Home
Add Document
Sign In
Register
Referat Hipospadia
Home
Referat Hipospadia
...
Author:
Handra Juanda
35 downloads
374 Views
200KB Size
Report
DOWNLOAD .PDF
Recommend Documents
Hipospadia
Surgery Medical
Hipospadia
referat :)
Pathway hipospadia
hipospadiaDeskripsi lengkap
PATOFISIOLOGI HIPOSPADIA
Pathway Hipospadia
pathway hipospadiaFull description
MAKALAH HIPOSPADIA
askep sistem perkemihanDeskripsi lengkap
askep hipospadia
Full description
Pathway Hipospadia
hipospadiaDeskripsi lengkap
Pathway Hipospadia
hipospadiaDeskripsi lengkap
LAPORAN PENDAHULUAN HIPOSPADIA
Deskripsi lengkap
KASUS 3 HIPOSPADIA
Deskripsi lengkap
Woc Hipospadia & Epispadia
PerkemihanFull description
makalah hipospadia baru
Deskripsi lengkap
Patofisiologi Hipospadia (lengkung)
Patofisiologi Hipospadia (lengkung)
LAPORAN PENDAHULUAN HIPOSPADIA
teknik instrumentasiDeskripsi lengkap
Laporan Kasus Hipospadia
urologiFull description
60333551-KASUS-3-HIPOSPADIA
Deskripsi lengkap
Hipospadia Caso Clinico
Descripción: caso clinico neonatal
Hipospadia Dan Epispadia
-
woc Hipospadia 2
woc Hipospadia 2Full description
Asuhan Keperawatan Dengan Hipospadia
Full description
3.-Epispadia,Hipospadia
epispadia e hipospadiaDescripción completa
123478524 Laporan Kasus Hipospadia
fFull description
kasus 3 hipospadia
askep pada anak dengan hipospadiaDeskripsi lengkap
RHCHRDP LE^F]^D@ED
@e}x}xk Fihl ? Ldk`rd Oxdk`d
CG X^K Shphrdk Odgdrpd
Ahepu
CG X^L ^habeabekj ?
@r+ D}rfce ]+ ]xrdmladk) ]~B^
@H^DRPHAHK BH@DL R]^D@ JDPFP ]FHBRFPF @EPGH]D@ ODGDRPD 2>44
E+
^hk`dlxixdk
^d`d dbd` ~hrpdad) dlie bh`dl `dre Uxkdke Lhief`frx} `dk Dkpeiex}) ~hrpdad!pdad udkj ahidgxgdk ~hkdkjjxidkjdk ~hkdkjjxidkjdk xkpxg le~f}~d`ed+ @eidgxgdk da~xpd}e `dre bdjedk ~hke} `e}pdi `dre ahdpx}+ ]hidkoxpkud mdrd eke `eegxpe fihl Jdihk `dk ^dxix} `dre Djhkped ~d`d pdlxk 2>> `dk pdlxk 0>>+ @x~idu ahaxide hrd af`hrk ~d`d be`dkj eke ~d`d pdlxk 4<:0 `hkjdk aha~hrghkdigdk aha~hrghkdigdk }hmdrd `hpdei rhgfk}prxg}e xrhprd+ ]hgdrdkj) ihbel `dre 2>> phgkeg phidl `ebxdp `dk }hbdjedk bh}dr ahrx~dgdk axipe!}pdjh rhmfk}prxmpefk7 udkj phr`ere `dre cer}p hahrjhkmu }pdjh xkpxg ahkjfrhg}e }phkfpem ahdpx} oegd `e~hrixgdk `dk }hmfk` }pdjh
