RENCANA PELAKSANAAN PEMBELAJARAN (RPP)
Sekolah Mata pelajaran Kelas/Semester Materi Pokok Alokasi Waktu
: SMA Negeri 10 Kota Ternate : Matematika : X/1 : Persamaan Linier Tiga Variabel : 6 JP
A. Kompetensi Dasar dan Indikator Kompetensi Dasar 3.3 Menyusun sistem persamaan persamaan linear tiga variabel dari masalah kontekstual
4.3. Menyelesaikan masalah kontekstual yang berkaitan dengan sistem persamaan linear tiga variabel
Indikator
3.3.1 Mendefenisikan pengertian system persamaan linear tiga variabel 3.3.2 Menguraikan bentuk sistem persamaan linear tiga variabel 3.3.3 Menjabarkan himpunan penyelesaian system persamaan linier tiga variabel 3.3.4 Menyelesaikan masalah yang berkaitan dengan persamaan linear tiga variabel 3.3.5 Menentukan langkah-langkah penyelesaian masalah dengan persamaan linear tiga variabel 4.3.1 Menyajikan penyelesaian system persamaan linier tiga variable 4.3.2 Menyajikan penyelesaian masalah yang berkaitan dengan himpunan penyelesaian system persamaan linier tig variabel 4.3.3 Mempresentasikanpenyelesaian masalah yang berkaitan dengan sistem persamaan linier tiga variabel
B. Tujuan Pembelajaran Melalui kegiatan diskusi dan pembelajaran kelompok dalam pembelajaran system persamaan linier tiga variabel ini diharapkan siswa terlibat aktif dalam kegiatan pembelajaran dan bertanggungjawab dalam menyampaikan pendapat, menjawab men jawab pertanyaan, memberi saran dan kritik, serta dapat :
1. 2. 3. 4. 5.
Mendefenisikan pengertian persamaan linier tiga variabel Menguraikan bentuk umum system persamaan linier tiga variabel Menjbarkan himpunan penyelesaian persamaan linier tiga variabel Menyelesaikan masalah yang berkaitan dengan s ystem persamaan linier tiga variable Menentukan langkah-langkah penyelesaian system persamaan linier tiga variable
C. Materi Pembelajaran Fakta : Bentuk umum persamaan linier tiga variabel adalah ax + by + cz = d, dengan a, b, c dan d bilangan real Penyelesaian dari persamaan linier tersebut adalah tiga bilangan x, y dan z yang memenuhi persamaan, dituliskan ( x, y, z ) Konsep : Sistem persamaan linier tiga variabel ( SPLTV ) adalah system persamaan yang memuat persamaan persamaan persamaan linier tiga tiga variabel. variabel. Bentuk umum SPLDV sebagai berikut
122 1 1 2 1 1 1 = 1 2 2 2 = 2 33 3 3 33 = 3
Dengan a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, dan d3 bilangan real ; a1, b1 dan c1 tidak ketiganya 0 a2, b2 dan c2 tidak ketiganya 0 a3, b3 dan c3 tidak ketiganya
Prinsip : Menyelesaikan Sistem persamaan linier tiga variabel dapat ditentukan deng an beberapa cara antara lain dengan eliminasi, substitusi dan gabungan eliminasi substitusi Prosedur : Bentuk umum system persamaan linier dengan tiga variabel x, y dan z adalah
1 23 = ……………………1 2 23 = {3 33 = ……………………3 → →
……………………………….. 2
Menyelesaikan system persamaan linier tiga variabel dengan cara eliminasi ; Langkah 1 : Eliminasi variabel x dari persamaan 1 dan persamaan 2 a1x+ b1y+c1z=d1 |x a2|
a1a2x+a2b1y+a2c1z = a2d1
a2x+b2y+c2z=d2 |x a1|
a1a2x+a1b2y+a1c2z = a1d2 -
( a2b1-a2b2)y + (a2c1-a1c2)z = a2d1-a1d2
( a2b1-a2b2)y + (a2c1-a1c2)z = a2d1-a1d2 ……………………( persamaan 4) Langkah 2 Eliminasi variabel x dari persamaan 1 dan persamaan 3 a1x+ b1y+c1z=d1 |x a3| a3x+b3y+c3z=d3 |x a1|
