5 MILL 15 ROLLER TANDEM, Compound Imbibitio Material Balance in milling tandem Cane = Juice + Fibre Cane crushi 1 Added imbib 0.3 Cane crushing -- C = J + f Fibre in can 0.14 Fibre in Bagasse P REIN Fibre in Ba Fibre Index kg/m³ Fibre in Bag 0.3386 32 560 30 525 34 595 Fibre in Bag 0.3748 40 700 39 682.5 39 682.5 Fibre in Bag 0.4109 45 787.5 43 752.5 45 787.5 Fibre in Bag 0.4471 48 840 46 805 50 875 Fibre in Bag 0.4833 50 875 48 840 Brix from p 21 50 875 Bagasee from 0.413467 Bagasee from 0.373533 Bagasee from 0.340716 Bagasee from 0.313129 Bagasee from 0.289675 Mill input = Mill Output C = b1 + j1 Priamary J 0.586533 Juice in Ca 0.86 Material Balance for 100 Tonnes Priamary E 0.682015 For Mill No 0.323454 Juice comi 0.35104 Juice comi 0.383857 Juice comi 0.423792 MJ % Cane101.0325 BRIX BALANCE IN 5 MILL TANDEM 1) 2) 3) 4) 5) 6) 7) 8) 9)
Cane cr Fibre % Imbibit Brix % Fibre in Fibre in Fibre in Fibre in Fibre in
400 14 30 19 0.3386 0.3748 0.4109 0.4471 0.4833
(i)Calculations of Ideal Brix For compoound imbibition the ideal brix for individual mill Brix in n th Mill juice = (1 + s + s² + s³ + - + sm- -/1 + s + s² + s³+ sⁿ) S = W/ f 2.142857 MILL IDEAL
FEED
S² 4.591837 S³ 9.83965 S⁴ 21.08496 a) For mill no -2 ; n= 4 Br 0.454595 Ideal Bri 8.637313 b) For Mill no - 3, n= 3 Brix % Jui 0.200073 Ideal Brix 3.801392 c)For Mill no - 4 n =2 Brix % Jui 0.081296 Ideal Brix 1.544629 d) For Mill no- 5 n = 1 Brix % Jui 0.025867 Ideal Brix 0.491473
m= 4
I II III IV V
9.55 4.2 1.71
m=4
m=4
m=4
Brix Balance In Milling Tandem (a) For Mill no - 1; Brix entering in I st mill = Brix leaving from Ist mill juice & Bagasse Brix in Cane entering = Brix in PJ + Brix in Bagasse Brix in Bagasse = Brix in Cane - Brix in PJ Brix % ab 18.316 Brix in Ca 70.69976 Brix in PJ 11.14412 Q= 58.65328 Bx leaving from mill no -1 = Bx in cane entering mill 1- Bx.in PJ leaving from mill 1 59.55564 fibre in bag 0.3386 Qty of mill 4134.672 Bx % Bagas1.440396 (b) For Mill No -2 Bx in J2 = 3.660425 Bx in J3 = 1.459192 Bx in J4 = 0.542227 Bx in J5 = 0.158969 Bx entering in 2nd. Mill = Bx leaving from 2nd.mill in juice & bagasse Bx in b1 + 57.3544 Bx % 2nd 153.5459 © For Mill no-3 Bx entering in 3rd. Mill = Bx leaving from 3rd.mill in juice & bagasse Bx in b2 + 56.43744 Bx % 3rd 165.6439
(D) For Mill No- 4 Bx entering in 4th . Mill = Bx leaving from 4 th.mill in juice & bagasse Bx in b3 + 56.05418 Bx % 4 th 179.013 (E)For Mill No - 5 Bx entering in 5th . Mill = Bx leaving from 5 th.mill in juice & bagasse Bx in b4 + 55.89521 Bx % 4 th 192.9583 (3) Mill Extaction (a) 1st Mil 15.7626 (b) 2nd Mil 3.113493 (c) 3rd Mil 1.296985 (d) 4th Mil 0.542093 (e) 5 th Mi 0.224851 (4) Mill Ex 20.94003 (5) Contribution in Mill Extraction by Individual Mills in the Tandem % ExtractioBx Extran a)Priamar 15.7626 76.15 b)Secondary Mills (i) 3.113493 14.9 (ii 1.296985 5.7 (iii) 0.542093 2.25 (iv 0.224851 1 c) Overal 20.94003 100
Bx = Pol/Purity Pol % Cane % 13 f --- Fiber % 15 P --- Pol % % 16 Priamary Jui% 20 Priamary Jui% 80 (1) Total Losses in Indian Sugar industry = 1.6% to 2.6 % ,can be 1.6% to 1.7% by Effective Managem
Extraction = ———— — x 100 cane Extraction = —. sucrose or in mixed juice % cane x 100 sucrose or pol % cane the higher the fibre, the greater the loss of the sugar in the bagasse, since: Sugar loss in bagasse % cane = sugar % bagasse x bagasse % cane
Lost juice % fibre = brix of bagasse x 10,000 brix of primary juice X fibre % bagasse
Brix of bagasse = Pol % bagasse x 100 purity of last expressed juice
The extraction, or, to be more precise, the efficiency of the mill work, decreases as the capacity ratio (or, what amounts to the same thing, the specific fibre loading) increases. India it is estimated that the reduced extraction of a milling plant falls by 0.17 when i t is operated at 10% above normal For example, if a mill is capable of crushing 100 t.c.h., and if its reduced extraction is 95, this should drop to 94.83 if the rate is increased to 110 t.c.h.
ibre Index kg/m³
ance for 100 Tonnes Sugar Unit
DISCHARGE
y Effective Management& Technical skill.(2) Sugar Recovery = Sugar in Cane - Total Losses (3) Reducing Total lo
(3) Reducing Total loss by 1% means rise in Sugar recovery.