xkpxg ahkjleidkjgdk mlfr`hh `dk rhmxrsdpxa) ghax`edk ~d`d pler` }pdjh udepx xrhlprf~id}pu+ Bhbhrd~d ad}didl udkj bhrlxbxkjdk `hkjdk phgkeg axipe!}pdjh udepx7 ahabxpxlgdk f~hrd}e udkj axipe~ih7 }hrekj phrod`e ahdpx} pe`dg ahkmd~de xoxkj jidk`} ~hke}7 }hrekj phrod`e }pregpxr dpdx ce}phi xrhprd7 `dk `dre }hje h}phpegd `edkjjd~ gxrdkj bdeg+ ^d`d pdlxk 453>) Lek`hrhr aha~hrghkdigdk phgkeg fkh!}pdjh rh~der xkpxg ahkjxrdkje gfa~iegd}e `dre phgkeg axipe!}pdjh rh~der + Mdrd eke `edkjjd~ }hbdjde rhgfk}prxg}e xrhprd udkj e`hdi `dre }hje dkdpfae `dk cxkj}efkdikud) `dre }hje h}phpeg `edkjjd~ ihbel bdeg) =
gfa~iegd}e aekeadi) `dk ahkjxrdkje }fmedi mf}p + EE+
@hceke}e
Le~f}~d`ed }hk`ere bhrd}di }hk`ere bhrd}di `dre `xd gdpd udepx ’lu~f‑ udkj bhrdrpe ’`e bdzdl‑ `dk 4
’}~d`fk’ udkj bhrdrpe ghrdpdk udkj ~dkodkj+ Le~f}~d`ed d`didl ghidekdk gfkjhkepdi `eadkd axdrd xrhprd hg}phrkd ,AXH% phrihpdg `e shkprdi ~hke} `dk ihbel gh ~rf|eadi `dre 0
pha~dp kfradikud ,xoxkj jidk` ~hke}%+ Ghidekdk eke }hrekjgdie `e}hrpde d`dkud cebrf}e} ~d`d bdjedk `e}pdi AXH udkj ahkuhbdbgdk bhkjgfgkud ~hke} ,mlfr`dh%+ EEE+
Hpfifje
^hkuhbdbkud ^hkuhbdbkud }hbhkdrkud }dkjdp axipecdgpfr axipe cdgpfr `dk }da~de }hgdrdkj bhixa `eghpdlxe ~hkuhbdb ~hkuhbdb ~d}pe `dre le~f}~d`ed+ Kdaxk) d`d bhbhrd~d cdmpfr udkj fihl ~drd dlie `edkjjd~ ~diekj bhr~hkjdrxl dkpdrd idek ?
=
4+ Jdkjjxdk `dk ghpe`dg}heabdkjdk lfrafk Lfrafk udkj `eadg}x` `e }eke d`didl lfrafk dk`rfjhk udkj ahkjdpxr frjdkfjhkh}e} ghidaek ,~red%+ Dpdx bed}d oxjd gdrhkd rh}h~pfr lfrafk dk`rfjhkkud }hk`ere `e `dida pxbxl udkj gxrdkj dpdx pe`dg d`d+ ]hlekjjd zdidx~xk lfrafk dk`rfjhk }hk`ere phidl phrbhkpxg mxgx~ dgdk phpd~e d~dbeid rh}h~pfrkud pe`dg d`d phpd~ }dod pe`dg dgdk ahabhregdk }xdpx hchg udkj }hah}pekud+ Dpdx hkea udkj bhr~hrdk `dida }ekph}e} lfrafk dk`rfjhk pe`dg ahkmxgx~e ~xk dgdk bhr`da~dg }dad+ 2+ Jhkhpegd Phrod`e gdrhkd jdjdikud }ekph}e} dk`rfjhk+ Ldi eke bed}dkud phrod`e gdrhkd axpd}e ~d`d jhk udkj ahkjgf`h }ekph}e} dk`rfjhk phr}hbxp }hlekjjd hg}~rh}e `dre jhk phr}hbxp pe`dg phrod`e+ =+ Iekjgxkjdk Bed}dkud cdgpfr iekjgxkjdk udkj ahkod`e ~hkuhbdb d`didl ~fixpdk `dk dp udkj bhr}ecdp phrdpfjhkeg udkj `d~dp ahkjdgebdpgdk axpd}e ES+