→ →
a1a3x+a3b1y+a3c1z = a2d1 a1a3x+a1b3y+a1c3z = a1d3 -
( a3b1-a1b3)y + (a3c1-a1c3)z = a3d1-a1d3 ( a3b1-a1b3)y + (a3c1-a1c3)z = a3d1-a1d3 ……………………( persamaan 5) Langkah 3 Eliminasi variabel y dari persamaan 4 dan persamaan 5 ( a2b1-a2b2)y + (a2c1-a1c2)z = a2d1-a1d2 | x ( a3b1 – a1b3 )| ( a3b1-a1b3)y + (a3c1-a1c3)z = a3d1-a1d3 | x ( a2b1 – a1b2 )|
D. Metode Pembelajaran : Pendekatan Metode E. Media Pembelajaran
: Saintifik : Ceramah, Diskusi, Tanya-jawab, dan Pemecahan masalah : Power Point Presentation
F. Sumber Belajar : 1. Lingkungan sekitar 2. Referensi :
Buku Guru Matematika & Buku Siswa SMA/MA Kelas XII, Kemdikbud 2015 Sunardi dkk, 2008.Matematika 3 SMA/MA Kelas XII Program IPA.Jakarta : Bumi Aksara Buku PR Matematika SMA/MA/SMK/MAK Kelas XI Sem 1, klaten: Intan Pariwara 2014 G. Langkah-langkah Pembelajaran 1. Pertemuan Pertama : (2 JP) 3.3.1 Mendefenisikan pengertian sistem persamaan linier tiga variabel 3.3.2 Menguraikan bentuk umum sistem persamaan linier tiga variabel 4.3.1 Menyajikan penyelesaian system persamaan linear tiga variabel Alokasi Waktu Pendahuluan Guru menyiapkan fisik dan psikis peserta didik dengan 20 menit menyapa dan memberi salam, yang selanjutnya siap untuk mengikuti proses pembelajaran seperti berdoa, mengecek kehadiran peserta, menyiapkan buku pelajaran. Kegiatan
Diskripsi Kegiatan
Guru melakukan kegiatan Apersepsi peserta didik diingatkan kembali tentang persamaan dan pertidaksamaan satu variabel Guru menjelaskan Kompetensi (KI/KD) dan indikator yang akan dicapai. Guru menyampaikan garis besar cakupan materi dan penjelasan tentang kegiatan yang akan dilakukan peserta didik untuk menyelesaikan latihan-latihan dalam proses pembelajaran. Guru menyampaikan lingkup dan teknik penilaian yang akan digunakan. Guru menginformasikan masalah yang mau diamati. 55 menit Peserta didik diajak memecahkan masalah mengenai sistem persamaan linier tiga variabel Peserta didik di bagi dalam kelompok, untuk mengamati dan mencermati masalah 3.4 dan 3.5 Peserta didik menanya/ mendiskusikan ( antar peserta didik dalam satu kelompok atau diluar kelompok, dan/atau guru ), tentang masalah yang diamati. Peserta didk mencari contoh lain permasalahan nyata yang berkaitan dengan system persamaan linier tiga variabel Guru berkeliling ke semua kelompok untuk melihat diskusi yang dilakukan peserta didik,untuk melihat keterlibatan semua kelompok serta mengarahkan jika ada kelompok yang melenceng dari pekerjaannya Setiap kelompok maju untuk mempresentasikan hasil diskusinya di depan kelas, kelompok yang lain menanggapi dan menyempurnakan hasil diskusi yang sudah ditampilkan sampai menemukan defenisi Peserta didik memperoleh balikan dari guru dan teman tentang system persamaan linier tiga variabel (Penguatan)
Inti
Penutup
Peserta didik dengan bimbingan guru menyimpulkan 15 menit pembelajaran hari itu. Guru melakukan evaluasi (Test Tertulis) Peserta didik melakukan refleksi dengan menuliskan permasalahan dalam mempelajari system persamaan linier tiga variabel,di jurnal belajar (learning journal ). Guru memberikan umpan balik terhadap proses dan hasil pembelajaran Menginformasikan rencana kegiatan pembelajaran untuk pertemuan berikutnya. Mengakhiri kegiatan pembelajaran dengan berdoa bersama.