(4) 1% rise in Sugar recovery.means10 Kgm ad
ery.means10 Kgm additional sugar recovered per Ton of Sugar cane Crushed.
(5)(a) Sugar Loss
(5)(a) Sugar Loss in Bagasse ---- 0.50 to 0.60 % of Cane
(b)Sugar Loss in Waste Molasses ---- 0.90 to 1.00 % of Cane
(c)Sugar Loss in Filter Cake ----
ss in Filter Cake ---- 0.05 to 0.07 % of Cane
(
(d) Sugar Loss as Unkown ---- 0.050 to 0.070 % of Cane
Total Losses = 1.5% to 1.74 % of Cane, Optimum
% of Cane, Optimum Imbibition appears to 250% of fibre, At 14% fibre, it will be 114 X 250/100 = 35% out of wh
100 = 35% out of which final bagasse would get saturated with water at level of 20% & remainning 15% will go
mainning 15% will go in MJ with more sugar.
** Bagasse Pol = 52%to 55% of Pol % Last Expressed Juice
essed Juice
Feed Pump 82.00632 (a) Max. se 75.30632 (b) Pressur 0.5 © Line Los 1 (d) Presuur 2 (e) Pressur 2 (f) Static 0.2 in steam drum above BFP Discharge in meters =20 meter (g) Pressur 1
Drum pressKg/ Cm² (i) At NRV 66 (ii) Pressu 1 (iii) Super 67 (iv) Super 0.05 v) Super he 70.52632 (vi) Pressu 1.148 (vii) Press 0.2 (viii) Pres 1.032 (ix) Pressu 0.7 (x) Drum P 70.08 (xi) Pressu 0.7 (Xi) Pressu 74.60632 (Xi) Pressu 75.30632 Drum Desig 77.30632 FEED PUMP 892.2921 Add Margi 267.6876 Design Pu 1159.98 Boiler Capa 80 Feed Pump 90.36 Margin in 99.396 Two feed pu 49.698 50 M³/hr, 1160 m Head - 3 nos Pump HP = 350.6961 KW require 261.6193 0.00365
STEAM AND POWER CONSUMPTION FOR FIBERISER AND MILL TURB Column1 Column2 Column3 FIBERISER Column4 Column5 Column6 Date TCH FIBRE f% TFH Kg/tfh Kw/TFh Kw/TCH 21.1.2003 190.83 12.42 23.70109 662.01 47.17 5.86 18.12.04 196.66 13.18 25.91979 663.83 47.4 5.24 Avg. 15 d 182.97 12.68 23.2006 624.82 44.63 5.65 Jan07 Av. 160.52 12.08 19.39082 712.07 50.86 6.14 Average 182.745 12.59 23.05307 665.6825 47.515 5.7225 1) Date 21.01.2003 2) Cane c 4580 3) TCH 190.8333 4)Fibre % 12.42 5)Ton of fi 23.7015 6) MJ % ca 95.42 7)Steam G TPH (a) Boiler 22.775 (b) Boiler 23.22083 (c) Boiler 35.33333 TOTAL = 81.32917 42.6179 8) Steam (i) Fiberiz (ii) Mill Tu (iii)Mill Tu (iv) Mill T (v) 3 MW T (vi) PRD st (vii) Distil TOTAL Co
TPH
15.67 5.137917 7.9225 7.710833 37.89 3.14 3.720644 81.19189 TPH 9) Bagas 50.41817 10) Steam/ 2.2 11) Bagase 36.9678 12) Bagas 13.45036 (13) Power 58149 (14) KWh/t 12.69629 Vapour 21.12.03
% CANE 8.211354 2.692358 4.151528 4.040611 19.85502 1.645415 1.949682 42.54597 26.42 19.37177 7.048225 2422.875 6.653077
Juice Heating from 68° C to 76°C
8 lbs steam @ 100 to 125°
1 2 3 4 5 6 7 8 9 10 11 12 13
Cane Crush 4530 Cane Crush 188.75 MJ % Cane 176.6134 At 86° C L 547.6 At 95° C L 542 At 100° C L 538.9 At 120° C L 525.7 Loss due to 0.95 RJ1 Heating 3.584839 RJ2 Heating 9.26114 RJ3 Heating 2.483844 SJ heating 8.911741 CLJ heatin 3.446934
14 For A massc 0.2283 Quantiy 43.09163 In Brix 93.52 Syrup Brix 58 Specific Gr 1.5 Quantity of 24.55006 15 For B masse 0.0996 Quantity 18.7995 Brix of inc 96.1 Bx Of Outle 70 Quantity of 7.658693 16
For C massecute b 0.0548 Quantity 10.3435 Brix of inc 101.58 Bx Of Outle 70 Quantity of 4.823505 17 TOTAL Stea 37.03226
(a)
Evaporatio 8.891396
(b) © (d) (e)
Evaporation from IV th Body = æ + 3.972 Evaporation from III Body = æ + 3.97+9.260 Evaporation from II Body = æ+3.97+9.260 Evaporatio 24.22122 = 5 æ + 8 81.63888 18 Inlet juice 16.59 19 Total Evapo 126.0959 5 æ + 83.174 = 126.095 20 Evaporatio 8.891396 0.047107
I II III IV
Exhaust req Exhaust req Exhaust req Total Exha 21 Power Gene
(i) (ii) (iii) (iv) (v) (vi) (vii) (ix)
a b c
61.25348 32.45217 8.911741 4.721452 3.446934 1.82619 73.61215 38.99982 2251.7
22 Exhaust generated by Steam Turbines in TPH Fiberizer T 15.49893 Mill Turbin 5.081826 Mill Turbin 7.83601 Mill Turbin 7.626654 3000 KW T 35.21659 23 Total Exha 71.26001 37.75365 Make up St 2.352146 1.24617 Distillery 3.26 Steam at 8 3.775 24 TOTAL STEA 80.64715 42.72697 25 TOTAL STEAM GENERATED IN TPH Boiler No-1 24.3 Boiler No-2 24.58333 Boiler No-4 35.7625 26 TOTAL STE 84.64583 44.84547