H~e`haefifje
Le~f}~d`ed ahrx~dgdk ghidekdk bdzddk udkj phrod`e ~d`d = `edkpdrd 4+>>> bdue bdrx idler+ Bhrdpkud le~f}~d`ed bhrsdred}e) ghbdkudgdk ixbdkj xrhprd phrihpdg `e `hgdp xoxkj ~hke}) udepx ~d`d jidk} ~hke}+ Bhkpxg le~f}~d`ed udkj ihbel bhrdp phrod`e oegd ixbdkj xrhprd phr`d~dp `e phkjdl bdpdkj ~hke} dpdx ~d`d ~dkjgdi ~hke}) `dk gd`dkj ~d`d }grfpxa ,gdkpxkj dgdr% dpdx `e bdzdl }grfpxa+ Ghidekdk eke }hrekjgdie bhrlxbxkjdk
`hkjdk mlfr`dh) udepx }xdpx odrekjdk cebrf}d udkj ghkmdkj) udkj ahkuhbdbgdk ~hke} ahihkjgxkj gh bdzdl ~d`d }ddp hrhg}e+ Bdue udkj ahk`hrepd le~f}~d`ed }hbdegkud pe`dg `e}xkdp+ Gxiep `h~dk ~hke} `ebedrgdk xkpxg `ejxkdgdk ~d`d ~habhkpxgdk xrhprd+ Rdkjgdedk ~habh`dldk ldrx} `ex~dudgdk phidl }hih}de `eidgxgdk }hbhixa dkdg axide }hgfidl+ ^d`d }ddp eke) ~hrbdegdk le~f}~d`ed `edkoxrgdk `eidgxgdk }hbhixa dkdg bhrxaxr 4< bxidk+ S+
2
^dpfce}efifje `dk Adkech}pd}e Gieke}
=
4+ Le~f}~d`ed phrod`e gdrhkd pe`dg ihkjgd~ku i hkjgd~kudd ~hrghabdkjdk xrhprd `dida xphrf+
2+ Le~f}~d`ed `eadkd ixbdkj xrhprd phrihpdg ~d`d ~hrbdpd}dk ~hke} `dk }grfpxa+ =+ Le~f}~d`ed d`didl ixbdkj xrhprd bhraxdrd ~d`d ixbdkj crhkxa) }h`dkj ixbdkj crhkxakud pe`dg phrbhkpxg) pha~dp kfradikud ahdpx} xrekdrex} `epdk`de ~d`d jidk} ~hke} }hbdjde mhidl bxkpx+
2
Jdabdr 4+ Bhkpxg le~f}~d`ed dgebdp ghidekdk jhkhpeg 2
Jhodid Gieke}
4+ Ixbdkj ~hke} pe`dg phr`d~dp `e xoxkj ~hke}) phpd~e bhrd`d ihbel gh ~rf|eadi `dk bhrd`d `e shkprdi+ 2+ ^hke} ahihkjgxkj gh bdzdl+ =+ ^hke} pda~dg }h~hrpe bhrghrx`xkj gdrhkd ~rh~xpexa `ebdjedk shkprdi pe`dg d`d) bhrgxa~xi `ebdjedk `fr}di+ 0+ Oegd bhrghael) dkdg ldrx} `x`xg+ SE+
@edjkf}e}
@edjkf}e} le~f}~d`ed bed}dkud ohid} ~d`d ~hahreg}ddk ek}~hg}e+ Gd`dkj!gd`dkj le~f}~d`ed `d~dp `e`edjkf}e} ~d`d ~hahreg}ddk xiprd}fxk` ~rhkdpdi+ Oegd pe`dg phre`hkpecegd}e }hbhixa ghidlerdk) adgd bed}dkud `d~dp phre`hkpecegd}e ~d`d ~hahreg}ddk =
}hphidl bdue idler+ ^d`d frdkj `hzd}d udkj ahk`hrepd le~f}~d`ed `d~dp ahkjhixlgdk gh}xiepdk xkpxg ahkjdrdlgdk ~dkmdrdk xrekh+ Mlfr`dh `d~dp ahkuhbdbgdk bdpdkj ~hke} ahihkjgxkj gh shkprdi udkj `d~dp ahkjjdkjjx lxbxkjdk }hg}xdi+ Le~f}~d`ed pe~h ~hrekhdi `dk ~hkf}mrfpdi ahkuhbdbgdk ~hk`hrepd ldrx} aeg}e `dida ~f}e}e `x`xg) `dk le~f}~d`ed ohke} eke `d~dp ahkuhbdbgdk ekchrpeiepd}+ Bhbhrd~d ~hahreg}ddk ~hkxkodkj udkj `d~dp `eidgxgdk udepx xrhplprf}mf~u `dk mu}pf}mf~u xkpxg ahad}pegdk frjdk!frjdk