2. Pertemuan Kedua : (2 JP) 3.3.3 Menjabarkan himpunan penyelesaian system persamaan linier tiga variabel 3.3.4 Menyelesaikan masalahyang penyelesaian sistem persamaan linier tiga variable 4.3.2 Menyajikan penyelesaikan masalah yang berkaitan dengan sistem persamaan linier tiga variabel
Alokasi Waktu Pendahuluan Guru menyiapkan fisik dan psikis peserta didik dengan 20 menit menyapa dan memberi salam, yang selanjutnya siap untuk mengikuti proses pembelajaran seperti berdoa, mengecek kehadiran peserta, menyiapkan buku pelajaran. Guru melakukan kegiatan Apersepsi peserta didik diingatkan kembali tentang persamaan dan pertidaksamaan satu variabel Guru menjelaskan Kompetensi (KI/KD) dan indikator yang akan dicapai. Guru menyampaikan garis besar cakupan materi dan penjelasan tentang kegiatan yang akan dilakukan peserta didik untuk menyelesaikan latihan-latihan dalam proses pembelajaran. Guru menyampaikan lingkup dan teknik penilaian yang akan digunakan. Inti Guru menginformasikan masalah yang mau diamati. 55 menit Peserta didik diingatkan kembali tentang system persamaan linier dua variabel Peserta didk di bagi dalam kelompok untuk mengamati dan mencermati defenisi 3.4, contoh 3.3 dan 3.4 Dengan bimbingan dan arahan guru peserta didik melakukan diskusi dan tanya jawab untuk menentukan persamaan system persamaan linier tiga variabel Peserta didik menanya/mendiskusikan (antar peserta didik dalam satu kelompok atau diluar kelompok, dan/atau guru) tentang masalah yang diamati. Guru berkeliling ke semua kelompok untuk melihat diskusi yang dilakukan peserta didik,untuk melihat keterlibatan semua kelompok serta mengarahkan jika ada kelompok yang melenceng dari pekerjaannya Setiap kelompok maju untuk mempresentasikan hasil diskusinya di depan kelas, kelompok yang lain menanggapi dan menyempurnakan hasil diskusi yang sudah ditampilkan sampai menemukan defenisi 3.4. Peserta didik memperoleh balikan (feedback) dari guru dan teman tentang penyelesaian system persamaan linier tiga variabel (Penguatan) Kegiatan
Diskripsi Kegiatan
Penutup
Peserta didik dengan bimbingan guru menyimpulkan 15 menit pembelajaran hari itu. Guru melakukan evaluasi (Test Tertulis) Peserta didik melakukan refleksi dengan menuliskan permasalahan dalam mempelajari system persamaan linier tiga variabel,di jurnal belajar (learning journal ). Guru memberikan umpan balik terhadap proses dan hasil pembelajaran Menginformasikan rencana kegiatan pembelajaran untuk pertemuan berikutnya. Mengakhiri kegiatan pembelajaran dengan berdoa bersama.
3. Pertemuan Ketiga : (2 JP ) 3.3.5 Menentukan langkah-langkah penyelesaian masalah dengan sistem persamaan linier tiga variabel 4.3.3 Mempresentasikan penyelesaian masalah yang berkaitan dengan sistem persamaan linier tiga variabel Alokasi Waktu Pendahuluan Guru menyiapkan fisik dan psikis peserta didik dengan 20 menit menyapa dan memberi salam, yang selanjutnya siap untuk mengikuti proses pembelajaran seperti berdoa, mengecek kehadiran peserta, menyiapkan buku pelajaran. Guru melakukan kegiatan Apersepsi peserta didik diingatkan kembali tentang persamaan dan pertidaksamaan satu variabel Guru menjelaskan Kompetensi (KI/KD) dan indikator yang akan dicapai. Guru menyampaikan garis besar cakupan materi dan penjelasan tentang kegiatan yang akan dilakukan peserta didik untuk menyelesaikan latihan-latihan dalam proses pembelajaran. Guru menyampaikan lingkup dan teknik penilaian yang akan digunakan. Inti Dengan bimbingan dan arahan guru peserta didik 55 menit melakukan diskusi