2013 EQUIPO #5 MECÁNICA DE FLUIDOS ING. ERNESTO MATÍAS GARCÍA TORRES
FLUJO EN TUBERÍAS Y CANALES
ECUACIÓN DE PÉRDIDAS PRIMARIAS Y SECUNDARIAS
UTILIZACIÓN DE UTILIZACIÓN MONOGRAMAS Y DIAGRAMAS PARA PARA EL CÁLCULO DE PÉRDIDAS EN TUBERÍAS, ACCESORIOS Y VÁLVULAS VÁLVULAS
RADIO HIDRÁULICO HIDRÁULICO
ECUACIONES CHÉZYCHÉZY MANNING PARA PARA DIMENSIONES DE CANALES
Beltrán Ávalos Carlos Alfonso Blanco Hernández Marcos Huerta Alí Enrique Vázquez Santos Alejandra 28/04/2013
EQUIPO #5
Contenido FLUJO EN SISTEMAS DE TUBERÍAS
2
Tuberías en serie
4
Tuberías en paralelo
5
Tuberías ramificadas
6
NÚMERO DE REYNOLDS
6
Fluido laminar
7
Fluido turbulento
7
Diferencias entre canales y tuberías
8
PÉRDIDAS DE CARGA EN TUBERÍAS
9 9
Pérdidas primarias o continuas Pérdidas secundarias o singulares
10
Método del coeficiente total (Tuberías en Serie)
12
Método de la longitud equivalente (Tuberías en Paralelo)
12 12
Ejemplo 1:
12
Descripción de instalación e instrumentación:
UTILIZACION DE MONOGRAMAS Y DIAGRAMAS PARA EL CÁLCULO DE PÉRDIDA EN TUBERÍAS, ACCESORIOS Y VALVULAS 13 Diagrama de Moody
13
Radio hidráulico
15
Usos del radio hidráulico
15
Canales de sección irregular
17
FLUJO EN CANALES
18
NUMERO DE FROUDE
19
FLUJO PERMANENTE Y UNIFORME
19
FÓRMULAS DE CHÉZY Y MANNING
20
Ejemplo
22
ANEXO 1
23
REFERENCIAS
24
1
EQUIPO #5
FLUJO DE FLUIDOS Movimiento o circulación de un fluido sin alterar sus propiedades físicas o químicas. Ocurre bajo la acción de fuerzas externas. Encuentra resistencia al movimiento, debido a una resistencia interna propia del fluido (viscosidad) “fuerzas viscosas” o de la acción del exterior sobre el fluido (rozamiento) “fuerzas de rozamiento”.
Flujo interno: en el interior de
conducciones (Tuberías)
Tipos de flujo Flujo externo: alrededor de cuerpos sólidos (Caudales)
FLUJO INTERNO DE FLUIDOS
P r o b l e m a s i n g e n i e r i l e s h a b i t u a l es e n l o s q u e s e i m p l i c a e l f l u j o i n t e r n o d e f l u i d o s :
Cantidad de energía necesaria para transportar un fluido entre diferentes puntos de una instalación. Las pérdidas de carga por rozamiento en el interior de la conducción. El equipamiento idóneo para comunicar el trabajo necesario al fluido para su transporte (Ej. Elección de tipo y capacidad de la bomba). Diseño del circuito hidráulico (Ej. Selección del diámetro de la conducción).
FLUJO EN SISTEMAS DE TUBERÍAS
El estudio del flujo en sistemas de tuberías es una de las aplicaciones más comunes de la mecánica de fluidos, esto ya que en la mayoría de las actividades humanas se ha hecho común el uso de sistemas de tuberías. Por ejemplo la distribución de agua y de gas en las viviendas, el flujo de refrigerante en neveras y sistemas de refrigeración, el flujo de aire por ductos de refrigeración, flujo de gasolina, aceite, y refrigerante en automóviles, flujo de aceite en los sistemas hidráulicos de maquinarias, el flujo de gas y petróleo en la industria petrolera, flujo
2
EQUIPO #5
de aire comprimido y otros fluidos que la mayoría de las industrias requieren para su funcionamiento, ya sean líquidos o gases. El transporte de estos fluidos requiere entonces de la elaboración de redes de distribución que pueden ser de varios tipos: • Tuberías en serie. • Tuberías en paralelo • Tuberías ramificadas. • Redes de tuberías.