}hg} ekphrkdi phrbhkpxg }hmdrd kfradi+ H|mrhpfru xrfjrd~lu `eidgxgdk xkpxg ahk`hphg}e d`d pe`dgkud dbkfradiepd} gfkjhkepdi ~d`d jekodi `dk xrhphr+ @edjkf}e} be}d oxjd `ephjdggdk bhr`d}drgdk ~hahreg}ddk ce}eg+ Oegd le~f}~d`ed phr`d~dp `e ~dkjgdi ~hke}) axkjgek ~hrix `eidgxgdk ~hahreg}ddk rd`efifje} xkpxg ahahreg}d ghidekdk bdzddk idekkud+Bdue udkj ahk`hrepd le~f}~d`ed }hbdegkud pe`dg `e}xkdp+ Gxiep `h~dk ~hke} `ebedrgdk xkpxg `ejxkdgdk ~d`d ~habh`dldk+ Rdkjgdedk ~habh`dldk `ex~dudgdk phidl }hih}de `eidgxgdk }hbhixa dkdg axide }hgfidl+ ^d`d }ddp eke) `ex~dudgdk `eidgxgdk }hbhixa dkdg bhrxaxr 4< bxidk+ Oegd pe`dg `efbdpe) axkjgek dgdk phrod`e gh}xiepdk `dida ~hidpeldk bxdkj der ~d`d dkdg `dk ~d`d }ddp `hzd}d kdkpe) axkjgek dgdk phrod`e jdkjjxdk `dida ahidgxgdk lxbxkjdk }hg}xdi+ SEE+
Ghidekdk ^hkuhrpd
0
4+ Aegrf~hke} 2+ Xk`h}mhk`x} Xk`h}mhk`x} ph}pe} =+ Ghidekdk jekodi 0+ Ghidekdk xrhphr & xrhprd 8+ Ghidekdk bxie!bxie 3+ Jhk`hr :+ ]mrfpxa bece`d
SEEE+ Gid}ecegd}e
4+ ]xbjidk`xihr 2+ ^hkeih }ldcp =+ ^hkf}mrfpdi 0+ ]mrfpdi 8+ ^hrekhdi
0
Jdabdr :+ Gid}ecegd}e Le~f}~d`ed
E\+
0
^hkdpdidg}dkddk
^hkdkjdkdk le~f}~d`ed d`didl `hkjdk mdrd f~hrd}e+ F~hrd}e eke bhrpxoxdk xkpxg ahrhgfk}prxg}e ~hke} djdr ixrx} `hkjdk frece}exa xrhprd ~d`d pha~dp udkj kfradi dpdx `ex}dldgdk `ex}dldgdk xkpxg }hkfradi axkjgek+ F~hrd}e }hbdegkud `eidg}dkdgdk ~d`d }ddp x}ed dkdg udepx hkda bxidk }da~de x}ed ~rd}hgfidl+ Ldi eke `eadg}x`gdk bdlzd ~d`d x}ed eke dkdg `eldrd~gdk bhixa }d`dr bdlzd ed bhjepx ’}~h}edi‑) `dk bhrbh`d `hkjdk phadk !phadkkud udkj idek udepx `eadkd dkdg udkj idek bed}dkud aeg}e ,bxdkj der }hke% `hkjdk bhr`ere }h`dkjgdk ed }hk`ere }hk`er e ldrx} ahidgxgdkkud `hkjdk ofkjgfg djd xrek pe`dg ’abihbhr‑ gh adkd!adkd+ Dkdg udkj ahk`hrepd le~f}~d`ed lhk`dgkud odkjdk `xix `eglepdk) ldi eke bhrgdepdk `hkjdk pek`dgdk f~hrd}e rhgfk}prxg}e udkj dgdk ahkjdabei gxiep ~rh~xpexa ~hke} xkpxg ahkxpx~ ixbdkj `dre }ximx} xrhprd udkj pe`dg ahkudpx ~d`d ~hk`hrepd 8
le~f}~d`ed+
Pdld~dk f~hrd}e rhgfk}prxg}e dkpdrd idek ?
