TEOREMAS DE SUPERPOSICIÓN, THÉVENIN, NORTON Y MÁXIMA TRANSFERENCIA DE PONTENCIADescripción completa
Analisis de datos que verifican los teoremas de Thevenin y Norton en circuitos eléctricosDescripción completa
trabajo de calculo vectorialDescripción completa
2.3axiomas y Teoremas de Probabilidad
Teoremas del álgebra de Boole y de De Morgan de aplicación en Sistemas DigitalesDescripción completa
Teoremas Superposición, Thevenin, Norton,Máxima Transferencia de PotenciaDescripción completa
Algebra de boole y teoremas de morgan, diagramas y tablas
Prof Alva - UNMSMDescripción completa
polDescripción completa
Teoremas
Teorema de Norton y TheveninDescripción completa
Descripción completa
electricaDescripción completa
1 Demo Demost strac ración ión de los los Teore eoremas mas de Thévenin y Norton Demostrarlos de forma rigurosa se escapa al ámbito de Bachillerato, sin embargo los libros están plagados de demostraciones basadas en casos particulares que lo único que hacen es confundir y dificultar el aprendizaje de los conceptos básicos. Aquí voy a intentarlo de una forma más o menos general y no excesivamente complicada, estas demostraciones se pueden generalizar usando impedancias y admitancias en vez de resistencias.
1.1. 1.1.
Conc Concep epto to de dipol dipolo o
En primer lugar hay que definir el concepto de dipolo: un dipolo es un elemento -o conjunto de elementos- de circuito cualquiera que presenta 2 terminales :
En cualquier dipolo se puede definir V definir V = V(I) o V(I) o I=I(V) I=I(V). Esto es un dipolo: R
Esto también: también:
1
1 Demostración de los Teoremas de Thévenin y Norton
Y por complejo que parezca, esto también:
0,2Ω
Ra
V a
E c
1.2.
M
Teorema de Thévenin
Supongamos que tenemos un dipolo formado por un circuito activo conectado a una fuente de intensidad Ig y queremos hallar V en función de Ig :
+
C.A.
Ig
V –
Aplicando el principio de superposición(1) podemos hallar la tensiónV como la suma de la tensión V en un dipolo en el que se han anulado todas sus fuentes (un dipolo pasivo) y la tensión V en el dipolo activo anulando la fuente de intensidad Ig (esto es Ig = 0, por lo que sus terminales están en circuito abierto, por lo que notamos V como Vca ):
+
C.A.
V –
+ Ig
=
C.P.
Por lo que podemos poner V = VCP + VCA
(1) Si
2
tienes dudas repasa el punto 4.1.
V –
Ig
+
C.A.
+ Vca –
1.2 Teorema de Thévenin
El dipolo pasivo se puede reemplazar por un resistencia equivalente R eq :
Req
C.P.
+ VCP –
+ VCP –
Ig =
Ig
Haciendo una malla por Kirchhoff en el sentido de las agujas del reloj(2) obtenemos VCP + Ig Req = 0 de donde despejamos VCP = −Ig Req . (I) Del dipolo activo:
+ Vca –
C.A.
Se deduce VCA = Vca . (II), que sumado a (I) nos lleva a V = Vca − Ig Req . Vamos a fijarnos en el siguiente esquema en el que hemos sustituido el dipolo activo por el más sencillo posible: una fuente de tensión Vth y una resistencia Rth :
Rth + Vth
V –
Ig
Haciendo una malla por Kirchhoff: −Vth + Ig Rth = 0, de donde sale V = Vth − Ig Rth . Sólo nos queda identificar términos: Vth = Vca y R th = Req de donde se obtiene la forma habitual de definir el Teorema de Thévenin: cualquier dipolo activo se puede sustituir por una fuente de tensión equivalente a la tensión en circuito abierto en serie con una resistencia equivalente a la que presentaría el dipolo con todas sus fuentes anuladas. (2) Como
se ve en el punto 3.3
3
1 Demostración de los Teoremas de Thévenin y Norton
1.3.
Teorema de Norton
Supongamos que tenemos un dipolo formado por un circuito activo conectado a una fuente de tensión E y queremos hallar V en función de Ig
I
C.A.
E
Aplicando el principio de superposición(3) podemos hallar la intensidad I como la suma de la intensidad I en un dipolo en el que se han anulado todas sus fuentes (un dipolo pasivo) y la intensidad I en el dipolo activo anulando la fuente de tensión E (esto es E = 0, por lo que sus terminales están en cortocircuito, por lo que notamos I como Icc ):
I
C.A.
Icc
I
E
=
C.P.
E
+
C.A.
Por lo que podemos poner I = ICP + ICA El dipolo pasivo se puede reemplazar por un resistencia equivalente R eq : Req
ICP
C.P.
E=
ICP
E
Haciendo una malla por Kirchhoff en el sentido de las agujas del reloj(4) obtenemos E + ICPReq = 0 de donde despejamos ICP = − REeq . (I) (3) Si
tienes dudas repasa el punto 4.1. se ve en el punto 3.3
(4) Como
4
1.3 Teorema de Norton
Del dipolo activo: Icc
C.A.
Se deduce ICA = Icc . (II), que sumado a (I) nos lleva a I = Icc − REeq . Vamos a fijarnos en el siguiente esquema en el que hemos sustituido el dipolo activo por el más sencillo posible: una fuente de intensidad IN y una resistencia R N :
I
IN
RN
E
Hallando la intensidades usando nodos por Kirchhoff (5) obtenemos IN = I + REN , de donde despejamos I = IN − REN . Sólo nos queda identificar términos: IN = Icc y RN = Req de donde se obtiene la forma habitual de definir el Teorema de Norton: cualquier dipolo activo se puede sustituir por una fuente de intensidad equivalente a la intensidad en cortocircuito en paralelo con una resistencia equivalente a la que presentaría el dipolo con todas sus fuentes anuladas.