Descripción: ingenieria economica, funcion exponencial, logaritmica, vpn, valor presente y valor exponencial
INFORME DE LABORATORIO FISICA 1 LINEALIZACION
MG VALEFREYDescripción completa
integralesDescripción completa
pronostico
TRABAJO PRÁCTICO DE FUNCIÓN EXPONENCIAL Y LOGARÍTMICADescripción completa
Descripción completa
Funcion logarítmicaDescripción completa
Descripción: ESPIRAL LOGARITMICA
Descripción completa
EJERCICIOS DE POISSON Y EXPONENCIALDescripción completa
Resumen sobre la distribución multinomial y exponencial, de Probabilidad y estadística.
Fundación Educacional Colegio Sagrados Corazones Manquehue Departamento de Matemática
FUNCIONES Depto. Matemática Colegio Sagrados Corazones de Manquehue
FUNCION EXPONENCIAL
Las funciones exponenciales son apropiadas para modelar el crecimiento poblacional para los seres vivos.
Veamos con la rapidez que crece:
Es una función exponencial con base 2
f ( x) 2
x
f (3) 23 8 f (10 ) 210 1024
f (30 ) 230 1,073 ,741,824
FUNCION EXPONENCIAL
Las funciones exponenciales son apropiadas para modelar el crecimiento poblacional para los seres vivos.
Veamos con la rapidez que crece:
Es una función exponencial con base 2
f ( x) 2
x
f (3) 23 8 f (10 ) 210 1024
f (30 ) 230 1,073 ,741,824
EJEMPLO 1: EVALUACIÓN DE FUNCIONES EXPONENCIALES
Sea
f x 3 x
y evalúe lo siguiente:
a ) f 2 32 9 23 2 b) f 3 3
c ) f 2 3
2
0.4807
4.7288
FUNCIÓN EXPONENCIAL
La función exponencial con base a se define para todos los números reales x por:
f ( x) a
x
donde a 0; a 0
Ejemplos de funciones exponenciales: f ( x) 2
x
Base 2
h( x) 3 Base 3
x
q ( x) 10 x Base 10
FUNCIÓN EXPONENCIAL N ATURAL La función exponencial natural es la función exponencial
f ( x) e
x
con base . Es común referirse a ella como la función exponencial. f ( x) e x
EJEMPLO: EVALUAR LA FUNCIÓN EXPONENCIAL Evalúe cada expresión correcta hasta cinco decimales. Solución: a )e
3
b ) 2e
c )e
20.08554 0.53
4 .8
1.17721 121.51042
EJEMPLO: MODELO EXPONENCIAL PARA LA DISEMINACIÓN DE UN VIRUS Una enfermedad infecciosa comienza a diseminarse en una ciudad pequeña con 10,000 habitantes. Después de t días, el número de personas que ha sucumbido al virus se modela mediante la función:
v(t )
10000 5 1245e 0.97t
Contesta: a) Cuántas personas infectadas hay por el virus. (t = 0) b) Calcule el número de personas infectadas despues de un día y depués de cinco días. c) Grafique la función y describa el comportamiento.
SOLUCIÓN: EJEMPLO ANTERIOR a) Cuántas personas infectadas hay por el virus (t = 0).
v(t )
10000 5 1245e
0
10000 1250
8
8 personas tienen inicialmente la enfermedad. b) Calcule el número de personas infectadas después de un día y cinco días. (t = 1, t = 2, t = 5) Días
Personas infectadas
1 2 5
21 54 678
SOLUCIÓN: EJEMPLO ANTERIOR (CONT) c) Grafique la función y describa el comportamiento.
2000
0
12
El contagio comienza lento, luego aumenta con rapidez y luego se estabiliza cuando estan infectados cerca de 2000 personas.