3
4+ Rhihd}h Mlfr`dh `dk Pxkkhiekj Ahixrx}gdk ~hke} udepx frece}exa `dk mdkdie} xrhprd }hkfradi axkjgek+ Ldi eke `egdrhkdgdk ~d`d ~hk`hrepd le~f}~d`ed bed}dkud phr`d~dp }xdpx mlfr`d udkj ahrx~dgdk odrekjdk cebrf}d udkj ahkjdgebdpgdk ~hke} bhkjgfg+ Idkjgdl }hidkoxpkud d`didl afbeie}d}e ,ahafpfkj `dk ahaek`dlgdk% gxiep ~rh~xpexa ~hke} xkpxg ahkxpx~ }ximx} xrhprd `dk `ebxdp ixbdkj `e jidk` ~hke} }hlekjjd AXH bhrd`d `e xoxkj ~hke}+ 2+ Xrhprf~id}pu Pdld~ gh`xd eke `eidg}dkdgdk d~dbeid pe`dg phrbhkpxg cf}}d kdcemxidre} ~d`d jidk} ~hke}+ Xrhprf~id}pu udepx ahabxdp cd}}d kdcemxidre} bdrx ~d`d jidk} ~hke} udkj kdkpekud dgdk `elxbxkjgdk `hkjdk mdkdie} xrhprd udkj phidl phrbhkpxg }hbhixakud ahidixe pdld~ ~hrpdad+
Jdabdr <+ ^hrbdk`ekjdk }hbhixa `dk }h}x`dl f~hrd}e
\+
Gfa~iegd}e ^d}md F~hrd}e
2
3
4+ Ce}pxid xrhprfgxpdk) ahrx~dgdk gfa~iegd}e udkj phr}hrekj `dk eke `ejxkdgdk }hbdjde ~drdahphr xkpxg ahkeide ghbhrld}eidk f~hrd}e+ ^d`d ~rf}h`xr f~hrd}e }dpx pdld~ }ddp eke dkjgd ghod`edk udkj `d~dp `ephread d`didl 8!4>( + 2+ H`had&~habhkjgdgdk udkj phrod`e dgebdp rhdg}e odrekjdk bh}drkud `d~dp bhrsdred}e) oxjd phrbhkpxgkud lhadpfa& gxa~xidk `drdl `ebdzdl gxiep) udkj bed}dkud `emhjdl `hkjdk bdixp phgdk }hidad 2 }da~de = ldre ~d}gd f~hrd}e+ =+ ]pregpxr) ~d`d ~rfg}eadi dkd}pfaf}e} udkj ghaxkjgekdk `e}hbdbgdk fihl dkjxid}e `dre dkd}pfaf}e}+ 0+ @eshrpegxixa) phrod`e ~d`d ~habhkpxgdk khfxrhprd udkj phridix ihbdr) dpdx d`dkud }phkf}e} ahdpdi udkj ahkjdgebdpgdk `eidpd}e udkj idkoxp+ i dkoxp+
8+ Rh}e`xdi mlfr`hh&rhgxrhk mlfr`hh) dgebdp `dre reie} gfr`h udkj pe`dg }ha~xrkd) `eadkd pe`dg ahidgxgdk hrhg}e drpece}edi }ddp f~hrd}e dpdx ~habhkpxgdk }gdr udkj bhrihbeldk `e shkprdi ~hke} zdidx~xk }dkjdp odrdkj+ 3+ Rdabxp `dida xrhprd) udkj `d~dp ahkjdgebdpgdk ekchg}e }dixrdk ghkmekj bhrxidkj dpdx ~habhkpxgdk bdpx }ddp ~xbhrpd}+
\E+
^HKXPX^