ISER AND MILL TURBINES Manjara Column7 MT 1 Column8 Column9 MT-2 Column10 Column11 MT-3 Kg/TFH Kw/TFh Kw/TCH Kg/tfh Kw/TFh Kw/TCH Kg/tfh Kw/TFh 0 0 0 0 0 0 0 0 160.74 9.45 1.25 295.56 17.38 2.24 265.83 15.61 162.58 9.56 1.21 242.58 14.26 1.8 254.35 15.08 180.28 10.6 1.28 288.13 16.94 2.046 299.27 17.6 167.8667 9.87 1.246667 275.4233 16.19333 2.028667 273.15 16.09667
from 38° C to 68° C From 25° C to 38° C
Column12 Kw/TCH 0 2.05 1.9 2.12 2.023333
Calculations of boilers and Steam Consumptions (i) Bagas (ii) Mois (iii) Gros (iv) Net (v)Boiler (vi)Entha (vii) Ent (ix) Steam (x) HP heat (xi) Brix % (xi) Ash % (iii) Gro (iv) Net
2 50 2276 1801 69 825 105 2.181167 2.379455 2 1.75 2244.185 1796.32
BOILER CALCULATIONS (1) Steam Q 90 (2) Steam P 89 (3) Steam t 540 (4)Feed wat 105 (5)Boiler 3 (6)Flue gas 145 (7) Ambient 26.7 (8)Hot air 195 (9) Relativ 60 (10)Site Al sea level (11)Fuel as bagasse (12)Excees 35 (13)Steam Pressure drop of 2 Kg/cm² and Temperature drop 5⁰ C is considered. (14)Ultimat (weight %) (i) Carbon 24.08 (ii) Hydrog 3.02 (iii) Oxyg 21.55 (iv) Nitrog 0.15 (v) Moistur 50 (vi)Ash 1.2 (vii)Sulfur 0 (viii) Highe 2300
(15) Calculations for unit weight of Fuel (a)Oxygen n0.695016 (b)Nitroge 2.307453 (c)Therotic 3.002469 (d)Excess A 1.050864 (e)Air (dry 4.053333 At 60% RH, 0.052693 (f) total qu 4.106027 (g) Fuel ap 0.988 (h) Total F 5.094027 (i)Sensible 293.7145 12.7702 1727.74 0.769988 1330.339 165.8506 (j)Total mo 0.822681 (k) Dry flu 4.271345 (l) Moistur 0.769988
(i) Co2 fo 0.881328 (ii) H2O f 0.822681 (iii) N2 wi 0.807064 (iv) N2 wit 2.305896 (v) N2 wit 0.0015 Total N2 = 3.11446 (vi) O2 in 0.2438 (vii) Total 5.06227 (ix) ERROR % -0.623413 (x) Average 5.078148 FLUE GAS
% MWt. 17.3553 16.20042 15.89287 45.40821 0.029538 61.33062 4.800972
moles Mole % MOLE % Dr 44 0.394439 10.85152 14.42269 18 0.900023 24.7608 0
28 2.190379 60.26016 80.09144 32 0.15003 4.127529 5.485876 3.634872 2.734849
27.51129
** THERMAL EFFICIENCY CALCULATIONS IN DIRECT METHOD PTC - IV CODE (a) Temper 160 (b) Ambien 26.7 1) Dry gas 5.941256 2)Moist in 21.83753
3) Moist. 4) Total S 5) Radiati 6) Unburne 7) Manufac 8) TOTAL 9) Thermal 10) Fuel Fir 11) Fuel Bu
0.14048 27.91927 0.41 2.7 1.5 32.52927 67.47073 67.47073 69.81973
12) Heat required for Steam Generation (1) Steam Q 90 (2) Steam P 89 (3) Steam t 825 (4)Feed wat 105 (5)Boiler 3 (6) Enthal 825 (7) Saturate 303.74 (8) Saturate 662.66 (9) Heat re 165 (10)UNIT OF 664.1622 (13) STEAM 2.336518 Kg/hr TPH (14) Steam59774598 59774.6 (15) Fuel F 38518.86 38.51886 (16) Fuel 37222.94 37.22294 (17) Flue 189614.6 189.6146 (18) Air fo 152838.4 152.8384 *** GRATE AREA CALCULATIONS Heat Load 2305200 Grate Effective Area = Furnace Width x Furnace Depth Grate Effe 38.43197 Furnace Width is diamensions parellel to steam drum & decided on no. of SH Tubes Specific V 0.04773 Specific V 0.02861 Average Sp 0.03817 Total Stea 90000 Volume Flo 0.95425 Super hea 50.8 Super heat 4.05 Super heate 42.7 Steam Flow 0.001434
Recommend 17 No. of para 39.13098 Membrane W 102 Roof Tube 102 Clear Gap 25.8 So SH tubes 204 Super heate 204 Width of fu 7344 Furnace Dep5.233111 No. of Side 51.30501 Considering 48 Furnace Dep 4998 Corrected G 36.70531 Actual Grat 2413639
say 35
7.344 5233.111 say 49 4.998 ok
Furnace Height is based on flue gas residence time & Allowable Furnace volumetric heat absn. Flue gas te furnace water walls Selection of configuration is based on the capacity,pressure, temperature & Fuel charcteristick
6300
7400
1 -20.3 2 --13.31 3 -11.81 4 -9.2 5 5.235 6 -Rear Wall header level = Hr = 5235 mm 8 -4.998 9 -2.3 10 -- Furnace Width = Width = 7344 mm 11 -- Slag Screen Tube = mm 12 -- Ape 7.4 13 -- Space between Rear wall & Nose