GRAFICO FUNCIÓN EXPONENCIAL
Es la función inversa del logaritmo natural y se denota equivalentemente como: x e^x o x exp(x) La función exponencial x
f (x ) = a
f
con base
a
se define como
Si a > 0 ^ a ≠ 1, x en IR
EJEMPLO CON EXPONENTE POSITIVO
EJEMPLO CON EXPONENTE NEGATIVO
FUNCIÓN LOGARÍTMICA
Sea a un número positivo con a 1 . La función logarítmica con base a, denotada por log a , se define
log a x y a x y
Así, log a x es el exponente al que se debe elevar la base a para dar x .
COMPARACIÓN Comparemos la forma Exponencial y la forma Logarítmica Lo gar í tm ica:
EJEMPLO APLICACIÓN DE LAS PROPIEDADES LOGARÍTMICAS
log 5 1 0
Propiedad 1
log 5 5 1
Propiedad 2
log 5 5 8
Propiedad 3
12
Propiedad 4
8
5
log 5 12
EJEMPLO GRAFICACIÓN DE FUNCIONES LOGARÍTMICAS Traza la gráfica de f ( x) log 2 x
Solución: Para construir una tabla de valores, se eligen los valores para x como potencias de 2 de modo que pueda hallar con facilidad sus logaritmos.
1 9
x 2
3
log 2 x
3
22
2
21
1
20 1
0
21
-1
22
-2
23
-3
f ( x) log 2 x
F AMILIA DE FUNCIONES LOGARÍTMICAS y log 2 x y log 5 x y log 10 x
LOGARÍTMOS COMUNES VEAMOS LOGARÍTMOS CON BASE 10 Definición:
Logarítmo común
El logarítmo con base 10 se llama logarítmo común y se denota omitiendo la base:
log x log 10 x
De la definición de logarítmo se puede encontrar facílmente que: log 10 = 1 log 100 = 2 Cómo se calcula log 50? No tenemos un número tal que 10 y 50, 1 es pequño y 2 es demasiado grande.
1 log 5 50 2 Las calculadoras científicas tienen una tecla equipada que da los valores de manera directa de los logaritmos comunes.
Propiedades de los logarítmos naturales
Propiedad
ln 1 0 ln e 1 ln e x x e
ln x
x
Razón Se tiene que elevar e a la potencia 0 para obtener 1. Se tiene que elevar e a la potencia 1 para obtener e. Se tiene que elevar e a la potencia x x para obtener e . ln x es la potencia a la cual e debe ser elevada para obtener x.
EJEMPLO ELEVAR LA FUNCIÓN LOGARITMO NATURAL a ) ln e
8
8
1 b) ln 2 ln e 2 2 e c ) ln 5
Definición de logarítmo natural
Definición de logarítmo natural
1.609 Uso de la calculadora
ECUACIONES EXPONENCIALES Y LOGARÍTMICAS
Una ecuación exponencial es aquella en la que la variable ocurre en el exponente.
Por ejemplo:
2 7 x
La variable x representa una dificultad por que esta en el exponente. Para tomar este caso se toma el logarítmo en cada lado y luego se usan las reglas de los logarítmos.
Veamos:
ECUACIONES EXPONENCIALES Y LOGARÍTMICAS
2 7 x
ln 2 ln 7 x
x ln 2 ln 7
x
ln 7 ln 2
2.807
Recuerde la regla 3
EJEMPLO RESOLVER UNA ECUACIÓN EXPONENCIAL Encuentre la solución de:
3 x 2 7
Solución: x 2
3
x 2
log(3
7
) log 7
Si verificas en tu calculadora: ( 0.228756) 2
3
( x 2) log 3 log 7 log 7 ( x 2) log 3 log 7 x 2 0.228756 log 3
7
EJEMPLO RESOLUCIÓN DE UNA ECUACIÓN EXPONENCIAL 2 x Resuelva la ecuación: 8e 20 Solución:
8e 2 x 20 20 2 x e 8 ln e 2 x ln 2.5
2 x ln 2.5 ln 2.5 0.458 x 2
Ojo: El, ln e = 1
Si verificas en tu calculadora:
8e
2 ( 0.458)
20
EJEMPLO RESOLVER UNA ECUACIÓN EXPONENCIAL EN FORMA ALGEBRAICA Y HAZ LA GRÁFICA