3
EQUIPO #5
Tuberías en serie Un sistema de tuberías en serie está formado por un conjunto de tuberías conectadas una a continuación de la otra y que comparten el mismo caudal. Las tuberías pueden o no tener diferente sección transversal. Para un sistema general de n tuberías en serie se verifica que: El caudal es el mismo en todas las tuberías (ecuación de continuidad)
La pérdida de carga total en todo el sistema es igual a la suma de las pérdidas en cada una de las tuberías:
Donde sistema.
y
son las pérdidas primarias y secundarias en cada una de las tuberías del
Se entiende por perdida de carga primaria, a la perdida de carga producida en la tubería. Se entiende por perdida de carga secundaria (perdida de carga local), a la perdida de carga producida en algún accesorio que interrumpe la tubería. Los accesorios pueden ser cuplas, niples, codos, llaves o válvulas, "T", ampliaciones (gradual o brusca), reducciones (gradual o brusca), uniones, etc. Debido al valor de esta magnitud, se recomienda que está perdida sea considerada en el cálculo de la perdida de carga de la tubería. Para resolver estos sistemas, se debe tener en cuenta estas dos situaciones: Considerando las pérdidas de carga locales en accesorios (los cálculos son muy engorrosos). NO considerando estas pérdidas (se asume que estas corresponden a cierto porcentaje de la longitud de la tubería, de esta manera la longitud de la tubería es neta y mayor a la longitud real de la tubería. Las pérdidas de cargas locales son reemplazadas por sus respectivas longitudes equivalentes.) La resolución de sistemas de tuberías en serie, emplea formulas empíricas tales como: Darcy-Weisbach, Manning, Hazen-Williams, Kutter y otras
EQUIPO #5
Tuberías en paralelo Un sistema de tuberías en paralelo está formado por un conjunto de tuberías que nacen en un mismo punto inicial y terminan en un único punto final.
Para un sistema general de n tuberías en paralelo se verifica que: El caudal total del sistema, es la suma de los caudales individuales de cada una de las tuberías (ecuación de continuidad)
La pérdida de carga total del sistema es igual a la pérdida de carga de cada una de las tuberías:
Donde sistema.
y
son las pérdidas primarias y secundarias en cada una de las tuberías del
Se entiende por perdida de carga primaria, a la perdida de carga producida en la tubería. Se entiende por perdida de carga secundaria (perdida de carga local), a la perdida de carga producida en algún accesorio que interrumpe la tubería. Los accesorios pueden ser cuplas, niples, codos, llaves o válvulas, "T", ampliaciones (gradual o brusca), reducciones (gradual o brusca), uniones, etc. Debido al valor de esta magnitud, se recomienda que está perdida sea considerada en el cálculo de la perdida de carga de la tubería. La resolución de estos sistemas, se basa en: Considerando las pérdidas de carga locales en accesorios (los cálculos son muy engorrosos) NO considerando estas pérdidas (se asume que estas corresponden a cierto porcentaje de la longitud de la tubería, de esta manera la longitud de la tubería es neta y mayor a la
EQUIPO #5
La resolución de sistemas de tuberías en paralelo, emplea formulas tales como la fórmula de Darcy-Weisbach (esta fórmula es la más completa, incluyendo todos los factores importantes de las tuberías). Otras fórmulas de naturaleza empírica son: fórmula de Manning, Hazen-Williams, Kutter y otras.