*** Furnace Effective Projected Radiant Surface (EPRS) EPRS reqd. for caculate Flue Gas temperature leaving furnace Projected surface is Front wall,roof water wall,sides water wall,rear water wall heat absorbing surfaces. For membrane & tangent tube Construction radiant surface correction factor is one where as for space tube radiant tubes it is less than one. (1) Appera 54.3456 (2) Front 81.5184 (3) Roof W 16.8912 (4) Rear Wall is addition of st. ht + slope Straight H 6.075 Slope ={ (4 3.086941 (4.9 - 2.3) 7.279204 (13.310 2.25 9.529204 (5) Rear A 67.28529 (6) Side Area is sum of the two side water wall 2 x {(roof 108.8247 34.6495 7.325
2.698 (7)EPRS = 328.8652
* Furnace Exit Gas Temperature (FEGT) = [(Gas Sens.Heat x (mg )/EPRS]/(0.37 x Gas Sens.Heat x mg 576.5725 [(Gas Se 213.3318 793.8231 Total Heat Realesed absorbed by Furnace tubes by radiations& balance from gases through convectio Ht = Hr + Hc
ric heat absn. charcteristick
eat absorbing factor is one
Gas Sens.Heat x mg )/EPRS + 8.512]
es through convection &
Calculations of boilers and Steam Consumptions (i) Bagas 2 (ii) Mois 50 (iii) Gros 2276 (iv) Net 1801 (v)Boiler 69 (vi)Entha 807 (vii) Ent 105 (ix) Steam 2.237094 (x) HP heat 2.446168
BOILER CALCULATIONS (1) Steam Q 80 (2) Steam P 66 (3) Steam t 485 (4)Feed wat 105 (5)Boiler 3 (6)Flue gas 160 (7) Ambient 26.7 (8)Hot air 195 (9) Relativ 60 (10)Site Al sea level (11)Fuel as bagasse (12)Excees 35 (13)Steam Pressure drop of 2 Kg/cm² and Temperature drop 5⁰ C is considered. (14)Ultimat (weight %) (i) Carbon 24.08 (ii) Hydrog 3.02 (iii) Oxyg 21.55 (iv) Nitrog 0.15 (v) Moistur 50 (vi)Ash 1.2 (vii)Sulfur 0 (viii) Highe 2300
(15) Calculations for unit weight of Fuel (a)Oxygen n0.695016 (b)Nitroge 2.307453 (c)Therotic 3.002469 (d)Excess A 1.050864 (e)Air (dry 4.053333 At 60% RH, 0.052693 (f) total qu 4.106027 (g) Fuel ap 0.988 (h) Total F 5.094027 (i)Sensible 293.7145 12.7702 1727.74 0.769988 1330.339 165.8506 (j)Total mo 0.822681 (k) Dry flu 4.271345 (l) Moistur 0.769988
(i) Co2 fo 0.881328 (ii) H2O f 0.822681 (iii) N2 wi 0.807064 (iv) N2 wit 2.305896 (v) N2 wit 0.0015 Total N2 = 3.11446 (vi) O2 in 0.2438 (vii) Total 5.06227 (ix) ERROR % -0.623413 (x) Average 5.078148 FLUE GAS
% MWt. 17.3553 16.20042 15.89287 45.40821 0.029538 61.33062 4.800972
moles Mole % MOLE % Dr 44 0.394439 10.85152 14.42269 18 0.900023 24.7608 0
28 2.190379 60.26016 80.09144 32 0.15003 4.127529 5.485876 3.634872 2.734849
27.51129
** THERMAL EFFICIENCY CALCULATIONS IN DIRECT METHOD PTC - IV CODE (a) Temper 160 (b) Ambien 26.7 1) Dry gas 5.941256 2)Moist in 21.83753 3) Moist. 0.14048
4) Total S 5) Radiati 6) Unburne 7) Manufac 8) TOTAL 9) Thermal 10) Fuel Fir 11) Fuel Bu
27.91927 0.41 2.7 1.5 32.52927 67.47073 67.47073 69.81973
12) Heat required for Steam Generation (1) Steam Q 80 (2) Steam P 66 (3) Steam t 485 (4)Feed wat 105 (5)Boiler 3 (6) Enthal 807 (7) Saturate 303.74 (8) Saturate 662.66 (9) Heat re 105 (10)UNIT OF 707.9622 (13) STEAM 2.191963 Kg/hr TPH (14) Steam56636976 56636.98 (15) Fuel F 36496.97 36.49697 (16) Fuel 35269.07 35.26907 (17) Flue 179661.6 179.6616 (18) Air fo 144815.7 144.8157 *** GRATE AREA CALCULATIONS Heat Load 2305200 Grate Effective Area = Furnace Width x Furnace Depth Grate Effe 36.41464 Furnace Width is diamensions parellel to steam drum & decided on no. of SH Tubes Specific V 0.04773 Specific V 0.02861 Average Sp 0.03817 Total Stea 80000 Volume Flo 0.848222 Super hea 50.8 Super heat 4.05 Super heate 42.7 Steam Flow 0.001434 Recommend 17
No. of para 34.7831 say 35 Membrane W 102 Roof Tube 102 Clear Gap 25.8 So SH tubes 204 Super heate 204 Width of fu 7344 7.344 Furnace Dep 4.95842 4958.42 No. of Side 48.61196 say 49 Considering 48 Furnace Dep 4998 4.998 Corrected G 36.70531 Actual Grat 2286945 ok Furnace Height is based on flue gas residence time & Allowable Furnace volumetric heat absn. Flue gas te furnace water walls Selection of configuration is based on the capacity,pressure, temperature & Fuel charcteristick
6300
7400