Le~f}~d`ed d`didl ghidekdk gfkjhkepdi `eadkd AXH phrihpdg `e shkprdi ~hke} `dk ihbel gh ~rf|eadi `dre pha~dp kfradikud ,xoxkj jidk` ~hke}%+ Le~f}~d`ed ahrx~dgdk ghidekdk bdzddk udkj phrod`e ~d`d = `edkpdrd 4+>>> bdue bdrx idler+ Ghbdkudgdk ixbdkj xrhprd phrihpdg `e `hgdp xoxkj ~hke}) udepx ~d`d jidk} ~hke}+ Bhkpxg le~f}~d`ed udkj phrod`e oegd ixbdkj xrhprd phr`d~dp `e phkjdl bdpdkj ~hke} dpdx ~d`d ~dkjgdi ~hke}) `dk gd`dkj ~d`d }grfpxa ,gdkpxkj dgdr% dpdx `e bdzdl }grfpxa+ Ghidekdk eke }hrekjgdie bhrlxbxkjdk
`hkjdk
gfr`e) udepx }xdpx odrekjdk cebrf}d udkj ghkmdkj) udkj
ahkuhbdbgdk ~hke} ahihkjgxkj gh bdzdl ~d`d }ddp hrhg}e+ Jhodidkud d`didl ? 4+ Ixbdkj ~hke} pe`dg phr`d~dp `e xoxkj ~hke}) phpd~e bhrd`d ihbel gh ~rf|eadi+ 2+ ^hke} ahihkjgxkj gh bdzdl+ =+ ^hke} pda~dg }h~hrpe bhrghrx`xkj gdrhkd ~rh~xpexa `ebdjedk shkprdi pe`dg d`d) bhrgxa~xi `ebdjedk `fr}fi+ 0+ Oegd bhrghael) dkdg ldrx} `x`xg+
@edjkf}e} be}d oxjd `ephjdggdk bhr`d}drgdk ~hahreg}ddk ce}eg+ Oegd le~f}~d`ed phr`d~dp `e ~dkjgdi ~hke}) axkjgek ~hrix `eidgxgdk ~hahreg}ddk rd`efifje} xkpxg ahahreg}d ghidekdk bdzddk idekkud+Bdue udkj ahk`hrepd le~f}~d`ed }hbdegkud pe`dg `e}xkdp+ Gxiep `h~dk ~hke} `ebedrgdk xkpxg `ejxkdgdk ~d`d ~habh`dldk+ Rdkjgdedk ~habh`dldk `ex~dudgdk phidl }hih}de `eidgxgdk }hbhixa dkdg axide }hgfidl+ ^d`d }ddp eke) `ex~dudgdk `eidgxgdk }hbhixa dkdg bhrxaxr 4< bxidk+ Oegd pe`dg `efbdpe) axkjgek dgdk phrod`e gh}xiepdk `dida ~hidpeldk bxdkj der ~d`d dkdg `dk ~d`d }ddp `hzd}d kdkpe) axkjgek dgdk phrod`e jdkjjxdk `dida ahidgxgdk lxbxkjdk }hg}xdi+
Rhchrhk}e 4+ ]d}prd}x~hkd ]d}prd}x~hkd L+) Le~f}~d`ed) @dida Gxa~xidk Gxiedl Eiax Bh`dl) Bekdrx~d Dg}drd) Odgdrpd) 4558? 02 Adrhp 2>4> =+ ^xrkfaf B+B+) Xrhprd `dk Le~f}~d`ed) @dida @d}dr!`d}dr Xrfifje) Adidkj) 2>>> ? 3)4=:!4=< 0+ Gxiedl Le~f}~d`ed) ]xb ]AC Bh`dl ^id}peg @h~drphahk Bh`dl R]^D@ JDPFP ]FHBRFPF) 2>44+ 8+ ]xred`e + Repd) Uxiedke + 2>>4 + D}xldk Gh~hrdzdpdk ^d`d Dkdg + Odgdrpd ? MS+ ]djxkj ]hpf 3+ lpp~?&&idg}laekdzd}d lpp~?&&idg}laekdzd}d}e+bifj}~fp+m }e+bifj}~fp+mfa&2>>8&42&le~f}~d fa&2>>8&42&le~f}~d`ed+lpai `ed+lpai++ @egxpe~ pdkjjdi 4> Adrhp 2>4>
×
Report "Referat Hipospadia"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
×
Sign In
Email
Password
Remember me
Forgot password?
Sign In
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & close