INVESTIGACION DE OPERACIONES PROBLEMAS DE RUTA MAS CORTA
. En fecha reciente se Ejercicio 1 (Hi lli er & Li eberman, berman, 2009) 2009)
reservó́ el área de SEERVADA PARK para paseos y
campamentos. No se permite la entrada de automóviles, pero existe un si stema de caminos angostos y sinuosos para tranvías y sin las curvas — , en donde para “jeeps” conducidos por los guardabosques. guardabosques. En la figura s e muestra este sistema de caminos — sin O es la entrada al parque; las otras letras representan la localización de las casetas de los guardabosques y otras instalaciones de servicio. Los números son las distancias en millas de estos caminos accidentados. El parque contiene un mirador a un hermoso paisaje en la estación T . Unas cuantas camionetas transportan a los visitantes desde la entrada a la estación T y viceversa. En este momento la administración desea determinar qu ruta, desde la entrada del parque a la estación T, es la que representa la distancia total más corta para la operación de los tranvías.
. La compañía de telefonía celularTell-ll da servicio a seis áreas geográficas. Las distancias de Ej erci cio 2 (T aha, 2010) 2010) satélite (en millas) entre las seis áreas se dan en la figura. Tell-All necesita determinar las rutas ms eficientes para enviar los
mensajes que deban establecerse entre cada dos reas en la red.
1. 2.
Utilice el algoritmo Dijkstra para hallar las ruta mas eficiente entre el área 1 y el área 6 Plantee el PLE y Construya un archivo de solver de excel que permita hallar la ruta eficiente entre cualquier par de nodos.
Ejercicio 3 (Hi lli er & Li eberman, berman, 2009) 2009) . Utilice el algoritmo dijksjtra para encontrar la ruta más corta a través de las redes
a) y b), en las cuales los números representan las distancias reales entre los nodos correspondientes.
Ejercicio 4 (Hi lli er & Li eberman, berman, 2009) 2009) . Un vuelo de Speedy Airlines está a punto de despegar de Seattle sin escalas a
Londres. Existe cierta flexibilidad para elegir la ruta precisa, según las condiciones del clima. La siguiente red describe las rutas posibles consideradas, donde SE y LN son Seat tle y Londres, respectivamente, y los otros nodos representan varios
lugares intermedios. El viento a lo largo de cada arco afecta de manera considerable el tiempo de vuelo, y, por ende, el consumo de combustible. Con base en el informe meteorológico actual, junto a los arcos se muestran los tiempos de vuelo (en horas). Debido al alto costo del combustible, la administración ha adoptado la política de elegir la ruta que minimiza el tiempo total de vuelo.
1. 2. 3.
¿Qu juega el papel de “distancias” en la interpretación de este problema? Use el algoritmo dijkstra para resolver este problema de la ruta más corta. Formule el modelo de programación en GAMS, resuélvalo e interprete los resultados.
Ej erci cio 5 (Wi nston, 2003) . Suppose it costs $10,000 to purchase a new car. The annual operating cost and resale value of a
used car are shown in Table. Assuming that one now has a new car, determine a replacement policy that minimizes the net costs of owning and operating a car for the next six years. Use dijkstra algorithm to solve the problem
Ej erci cio 6 (Wi nston, 2003). It costs $40 to buy a telephone from the department store. Assume that I can keep a telephone for
at most five years and that the estimated maintenance cost each year of operation is as follows: year 1, $20; year 2, $30; year 3, $40; year 4, $60; year 5, $70. I have just purchased a new telephone. Assuming that a telephone has no salvage value, determine how to minimize the total cost of purchasing and operating a telephone for the next six years. . At the beginning of year 1, a new machine must be purchased. The cost of maintaining a machine Ej erci cio 7 (Wi nston, 2003) i years old is given in Table 5. The cost of purchasing a machine at the beginning of each year is given in Table. There is no trade-in value when a machine is replaced. Your goal is to minimize the total cost (purchase plus maintenance) of having a machine for five years. Determine the years in which a new machine should be purchased.
BIBLIOGRAFIA
Hillier, F. S., & Lieberman, G. J. (2009). Introduction to Operations Research (9 edition, p. 1088). McGraw-Hill Professional. Taha, H. A. (2010). Operations Research: An Introduction (9th Editio, p. 832). Prentice Hall. Winston, W. L. (2003). Operations Research: Applications and Algorithms (4 edition, p. 1440). Cengage Learning.