1 -20.3 2 --13.31 3 -11.81 4 -9.2 5 5.235 6 -Rear Wall header level = Hr = 5235 mm 8 -4.998 9 -2.3 10 -- Furnace Width = Width = 7344 mm 11 -- Slag Screen Tube = mm 12 -- Ape 7.4 13 -- Space between Rear wall & Nose
*** Furnace Effective Projected Radiant Surface (EPRS) EPRS reqd. for caculate Flue Gas temperature leaving furnace Projected surface is Front wall,roof water wall,sides water wall,rear water wall heat absorbing surfaces. For membrane & tangent tube Construction radiant surface correction factor is one where as for space tube radiant tubes it is less than one. (1) Appera 54.3456 (2) Front 81.5184 (3) Roof W 16.8912 (4) Rear Wall is addition of st. ht + slope Straight H 6.075 Slope ={ (4 3.086941 (4.9 - 2.3) 7.279204 (13.310 2.25 9.529204 (5) Rear A 67.28529 (6) Side Area is sum of the two side water wall 2 x {(roof 108.8247 34.6495 7.325 2.698
(7)EPRS = 328.8652
* Furnace Exit Gas Temperature (FEGT) = [(Gas Sens.Heat x (mg )/EPRS]/(0.37 x Gas Sens.Heat x mg 546.3077 [(Gas Se 202.1339 793.8231
ric heat absn. charcteristick
eat absorbing factor is one
Gas Sens.Heat x mg )/EPRS + 8.512]
5 MILL 15 ROLLER TANDEM, Compound Imbibitio Material Balance in milling tandem Cane = Juice + Fibre Cane crushi 1 Added imbib 0.3 Cane crushing -- C = J + f Fibre in can 0.14 Fibre in Bagasse P REIN Fibre in Ba Fibre Index kg/m³ Fibre in Bag 0.34 32 560 30 525 34 595 Fibre in Bag 0.39 40 700 39 682.5 39 682.5 Fibre in Bag 0.45 45 787.5 43 752.5 45 787.5 Fibre in Bag 0.5 48 840 46 805 50 875 Fibre in Bag 0 50 875 48 840 Brix from p 20 50 875 Bagasee from 0.411765 Bagasee from 0.358974 Bagasee from 0.311111 Bagasee from 0.28 Bagasee from 0 Mill input = Mill Output C = b1 + j1 Priamary J 0.588235 Juice in Ca 0.86 Material Balance for 100 Tonnes Priamary E 0.683995 For Mill No 0.331111 Juice comi 0.378974 Juice comi 0.431765 Juice comi 0 MJ % Cane 102 BRIX BALANCE IN 5 MILL TANDEM 1) 2) 3) 4) 5) 6) 7) 8) 9)
Cane cr Fibre % Imbibit Brix % Fibre in Fibre in Fibre in Fibre in Fibre in
100 14 30 21 0.34 0.39 0.45 0.5 0
(i)Calculations of Ideal Brix For compoound imbibition the ideal brix for individual mill Brix in n th Mill juice = (1 + s + s² + s³ + - - -/1 + s + s² + s³+ sⁿ) S = W/ f 2.142857 MILL IDEAL
FEED
S² 4.591837 S³ 9.83965 S⁴ 21.08496 a) For mill no -2 ; n= 4 Br 0.440113 Ideal Bri 9.242369 b) For Mill no - 3, n= 3 Brix % Jui 0.178832 Ideal Brix 3.755474 c)For Mill no - 4 n =2 Brix % Jui 0.056901 Ideal Brix 1.194924 d) For Mill no- 5 n = 1 Brix % Jui 0 Ideal Brix 0
m= 4
I II III IV V
9.55 4.2 1.71
m=4
m=4
m=4
Brix Balance In Milling Tandem (a) For Mill no - 1; Brix entering in I st mill = Brix leaving from Ist mill juice & Bagasse Brix in Cane entering = Brix in PJ + Brix in Bagasse Brix in Bagasse = Brix in Cane - Brix in PJ Brix % ab 20.244 Brix in Ca 17.40984 Brix in PJ 12.35294 Q= 58.82353 Bx leaving from mill no -1 = Bx in cane entering mill 1- Bx.in PJ leaving from mill 1 5.056899 fibre in bag 34 Qty of mill 41.17647 Bx % Bagas12.28104 (b) For Mill No -2 Bx in J2 = 0 Bx in J3 = 1.621481 Bx in J4 = 0.452845 Bx in J5 = 0 Bx entering in 2nd. Mill = Bx leaving from 2nd.mill in juice & bagasse Bx in b1 + 6.67838 Bx % 2nd 18.60406 © For Mill no-3 Bx entering in 3rd. Mill = Bx leaving from 3rd.mill in juice & bagasse Bx in b2 + 5.509744 Bx % 3rd 17.70989
(D) For Mill No- 4 Bx entering in 4th . Mill = Bx leaving from 4 th.mill in juice & bagasse Bx in b3 + 5.056899 Bx % 4 th 18.06035 (E)For Mill No - 5 Bx entering in 5th . Mill = Bx leaving from 5 th.mill in juice & bagasse Bx in b4 + 5.056899 Bx % 4 th #DIV/0! (3) Mill Extaction (a) 1st Mil 70.95379 (b) 2nd Mil -9.313591 (c) 3rd Mil 6.712502 (d) 4th Mil 2.601089 (e) 5 th Mi 0 (4) Mill Ex 70.95379 (5) Contribution in Mill Extraction by Individual Mills in the Tandem % ExtractioBx Extran a)Priamar 70.95379 76.15 b)Secondary Mills (i) -9.313591 14.9 (ii 6.712502 5.7 (iii) 2.601089 2.25 (iv 0 1 c) Overal 70.95379 100