dan tanya jawab untuk menentukan penyelesaian masalah persamaan linier tiga variabel Peserta didik menanya/mendiskusikan (antar peserta didik dalam satu kelompok atau diluar kelompok, dan/atau guru) tentang metode yang digunakan untuk menentuka penyelesaian system persamaan linier tiga variabel dengan cara substitusi dan eliminasi Guru berkeliling ke semua kelompok untuk melihat diskusi yang dilakukan peserta didik,untuk melihat keterlibatan semua kelompok serta mengarahkan jika ada kelompok yang melenceng dari pekerjaannya Setiap kelompok maju untuk mempresentasikan hasil diskusinya di depan kelas, kelompok yang lain menanggapi dan menyempurnakan hasil diskusi yang sudah ditampilkan sampai menemukan alternatifalternatif penyelesaian masalah yang sesuai Peserta didik memperoleh balikan dari guru dan teman tentang menyelesaikan masalah persamaan linier tiga variabel (Penguatan) Penutup Peserta didik dengan bimbingan guru menyimpulkan 15 menit pembelajaran hari itu. Guru melakukan evaluasi (Test Tertulis) Peserta didik melakukan refleksi dengan menuliskan permasalahan dalam mempelajari system persamaan linier tiga variabel,di jurnal belajar (learning journal ). Guru memberikan umpan balik terhadap proses dan hasil pembelajaran Menginformasikan rencana kegiatan pembelajaran untuk pertemuan berikutnya. Mengakhiri kegiatan pembelajaran dengan berdoa bersama. Kegiatan
Diskripsi Kegiatan
H. Teknik penilaian SIKAP Jurnal PENGETAHUAN Tes Tulis: Uraian KETERAMPILAN Unjuk Kerja
Ternate,
Juli 2017
Mengetahui, Kepala Sekolah
Taher Hayat, S.Pd NIP. 196203101984121006
Guru Mata Pelajaran
Sri Jumriawati Fahmi, S.Pd
LAMPIRAN :
MATERI PEMBELAJARAN PERTEMUAN KE – 1
MATERI PEMBELAJARAN PERTEMUAN KE – 2
MATERI PEMBELAJARAN PERTEMUAN KE – 3
Instrumen Penilaian Pertemuan Ke - 1 Penilaian Sikap Jurnal Guru Mata Pelajaran
Nama Satuan pendidikan Tahun Pelajaran Kelas/Semester Mata Pelajaran No
Waktu
: SMA Negeri 10 Kota Ternate : 2017/2018 : X/1 : Matematika
Nama
Kejadian/Perilaku
Butir Sikap
Pos/Neg
Tindak Lanjut
Penilaian Pengetahuan Kisi-Kisi
Nama Satuan pendidikan Tahun Pelajaran Kelas/Semester Mata Pelajaran
: SMA Negeri 10 Kota Ternate : 2017/2018 : X/1 : Matematika
No
Kompetensi Dasar
Materi
1
3.3 Menyusun sistem persamaan linear tiga variabel dari masalah kontekstual
Sistem Persama an Linear tiga Variabel - Pengertian Sistem Persama an Linear tiga Variabel - Penerapan Sistem Persama an Linear tiga Variabel
Indikator Soal
No. Bentuk Soal Soal Disajikan sebuah soal 1 PG cerita, peserta didik dapat menentukan model matematikanya Disajikan sebuah system 2 persamaan linier peserta didik dapat menentukan nilai persamaannya
PG
Disajikan dua buah 3 persamaan linier, peserta didik dapat menentukan nilai a dan b berturutturut.
PG
Soal:
Pilihlah jawaban yang tepat 1. Tina membeli sebuah tas dan sepatu seharga Rp130.000,00. Karena mendapat potongan harga sebesar 10% untuk tas dan 20% untuk sepatu, maka Tina hanya membayar Rp108.000,00. Jika x menyatakan harga tas dan y menyatakan harga sepatu, maka model matematika yang sesuai dengan persoalan tersebut adalah …. a. x + y = 130.000 {8x + 9y = 1.080.000
b. {x + y = 130.000 {9x + 8y = 1.080.000 c. {x + y = 130.000 {10x + 20y = 108.000
d. {x + y = 130.000 {x + 2y = 10.800 e. {9x + 8y = 130.000 {x + y = 108.000
6
2. Diketahui sistem persamaan + = 1 dan - = 8. Nilai dari .
a. -
b. -
c.
d. 3
e. 6
+
sama dengan ….
3. Diketahui dua persamaan linier {4ax – by =7 mempunyai penyelesaian (3,1) {2ax + 2by = 1 Nilai a dan b berturut-turut adalah …. a.