Tuberías ramificadas Se habla de tuberías ramificadas cuando el fluido se lleva de un punto a varios puntos diferentes. Este caso se presenta en la mayoría de los sistemasde distribución de fluido, por ejemplo una red de tuberías de agua en una vivienda. En este caso el sistema de tuberías se subdivide enramas o tramos, que parten de un nodo hasta el nodo siguiente. Los nodos se producen en todoslos puntos donde la tubería se subdivide en dos o más, pudiéndose añadir nodos adicionales en los cambios de sección para facilitar el cálculo. En este caso para cada nodo se cumple la ecuaciónde continuidad: ΣQ = 0
Y en cada tramo, entre dos nodos, se cumple la ecuación de Bernoulli generalizada:
NÚMERO DE REYNOLDS Es la relación de las fuerzas dinámicas de la masa del fluido respecto a los esfuerzos de deformación ocasionados por la viscosidad. d = diámetro de la t ubería
Es una cantidad adimensional dada por Re
d V
d V
V = velocidad del fluido = densidad = viscosidad dinámica o absoluta viscosidad cinemática
EQUIPO #5
FLUJO DE FLUIDOS EN TUBERÍAS Flujo laminar y turbulento
Fluido laminar Se caracteriza por el deslizamiento de capas cilíndricas concéntricas una sobre otra de manera ordenada. La velocidad de fluido es máxima en el eje de la tubería y disminuye rápidamente hasta hacerse cero en la pared de la tubería. Su número de Reynolds es: Re <= 2000
Fluido turbulento Se caracteriza por un movimiento irregular e indeterminado de las partículas del fluido en direcciones transversales a la dirección principal de flujo. La distribución de velocidades es más uniforme a través del diámetro de la tubería Su número de Reynolds es: Re >= 4000 ¿Flujo laminar o turbulento? (III) Reynolds, Re
EQUIPO #5
Diferencias entre canales y tuberías Son varias las diferencias que pueden establecerse entre el flujo en un canal y en una tubería. El canal tiene una superficie libre que está en contacto con la atmósfera. En la tubería el líquido está confinado. Es un conducto cerrado. Hay presión ejercida por el fluido sobre el contorno. La diferencia entre un canal y una tubería no está, pues, en la forma de la sección transversal, sino en el comportamiento hidráulico. Superficie libre
En los canales por lo general el flujo es agua, en cambio en las tuberías puede tratarse de cualquier fluido (líquido o gaseoso). El flujo en un conducto cerrado, que pueda tener la forma de una tubería, no es necesariamente un escurrimiento a presión. Tal sería el caso de un túnel o un conducto de desagüe en el que, por estar parcialmente lleno, haya una superficie libre. Al haber contacto con la atmósfera, a través de la superficie libre, el conducto es hidráulicamente un canal. En lo que respecta a tuberías la forma más común es la circular, pero no es la única. Hay tuberías de diferentes formas: sección cuadrada, rectangular, etc. Otra de las diferencias entre ambos conductos está en la calidad de paredes; es decir en el grado de rugosidad del contorno. Las tuberías suelen ser de acero, hierro fundido, asbesto cemento, policloruro de vinilo, polietileno o poliester reforzado con fibra de vidrio, materiales cuyos grados de aspereza no son muy diferentes. En cambio los canales pueden tener superficies lisas como las anteriores o muy rugosas como aquellos con revestimiento de albañilería de piedra. En general se puede decir que los problemas en canales son más complejos que los problemas en tuberías. En una tubería dada la sección transversal es rígida y determinada. Un aumento en el gasto conlleva un aumento en la velocidad. En cambio en un canal hay una superficie libre. Un aumento en el gasto representa una variación en la sección. La sección de una tubería es en la mayor parte de los casos circular. Un canal puede ser de ordinario rectangular, trapecial, semicircular o de forma cualquiera. A pesar de las diferencias que han sido expuestas entre tuberías y canales es posible estudiar en conjunto su funcionamiento hidráulico.
EQUIPO #5
PÉRDIDAS DE CARGA EN TUBERÍAS Pérdidas primarias o continuas Estas son ocasionadas por el rozamiento que el fluido experimenta con la pared de la tubería por la que circula y al roce de las partículas entre sí. En la determinación de este tipo de pérdidas juegan un papel importante los f actores siguientes: a) El tipo de material y el acabado interno de la tubería, ya sea liso o rugoso. b) El régimen en que se maneja el flujo del fluido si es laminar o turbulento Determinar las pérdidas primarias por medio de la ecuación de Darcy Weisbach:
hf: Pérdida de carga en tramos rectos de tubo. f : Coeficiente de rozamiento o fricción L . Longitud total de tubería del mismo diámetro. v : Velocidad promedio del fluido. d : Diámetro interno de la tubería. g : Aceleración de la gravedad Q: flujo o caudal resultante Para estimar las pérdidas primarias es necesario contar con los datos de rugosidad absoluta y el diámetro interno de la tubería. Con estos datos se calcula el valor de la rugosidad relativa por medio de la siguiente expresión: =Rugosidad absoluta (mm).