Bx = Pol/Purity Pol % Cane % 13 f --- Fiber % 15 P --- Pol % % 16 Priamary Jui% 20 Priamary Jui% 80 (1) Total Losses in Indian Sugar industry = 1.6% to 2.6 % ,can be 1.6% to 1.7% by Effective Managem
Extraction = ———— — x 100 cane Extraction = —. sucrose or in mixed juice % cane x 100 sucrose or pol % cane the higher the fibre, the greater the loss of the sugar in the bagasse, since: Sugar loss in bagasse % cane = sugar % bagasse x bagasse % cane
Lost juice % fibre = brix of bagasse x 10,000 brix of primary juice X fibre % bagasse
Brix of bagasse = Pol % bagasse x 100 purity of last expressed juice
The extraction, or, to be more precise, the efficiency of the mill work, decreases as the capacity ratio (or, what amounts to the same thing, the specific fibre loading) increases. India it is estimated that the reduced extraction of a milling plant falls by 0.17 when i t is operated at 10% above normal For example, if a mill is capable of crushing 100 t.c.h., and if its reduced extraction is 95, this should drop to 94.83 if the rate is increased to 110 t.c.h.
ibre Index kg/m³
ance for 100 Tonnes Sugar Unit
DISCHARGE
y Effective Management& Technical skill.(2) Sugar Recovery = Sugar in Cane - Total Losses (3) Reducing Total lo
(3) Reducing Total loss by 1% means rise in Sugar recovery.
(4) 1% rise in Sugar recovery.means10 Kgm ad
ery.means10 Kgm additional sugar recovered per Ton of Sugar cane Crushed.
(5)(a) Sugar Loss
(5)(a) Sugar Loss in Bagasse ---- 0.50 to 0.60 % of Cane
(b)Sugar Loss in Waste Molasses ---- 0.90 to 1.00 % of Cane
(c)Sugar Loss in Filter Cake ----
ss in Filter Cake ---- 0.05 to 0.07 % of Cane
(
(d) Sugar Loss as Unkown ---- 0.050 to 0.070 % of Cane
Total Losses = 1.5% to 1.74 % of Cane, Optimum
% of Cane, Optimum Imbibition appears to 250% of fibre, At 14% fibre, it will be 114 X 250/100 = 35% out of wh
100 = 35% out of which final bagasse would get saturated with water at level of 20% & remainning 15% will go
mainning 15% will go in MJ with more sugar.
** Bagasse Pol = 52%to 55% of Pol % Last Expressed Juice
essed Juice
5 MILL 15 ROLLER TANDEM, Compound Imbibition Material Balance in milling tandem Cane = Juice + Fibre MILL Fibre in Ba Fibre Index kg/m³ Material Balance for 100 Tonnes Cane crushi 1 1 34 595 Added imbib 0.3 2 39 682.5 Cane crushing -- C = J 3 45 787.5 Fibre in can 0.14 4 50 875 Fibre in Bag 0.34 1 32 560 Fibre in Bag 0.39 2 40 700 Fibre in Bag 0.45 3 45 787.5 Fibre in Bag 0.5 4 48 840 Fibre in Bag 0 5 50 875 Brix from p 20 1 30 525 Bagasee from 0.411765 2 39 682.5 Bagasee from 0.358974 3 43 752.5 Bagasee from 0.311111 4 46 805 Bagasee from 0.28 5 48 840 Bagasee from 0 6 50 875 Mill input = Mill Output C = b1 + j1 Priamary J 0.588235 Juice in Ca 0.86 Priamary E 0.683995 For Mill No 0.331111 Juice comi 0.378974 Juice comi 0.431765 Juice comi 0.588235 MJ % Cane 102 BRIX BALANCE IN 5 MILL TANDEM 1) 2) 3) 4) 5) 6) 7) 8) 9)
Cane cr Fibre % Imbibit Brix % Fibre in Fibre in Fibre in Fibre in Fibre in
100 14 30 21 0.34 0.39 0.45 0.5 0
(i)Calculations of Ideal Brix For compoound imbibition the ideal brix for individual mill Brix in n th Mill juice = (1 + s + s² + s³ + - - -/1 + s + s² + s³+ sⁿ) S = W/ f 2.142857
S² 4.591837 S³ 9.83965 S⁴ 21.08496 a) For mill no -2 ; n= 4 Br 0.440113 Ideal Bri 9.242369 b) For Mill no - 3, n= 3 Brix % Jui 0.178832 Ideal Brix 3.755474 c)For Mill no - 4 n =2 Brix % Jui 0.056901 Ideal Brix 1.194924 d) For Mill no- 5 n = 1 Brix % Jui 0 Ideal Brix 0
m= 4
m=4
m=4
Mill Performance data Pol % Cane 13.48 Fibre % ca 13.11 Brix % Can 15.6 Brix in PJ 10.4 Added Water 200 Particulars MILL 1 Discharge Juice Analysis Brix % 17.65 Pol % 15.25 Purity % 0.864023
m=4