dan -
b. dan -1
Kunci Jawaban ;
1. B 2. E 3. B Pedoman Penskoran
N = Skor Perolehan Skor Maksimum
x 100
c. dan 1
d. -1 dan
e. -1 dan -
Penilaian Keterampilan Penilaian Unjuk Kerja
Mata Pelajaran Kelas/Semester Tahun Pelajaran Kompetensi Dasar
: Matematika : X/1 : 2017/2018 : 4.3 Menyelesaikan masalah kontekstual yang berkaitan dengan sistem persamaan linear tiga variabel
Indikator Soal
: Peserta didik dapat menyelesaikan masalah yang berkaitan dengan persamaan linier tiga variabel
Pengamatan di saat unjuk kerja proses pembelajaran
Rubrik:
4 = SangatBaik,
3 = Baik,
2 = Cukup,
1 = Kurang Kriteria
Nama
No
Aspek Ketrampilan
1
Terampil dalam menentukan apa yang diketahui dan ditanyakan Terampil dalam menentukan rumus / metode apa yang akan dipakai dalam menyelesai kan masalah Terampil dalam membuat model matematika Terampil dalam penulisan urutan langkah-langkah daerah penyelesaian persamaan linier dua variabel Terampil dalam mempresentasikan himpunan penyelesaian sistem persamaan linier dua variabel
2
3 4
5
Penilaian:
ℎ ×100
1
2
3
4
Rubrik Penilaian Unjuk Kerja Matematika Kriteria
Skor
Indikator
Kesesuain Konsep
3 2 1
Sesuai Kurang Sesuai Tidak Sesuai
Ketepatan Perhitungan
3 2 1
Tepat Kurang Tepat Tidak Tepat
Kesesuain Model
3 2 1
Sesuai Kurang sesuai Tidak sesuai
Format Penilaian Keterampilan Matematika
No
Nama
Kesesuain
Ketepatan
Kesesuain
Jumlah
Konsep
Perhitungan
Model
Skor
Nilai
Instrumen Penilaian Pertemuan Ke - 2 Penilaian Sikap Jurnal Guru Mata Pelajaran
Nama Satuan pendidikan Tahun Pelajaran Kelas/Semester Mata Pelajaran No
Waktu
: SMA Negeri 10 Kota Ternate : 2017/20178 : X/1 : Matematika
Nama
Kejadian/Perilaku
Butir Sikap
Pos/Neg
Tindak Lanjut
Penilaian Pengetahuan Kisi-Kisi
Nama Satuan pendidikan Tahun Pelajaran Kelas/Semester Mata Pelajaran No 1
Kompetensi Dasar 3.2 Menyusun sistem persamaan linear tiga variabel dari masalah kontekstual
: SMA Negeri 10 Kota Ternate : 2017/2018 : X/1 : Matematika Materi Sistem Persama an Linear Tiga Variabel - Pengertian Sistem Persama an Linear Tiga Variabel - Penerapan Sistem Persama an Linear Tiga Variabel
Indikator Soal
No. Soal Disajikan sebuah soal cerita 1 peserta didik dapat membuat model matematika dari permasalahan tersebut.
Bentuk Soal PG
Disajikan sebuah sistem 2 persamaan linier tiga variabel, peserta didik dapat menentukan perbandingan dari x:y:z
PG
Soal:
Pilihlah jawaban yang tepat. 1. Banyak kelereng Dino sama dengan dua kali kelereng Rio dan Wendi 2 butir. Selisih kelereng Dino dan Rio sama dengan empat kali banyak kelereng Wendi ditambah 1 butir. Adapun jumlah kelereng Dino, Rio dan Wendi 53 butir. Model matematika yang sesuai untuk persoalan tersebut adalah …. a.
b.
22 = −2 4 = 1 = 53 −2− −4−2==12 = 53
c.
d.
e.
2 −4 − −2− ==12 2 = 53 2− −4−2==21 = 53 −2 −2==21 2 = 53
2. Diketahui system persamaan
22−−3==−34 3 − 2 = 7 ⟦ ,, ⟧
Himpunan penyelesaiannya adalah
maka perbandingannya x:y:z = ….
