubungan antara garis normal dan garis singgung? Garis normal merupakan garis yang melalui titik singgung dan tegak lurus dengan garis singgung. Masih ingatkah Anda dengan gradien untuk dua garis yang saling tegak lurus?
Sebelum melanjutkan ke materi persamaan garis singgung , Anda perlu memahami dengan benar gradien garis singgung yang telah dijelaskan pada materi pertama ini. Untuk lebih memahaminya, cobalah cermati beberapa contoh soal berikut ini:
Contoh Soal
1. Gradien garis singgung y = x2- 8x + 12 kurva di titik (1, 5) sama dengan…. Jawaban:
2. Gradien garis singgung y = x2 - 6x + 8 kurva di titik berabsis - 3 adalah…. Jawaban: Absis adalah nama keren dari koordinat x , dan ordinat panggilan untuk koordinat sumbu y.