Bagasse Analysis Pol Reading 8.7 Moisture % 60 Brix Balance In Milling Tandem Moisture F 1.128 (a) For Mill no - 1; Brix entering in I st mill = Brix leaving from Ist Pol % Baga 9.8136 Brix in Cane entering = Brix in PJ + Brix in Bagasse Fibre % Ba 28.64196 Brix in Bagasse = Brix in Cane - Brix in PJ Bagasse % 0.45772 Brix % ab 20.244 Pol in Baga 4.491881 Brix in Ca 17.40984 Individual 0.666774 Brix in PJ 12.35294 Unit Pol Ex 0.666774 Q= 58.82353 Cumulative 0.666774 Bx leaving from mill no -1 = Bx in cane entering mill 1- Bx.in PJ lea Brix % Bag 11.35804 5.056899 Individual 0.666667 fibre in bag 34 Unit Brix E 0.666744 Qty of mill 41.17647 Cumulative 0.666744 Bx % Bagas12.28104 Brix in Ba 5.1988 (b) For Mill No -2 Bx in J2 = 5.436688 Bx in J3 = 1.621481 Bx in J4 = 0.452845 Bx in J5 = 0 Bx entering in 2nd. Mill = Bx leaving from 2nd.mill in juice & bagasse Bx in b1 + 1.241693 Bx % 2nd 3.459001 © For Mill no-3 Bx entering in 3rd. Mill = Bx leaving from 3rd.mill in juice & bagasse Bx in b2 + 0.073057 Bx % 3rd 0.234825
(D) For Mill No- 4 Bx entering in 4th . Mill = Bx leaving from 4 th.mill in juice & bagasse Bx in b3 + -0.379789 Bx % 4 th -1.356389 (E)For Mill No - 5 Bx entering in 5th . Mill = Bx leaving from 5 th.mill in juice & bagasse Bx in b4 + 0 Bx % 4 th #DIV/0! (3) Mill Extaction (a) 1st Mil 70.95379 (b) 2nd Mil 21.91408 (c) 3rd Mil 6.712502 (d) 4th Mil 2.601089 (e) 5 th Mi 0 102.1815 (4) Mill Ex 100 (5) Contribution in Mill Extraction by Individual Mills in the Tandem % Extraction a)Priamar 70.95379 b)Secondary Mills (i) 21.91408 (ii 6.712502 (iii) 2.601089 (iv 102.1815 c) Overal 100
Bx Extran 76.15 14.9 5.7 2.25 1 100
Bx = Pol/Purity Pol % Cane % 13 f --- Fiber % 15 P --- Pol % % 16 Priamary Jui% 20 Priamary Jui% 80 (1) Total Losses in Indian Sugar industry = 1.6% to 2.6 % ,can be 1.6% to 1.7% by Effective Managem
Extraction = ———— — x 100 cane
Extraction = —. sucrose or in mixed juice % cane x 100 sucrose or pol % cane the higher the fibre, the greater the loss of the sugar in the bagasse, since: Sugar loss in bagasse % cane = sugar % bagasse x bagasse % cane
Lost juice % fibre = brix of bagasse x 10,000 brix of primary juice X fibre % bagasse
Brix of bagasse = Pol % bagasse x 100 purity of last expressed juice
The extraction, or, to be more precise, the efficiency of the mill work, decreases as the capacity ratio (or, what amounts to the same thing, the specific fibre loading) increases. India it is estimated that the reduced extraction of a milling plant falls by 0.17 when i t is operated at 10% above normal For example, if a mill is capable of crushing 100 t.c.h., and if its reduced extraction is 95, this should drop to 94.83 if the rate is increased to 110 t.c.h.
MILL I II III IV V
IDEAL 17.41 8.59 3.83 2.51
MILL I II III IV
Actual 18.69 10.38 6.43 3.93
ng tandem ance for 100 Tonnes Sugar Unit
MILL 2 MILL 3 MILL 4 ice Analysis 10.05 7.25 3.52 8.22 5.79 2.5 0.81791 0.798621 0.710227
5.3 53 1.118 5.9254 39.75544 0.329766 1.953997 0.564994 0.18827 0.855045 7.244558 0.540469 0.180115 0.846858 2.38901
3.4 50 1.112 3.7808 45.26584 0.289622 1.095004 0.439608 0.063723 0.918768 4.734162 0.426072 0.065249 0.912108 1.371119
2 48 1.108 2.216 0.629545 48.87987 0.268209 0.59435 0.457217 0.037141 0.955909 3.120128 0.389663 0.034248 0.946356 0.836845
y Effective Management& Technical skill
(2) Sugar Recovery = Sugar in Cane - Total Losses
FEED DISCHARGE 19.16 17.65 8.21 10.05 3.83 7.25 2.55 3.52
IDEAL 18.69 8.72 2.74 2.49
Losses
(3) Reducing
(3) Reducing Total loss by 1% means rise in Sugar recover (4) 1% rise in Sugar recovery.means10 Kgm
overy.means10 Kgm additional sugar recovered per Ton of Sugar cane Crushed.
(5)(a) Sugar Lo
(5)(a) Sugar Loss in Bagasse ---- 0.50 to 0.60 % of Cane
(b)Sugar Loss in Waste Molasses ---- 0.90 to 1.00 % of Cane
ne
(c)Sugar Loss in Filter Cake --
Loss in Filter Cake ---- 0.05 to 0.07 % of Cane
(d) Sugar Loss as Unkown ---- 0.050 to 0.070 % of Cane
Total Losses = 1.5% to 1.74 % of Cane, Optimu
4 % of Cane, Optimum Imbibition appears to 250% of fibre, At 14% fibre, it will be 114 X 250/100 = 35% out of
50/100 = 35% out of which final bagasse would get saturated with water at level of 20% & remainning 15% will
remainning 15% will go in MJ with more sugar.