a. 1 : 2 : 3
d. -2 : 3 : -1
b. 2 : 1 : -3
Kunci jawaban; 1. B 2. E Pedoman Penskoran
N = Skor Perolehan x 100 Skor Maksimum
c. 3 : -1 : -2
e. 2 : -3 : -1
Penilaian Keterampilan Penilaian Unjuk Kerja
Mata Pelajaran Kelas/Semester Tahun Pelajaran
: Matematika : X/1 : 2017/2018
Kompetensi Dasar
: 4.3 Menyelesaikan masalah kontekstual yang berkaitan dengan sistem persamaan linear tiga variabel
Indikator Soal
: Peserta didik dapat menyajikan penyelesaian masalah yang berkaitan dengan sistem persamaan linier tiga variabel
Pengamatan di saat unjuk kerja proses pembelajaran
Rubrik:
4 = SangatBaik,
3 = Baik,
2 = Cukup,
1 = Kurang
Kriteria Nama
No
Aspek Ketrampilan
1
Terampil dalam menentukan apa yang diketahui dan ditanyakan Terampil dalam menentukan rumus/metode apa yang akan dipakai dalam menyelesai kan masalah Terampil dalam membuat model matematika Terampil dalam penulisan urutan langkah-langkah penyelesaian system persamaan linier tiga variabel Terampil dalam mempresentasikan himpunan penyelesaian sistem persamaan linier tiga variabel
2
3 4
5
Penilaian:
ℎ ×100
1
2
3
4
Instrumen Penilaian Pertemuan Ke - 3 Penilaian Sikap Jurnal Guru Mata Pelajaran
Nama Satuan pendidikan Tahun Pelajaran Kelas/Semester Mata Pelajaran No
Waktu
: SMA Negeri 10 Kota Ternate : 2017/2018 : X/1 : Matematika
Nama
Kejadian/Perilaku
Butir Sikap
Pos/Neg
Tindak Lanjut
No. Soal 1
Bentuk Soal PG
2
PG
Penilaian Pengetahuan Kisi-Kisi
Nama Satuan pendidikan Tahun Pelajaran Kelas/Semester Mata Pelajaran No 1
Kompetensi Dasar 3.2 Menyusun sistem persamaan linear tiga variabel dari masalah kontekstual
: SMA Negeri 10 Kota Ternate : 2017/2018 : X/1 : Matematika Materi
Indikator Soal
Sistem Persama an Linear Tiga Variabel
Disajikan sebuah soal cerita, peserta didik dapat menentukan luas permukaan kerangka balok - Pengertian Sistem Persama setelah ditutup kertas an Linear Tiga Disajikan sebuah sistem Variabel - Penerapan persamaan linier tiga Sistem Persama variable, peserta didik dapat an Linear Tiga menentukan himpunan Variabel penyelesaian
Soal:
Pilihlah jawaban yang tepat 1. Sebuah kawat yang panjangnya 60 cm dibuat kerangka balok. Keliling alas dikurangi tinggi balok sama dengan 6 cm dan panjang balok setengah dari tingginya. Luas permukaan kerangka balok setelah ditutup kertas … cm2 a. 60 b. 68 c. 120 d. 124 e. 136
2. Himpunan penyelesaian dari system penyelesaian
a. b. c. d. e.
⟦⟦1,2,1−,2,−21⟧⟧ ⟦⟦4,1,4−,1,−12⟧⟧ ⟦4,1,−1⟧
23 −2−==109 −3 = 0
adalah ….
Kunci jawaban ; 1. E 2. D Pedoman Penskoran
N = Skor Perolehan x 100 Skor Maksimum
Penilaian Keterampilan Penilaian Unjuk Kerja
Mata Pelajaran Kelas/Semester Tahun Pelajaran Kompetensi Dasar
: Matematika : X/1 : 2017/2018 : 4.3 Menyelesaikan masalah kontekstual yang berkaitan dengan sistem persamaan linear tiga variabel
Indikator Soal
: Peserta didik dapat menyelesaikan masalah yang berkaitan dengan sistem persamaan linier tiga variabel
Pengamatan di saat unjuk kerja proses pembelajaran
Rubrik:
4 = SangatBaik,
3 = Baik,
2 = Cukup,
1 = Kurang Kriteria
Nama
No
Aspek Ketrampilan
1
Terampil dalam menentukan apa yang diketahui dan ditanyakan Terampil dalam menentukan rumus/metode apa yang akan dipakai dalam menyelesaikan masalah Terampil dalam membuat model matematika dari persamaan linier tiga variabel Terampil dalam penulisan urutan langkah-langkah daerah penyelesaian sistem persamaan linier tiga variabel Terampil dalam mempresentasikan himpunan penyelesaian sistem persamaan linier tiga variabel
2
3
4
5
Penilaian:
ℎ ×100
1
2
3
4
Rubrik Penilaian Unjuk Kerja Matematika Kriteria
Skor
Indikator
Kesesuain Konsep
3 2 1
Sesuai Kurang Sesuai Tidak Sesuai
Ketepatan Perhitungan
3 2 1
Tepat Kurang Tepat Tidak Tepat
Kesesuain Model
3 2 1
Sesuai Kurang sesuai Tidak sesuai
Format Penilaian Keterampilan Matematika
No
Nama
Kesesuain
Ketepatan
Kesesuain
Jumlah
Konsep
Perhitungan
Model
Skor
Nilai