d= Diámetro interno (mm) Un parámetro muy importante en la determinación del tipo de régimen del flujo del fluido es el número de Reynolds, el cual involucra la velocidad, la viscosidad del fluido y el diámetro interno de la tubería. El número de Reynolds, se calcula por medio de la siguiente expresión: Re v= Velocidad promedio del fluido en la tubería (m/s). d= Diámetro interno de la tubería (m). n= Viscosidad cinemática en (m/s2)
EQUIPO #5
Pérdidas secundarias o singulares Las pérdidas de carga secundarias o de forma son ocasionadas por la resistencia que presentan al paso del fluido los accesorios del arreglo de tuberías (reducciones, válvulas, estrangulaciones, expansiones, cambios de dirección, etc.). El cálculo de las pérdidas locales de los accesorios se obtiene como una pérdida de la velocidad del fluido por medio de la siguiente expresión:
hd: Pérdida de carga local del accesorio (m). K : Coeficiente de resistencia del accesorio (adimensional) v : Velocidad del fluido m/s : g: Aceleración de la gravedad (m/s2) El valor de K depende de la geometría del accesorio y del coeficiente de fricción ft, por lo que la pérdida de carga para los accesorios se evalúa en forma individual, por medio de las tablas y gráficas, que nos indican los valores de K.
EQUIPO #5
Se tiene un sistema de tuberías como el de la figura. La caída de presión total entre A y B es de 150 kPa, y la diferencia de nivel es ZA-ZB = 5 m.
EQUIPO #5
Método del coeficiente total (Tuberías en Serie) Consiste en sumar los coeficientes individuales de K de todos los componentes de la tubería (tubo y accesorios) y obtener para cada diámetro las pérdidas primarias, secundarias y total de todos los elementos conectados en serie. Método de la longitud equivalente (Tuberías en Paralelo) Consiste en evaluar la caída de presión que se genera a través de un accesorio de tubería y determinar una longitud de tubería recta que genere la misma cantidad de pérdida y realizar la sumatoria de cada uno. Ejemplo 1: Una tubería de 800 m de longitud y 0.6 m de diámetro interior conecta dos depósitos. El flujo resultante, causado por la diferencia de niveles entre los dos depósitos, es de 0.5 m3/s, para una tubería con un coeficiente de fricción de 0.04, considerado constante. Las pérdidas singulares pueden considerarse despreciables. Hallar la pérdida de carga.
Descripción de instalación e instrumentación: Tubería o cañería es un conducto que cumple la función de transportar agua u otros fluidos. Se suele elaborar con materiales muy diversos. Válvula es un mecanismo que regula el flujo de la comunicación entre dos partes de una máquina o sistema y en otros permitir el paso del flujo. Bomba centrífuga es la que proporciona la energía a todo el sistema para que ala gua circule, esta energía se disipa en los puntos del sistema. Deposito la instalación funciona como circuito cerrado, la bomba aspira el fluido y tras un recorrido lo envía a otro. Elementos singulares provocan perdidas secundarias como codos, uniones en “T”, válvulas etc. Medidores de caudal (caudalímetro o rotámetro). Venturi es un dispositivo inicialmente diseñado para medir la velocidad de un fluido.
EQUIPO #5
UTILIZACION DE MONOGRAMAS Y DIAGRAMAS PARA EL CÁLCULO DE PÉRDIDA EN TUBERÍAS, ACCESORIOS Y VALVULAS Diagrama de Moody El diagrama de Moody es la representación gráfica en escala doblemente logarítmica del factor de fricción en función del número de Reynolds y la rugosidad relativa de una tubería. En la ecuación de Darcy-Weisbach aparece el término lambda que representa el factor de fricción de Darcy, conocido también como coeficiente de fricción. El cálculo de este coeficiente no es inmediato y no existe una única fórmula para calcularlo en todas las situaciones posibles. Se pueden distinguir dos situaciones diferentes, el caso en que el flujo sea laminar y el caso en que el flujo sea turbulento. En el caso de flujo laminar se usa una de las expresiones de la ecuación de Poiseuille; en el caso de flujo turbulento se puede usar la ecuación de ColebrookWhite además de algunas otras cómo ecuación de Barr, ecuación de Miller, ecuación de Haaland.
Normalmente, con el uso de las ecuaciones de Poiseuille y la de Colebrook-White, se puede realizar el cálculo del coeficiente de fricción (
f ).