** Bagasse Pol = 52%to 55% of Pol % Last Expressed Juice
st Expressed Juice
Mill setting by Material balance Method Cane Parameters TCH 400 Imbibtion % Cane 0.3 Fibre % Cane 0.14 Imbibtion % Fibre 2.142857 Bagasse % Cane Mill1 0.4135 Cane Quality 1 Pol % cane 0.135 Last Mll Bagasse Purity in Mix Juice 0.83 Moisture % 0.49 Drop in PJ to MJ 0.018 Pol% 0.02 Priamary Juice Brix 0.19 Priamary Juice % cane 0.5865 Priamary Extraction % 0.7 Brix % Bagasse 0.026738 Purity of Priamary Juice 0.848 Purity of last Mill Juice 0.748 Ind. Mill Extraction 0.385 Fibre % Bagasse 0.483262 Total Mill Extraction 95.71 Bagasse % cane 0.289698 MJ % Cane 1.0103021 Sec. Juice % Cane 0.423802 Pol in MJ Sugar in Extracted Juice % Cane Purity of Mill 2 Juice j2 0.823 In PJ % Cane 0.0945 Purity of Mill 3 Juice j3 0.8146667 In mill 2 % Cane 0.015593 Purity of Mill 4 Juice j4 0.798 In Mill 3 % Cane 0.009589 Purity of Mill 5 Juice j5 0.748 In Mill 4 % Cane 0.005897 In Mill 5 % Cane 0.003627 Bagasse % cane Pol % Bagasse Mill 1 bagasse% cane 0.4135 Mill 1 0.097944 Mill 2 bagasse% cane 0.373587 Mill 2 0.066671 Mill 3 bagasse% cane 0.3407009 Mill 3 0.044961 Mill 4 bagasse% cane 0.3131362 Mill 4 0.030085 Mill 5bagasse% cane 0.2896979 Mill 5 0.019999 Moisture Moisture Moisture Moisture Moisture Moisture
% % % % % %
Bagasse Bagasse Bagasse Bagasse Bagasse Bagasse
M1 M2 M3 M4 M5
0.5459264 0.5442446 0.5737643 0.5152099 0.4900012
Approx. Discharge work Opening mm Mill 1 57.245652 Mill 2 46.379898 Mill 3 41.184088 Mill 4 36.544669 Mill 5 31.802334
Approximate Fibre Index kg/m³ ø1 609.4317 ø2 693.2789 ø3 780.7434 ø4 871.8251 ø5 966.5241 Apperent Opening Volume Mill 1 Mill 2 Mill 3 Mill 4 Mill 5
1740.002 1741.607 1741.607 1757.659 1821.866
Fibre Fibre Fibre Fibre Fibre
% % % % %
Bagasse Bagasse Bagasse Bagasse Bagasse
Mill Mill Mill Mill Mill
0.018 0.483262 0.338573 0.374745 0.410918 0.44709
Sugar in Bagasse % Cane Mill 1 bagasse% cane 0.0405 Mill 2 bagasse% cane 0.024908 Mill 3 bagasse% cane 0.015318 Mill 4 bagasse% cane 0.009421 Mill 5bagasse% cane 0.005794 Brix % Bagasse Mill 1 0.1155 Mill 2 0.08101 Mill 3 0.055189 Mill 4 0.0377 Mill 5 0.026737 Fibre Loading kg/m² Mill 1 Mill 2 Mill 3 Mill 4 Mill 5 Re absorption Factor Mill 1 Mill 2 Mill 3 Mill 4 Mill 5
34.88731 32.15421 32.15421 31.86056 30.73772
Mill No 1 2 Roller PCD 1.084 1.085 Roller Leng 2.13 2.13 RPM 4 4 Speed m/m 13.61504 13.6276 No void De 1.19 1.189 Fibre % Ba 0.338573 0.374745 Fibre Inde 609.4317 693.2789 Discharge 57.24565 46.3799 Feed / Disc 1.88 1.89 Fwo 107.6218 87.65801 Tro 188.3382 153.4015 Ind. Mill Ex 0.7 0.385 Ind. Mill Extraction Unit
3 4 1.085 1.095 2.13 2.13 4 4 13.6276 13.7532 1.193 1.201 0.410918 0.44709 780.7434 871.8251 41.18409 36.54467 1.895 1.9 78.04385 69.43487 136.5767 121.511 0.385 0.385
Mill no 1 Mass T/hr % Brix Total Cane 400 0.159198 Juice Extra 234.6 0.19 Bagasse 165.4 0.1155 Fibre 56 Juice in Ba 109.4 0.174637
Brix T/hr Den. t/m³ 63.67925 1.12 44.574 1.0782 19.10377 1.191 1.52 19.10525 1.0716
Mill no 2 Total Cane in Juice Extracted Bagasse Fibre Juice in Bagasse Mill no 3 Total Cane in Juice Extracted Bagasse Fibre Juice in Bagasse Mill no 4 Total Cane in Juice Extracted Bagasse Fibre Juice in Bagasse
Mill no 5 Total Cane in Juice Extracted Bagasse 115.8792 0.026737 3.098232 Fibre 56 Juice in Bagasse
5 1.135 2.13 4 14.2556 1.213 0.483262 966.5241 31.80233 1.911 60.77426 106.355 0.385
Vol. m³/hr 357.1429 217.5849 138.8749 36.84211 102.0903