ECUCION POISEUILLE:
ECUACION DE COLEBROOLWHITE
Sin embargo, este tipo de ecuaciones requieren de una herramienta de cálculo donde se puedan programar, o de complejos métodos de resolución, por lo que uno de los métodos más extendidos para el cálculo rápido del coeficiente de fricción es el uso del Diagrama de Moody. Dicho diagrama es la representación (en escala logarítmica), de las dos ecuaciones anteriores, y permite determinar el valor de f en función del número de Reynolds y la rugosidad relativa. La utilización de este diagrama permite:
Determinar el valor del factor de fricción ( f ) para ser utilizado en la ecuación de Darcy. Resolver todos los problemas de pérdidas de carga primarias en conductos de cualquier diámetro, cualquier material, y para cualquier caudal. Puede utilizarse en conductos de sección no circular, sustituyendo el diámetro (D) por el radio hidráulico (Rh)
EQUIPO #5
EQUIPO #5
Radio hidráulico •
Área mojada; En un canal, el área mojada, se entiende como la superficie que ocupa el agua en una sección perpendicular al flujo. Esta sección está definida, en la parte superior por la línea de agua, y en la parte inferior por el canal mismo. En un tubo trabajando a sección llena, el área mojada coincide con la sección del tubo.
•
Perímetro mojado; En un canal, el perímetro mojado es el contorno del canal que está en contacto con el agua. En un tubo, trabajando a sección llena, el perímetro mojado coincide con la circunferencia interior del tubo.
•
El radio hidráulico, es un parámetro importante en el dimensionado de canales, tubos y otros componentes de las obras hidráulicas, generalmente es representado por la letra R, y expresado en m, es la relación entre:
•
El área mojada (A, en m²).
•
El perímetro mojado (P, en m).
Es decir: •
P= A/P
•
Las expresiones que permiten su cálculo son función de la forma geométrica de la sección transversal del canal.
Usos del radio hidráulico •
El radio hidráulico se emplea en el cálculo de pérdidas de carga según, la fórmula de Manning: I= n^2*v^2/Rh^4/3
Donde: I es el gradiente hidráulico, o perdida de carga por unidad de longitud; n es el coeficiente de Manning, v la velocidad del fluido y Rh el radio hidráulico. Evidentemente las unidades deben ser coherentes entre sí.
EQUIPO #5
Las áreas y perímetros mojados de las secciones más usadas son las siguientes:
Rectangular S=b·h P = b + 2h
Trapecial
EQUIPO #5
Semicircular
P = r · = angulo en radianes
Canales de sección irregular •
Es el caso general para los canales naturales, pero existen también canales construidos con secciones geométricas definidas, y que en el transcurso del tiempo, por efecto de la erosión, se han transformado en irregulares y deben ser tratados como tales para obtener resultados de análisis correctos.
•
En estos casos se determina, durante visitas de campo, los tramos que se pueden considerar homogéneos con buena aproximación. Después del levantamiento topográfico y batimétrico de la sección, se divide la misma en fajas verticales. Para cada faja vertical "i" se determina Ai, considerándolo un triángulo, o un trapecio; y como Pi, se considera el respectivo tramo de fondo. De esta forma el cálculo del área mojada y del perímetro mojado se hace con las expresiones:
EQUIPO #5
FLUJO EN CANALES DEFINICIÓN Los líquidos son transportados de un lugar a otro usando estructuras de conducción naturales o artificiales, distinguiéndose los conductos cerrados de los abiertos. El flujo en un canal o en un conducto cerrado, pero que tiene una superficie libre en contacto con el aire, se denomina flujo a superficie libre y en ese sentido se distingue del flujo a presión que ocurre usualmente en las tuberías. El flujo de canales abiertos tiene lugar cuando los líquidos fluyen por la acción de la gravedad y solo están parcialmente envueltos por un contorno sólido. En el flujo de canales abiertos, el líquido que fluye tiene superficie libre y sobre él no actúa otra presión que la debida a su propio peso y a la presión atmosférica. El flujo en canales abiertos también tiene lugar en la naturaleza, como en ríos, arroyos, etc., si bien en general, con secciones rectas del cauce irregulares. De forma artificial, creadas por el hombre, tiene lugar en los canales, acequias, y canales de desagüe . En la mayoría de los casos. Los canales tienen secciones rectas regulares y suelen ser rectangulares, triangulares o trapezoidales. También tienen lugar el flujo de canales abiertos en el caso de conductos cerrados, como tuberías de sección recta circular cuando el flujo no es a conducto lleno. En los sistemas de alcantarillado no tiene lugar, por lo general, el flujo a conducto lleno, y su diseño se realiza como canal abierto.
Características Un canal abierto es una conducción abierta a la atmósfera en el que el líquido fluye sometido a la presión atmosférica y movido por la pendiente del propio canal, los canales estarán definidos por una serie de características que le son propias, que son las que se citan a continuación:
Calado (y).- Es la altura de la lámina de agua en una sección transversal. Hay que medirlo respecto a un plano de referencia que usualmente se coloca en la cota inferior de la sección transversal o solera. An chur a superi or de la sección (B).- Se define como la anchura de la superficie libre de fluido en el canal. Calado medio (ym).- Es el cociente entre el área mojada del canal y la anchura superior de la sección (A/B). Área mojada (A).- Es la superficie de la sección transversal que ocupa el agua. Perímetr o moj ado . Es la longitud de la pared del canal que está en contacto con el agua. Radio hidrául ico (Rh).- Es la relación existente entre el área mojada y el perímetro mojado del canal. Pendi ente del canal (I).- Se define como la altura que desciende el canal por metro lineal, se puede expresar en % y en tanto por mil.
EQUIPO #5
NUMERO DE FROUDE El número de Reynolds y los términos laminar y turbulentos no bastan para caracterizar todas las clases de flujo en los canales abiertos. El mecanismo principal que sostiene flujo en un canal abierto es la fuerza de gravitación. Por ejemplo, la diferencia de altura entre dos embalses hará que el agua fluya a través de un canal que los conecta. El parámetro que representa este efecto gravitacional es el Número de Froude, puede expresarse de forma adimensional. Este es útil en los cálculos del resalto hidráulico, en el diseño de estructuras hidráulicas y en el diseño de barcos.
L - parámetro de longitud [m]
v - parámetro de velocidad [m/s]
g - aceleración de la gravedad [m/s²] El flujo se clasifica como: Fr<1, Flujo suscritico o tranquilo, tiene una velocidad relativa baja y la profundidad es relativamente grande, prevalece la energía potencial. Corresponde a un régimen de llanura. Fr=1, Flujo crítico, es un estado teórico en corrientes naturales y representa el punto de transición entre los regímenes subcrítico y supercrítico. Fr>1, Flujo supercrítico o rápido, tiene una velocidad relativamente alta y poca profundidad prevalece la energía cinética. Propios de cauces de gran pendiente o ríos de montaña.
FLUJO PERMANENTE Y UNIFORME El flujo uniforme permanente es el tipo de flujo fundamental que se considera en la hidráulica de canales abiertos. La profundidad del flujo no cambia durante el intervalo de tiempo bajo consideración. En el caso especial de flujo uniforme y permanente, la línea de alturas totales, la línea de altura piezométricas y la solera del canal son todas paralelas, es decir, son todas iguales sus pendientes. La característica principal de un flujo permanente y uniforme en canales abiertos es que la superficie del fluido es paralela a la pendiente del canal, es decir, dy/dx = 0 o la profundidad del canal es constante, cuando la pendiente final (Sf) es igual a la
EQUIPO #5
canal homogéneo, caso tipito en regadíos. En el diseño de canales es muy deseable tener este tipo de flujo ya que significa tener un canal con altura constante lo cual hace más fácil diseñar y construir. Las condiciones de flujo permanente y uniforme solo se pueden dar en canales de sección transversal prismáticas, es decir, cuadrada, triangular, trapezoidal, circular, etc. Si el área no es uniforme tampoco lo será el flujo. La aproximación de flujo uniforme implica que la velocidad es uniforme es igual a la velocidad media del flujo y que la distribución de esfuerzos de corte en las paredes del canal es constante. Bajo las condiciones anteriores se pueden obtener las siguientes relaciones, denominadas relaciones de Chezy – Manning, para la velocidad V y el caudal Q: Dónde: K: Valor constante según las unidades a utilizar. Ac: Área de la sección del Canal. Rh: Radio hidráulico de la sección. So: Pendiente del Fondo del Canal. n: Coeficiente de Mannig.
FÓRMULAS DE CHÉZY Y MANNING Cálculo de la velocidad en un canal La fórmula de Chézy calcula la velocidad del agua en una sección de un cauce o canal. Fue desarrollada por el ingeniero francés Antoine de Chézy, y establece que:
Dónde:
(1)
v = velocidad media del agua (m/s) R = radio hidráulico (m) S = pendiente de la línea de agua (m/m) C = coeficiente de Chézy En la fórmula de Chézy aparece un coeficiente C que se ha calculado con diversas ecuaciones. Según qué fórmula se utilice para la evaluación de C, así se denomina la expresión de Chézy. La más usual es la fórmula de Manning . En ella el coeficiente C se calcula así:
(2) Dónde:
EQUIPO #5
n = parámetro de rugosidad de Manning R = radio hidráulico, en m
Sustituyendo el valor de la C según Manning (2) en la fórmula original de Chezy (1), resulta la denominada fórmula de Manning (2):
1 2 v( m / seg ) R 3 n
(3)
S
n = parámetro de rugosidad de Manning R= radio hidrúalico S = pendiente (m/m) El parámetro de rugosidad de Manning “n” está tabulado(Anexo 1).
Evaluación de la altura Para evaluar la altura que alcanzará el agua, utilizamos la expresión: Caudal = Sección * velocidad en la que aplicando la fórmula (3) de Manning, resulta: Despejando la sección: (4)
(5) Finalmente, conociendo la sección, debemos evaluar la altura del agua (=profundidad), dependiendo de la forma del cauce. A veces se supone la sección rectangular, calculando la altura del agua a partir de:
Sección = anchura media · altura media
(6)
EQUIPO #5
Ejemplo Se ha calculado que el caudal de un cauce con un periodo de retorno de 100 años es de 12,8 m3 /seg, y se desea evaluar el área inundable. Datos: Radio hidráulico: 0,8 Coeficiente de rugosidad de Manning: 0,0225 Pendiente: 0,003 Anchura aproximada en ese tramo: 7 metros Solución: Aplicando la fórmula
(5):
Finalmente, aplicando la relación (6), evaluamos la altura que alcanzará la lámina de agua: Altura = 6,10 / 7 = 0,87 metros
EQUIPO #5
ANEXO 1
23
EQUIPO #5
REFERENCIAS http://www.monografias.com/trabajos14/canales-abiert/canalesabiert.shtml http://mecanicafluidos7mo.blogspot.com/2008/04/flujo-en-canalesabiertos.html https://www5.uva.es/guia_docente/uploads/2012/389/51453/1/Documento 6.pdf http://www.unioviedo.es/Areas/Mecanica.Fluidos/docencia/_asignaturas/ mecanica_de_fluidos/08_09/II.2.%20FLUJO%20INTERNO%200809.pdf http://webdelprofesor.ula.ve/ingenieria/cramirez/documentos/MF_Tema_7 _Flujo_en_sistemas_de_tuberias.pdf http://hidrologia.usal.es/Complementos/Calculo_altura_agua.pdf http://fisicaeingenieria.es/resources/canales.pdf http://books.google.com.mx/books?id=-VhqjF4d34C&pg=PA104&lpg=PA104&dq=ecuacion+de+perdidas+primarias+y+secund arias&source=bl&ots=yY5KjIxio1&sig=9QMMzVlbIsPf6PiuK6C1GbXe4xI&hl=es419&sa=X&ei=HEVzUaT2AaaW2gWAuYHoBg&ved=0CCsQ6AEwAA#v=onepage&q &f=false http://es.scribd.com/doc/51942512/8/PERDIDAS-DE-CARGA-EN-TUBERIAS http://www.unioviedo.es/Areas/Mecanica.Fluidos/docencia/_asignaturas/mecani ca_de_fluidos/07_08/MF07_Perdidasdecarga.pdf http://www.slideshare.net/karinagimenezabreu/presentacion-perdida-de-cargasde-tuberias http://www.unioviedo.es/Areas/Mecanica.Fluidos/investigacion/_publicaciones/Li bros/LibroSistemasdeBombeo/index.php?page=1 http://es.wikipedia.org/wiki/Diagrama_de_Moody
24