UNIVERSIDAD NACIONAL DANIEL ALCIDES CARRIÓN
FACULTAD DE INGENIERÍA ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERÍA AMBIENTAL – OXAPAMPA “AÑO DEL BUEN SERVICIO AL CIUDADANO”
TEMA: TABLAS DE FRECUENCIA CURSO: ESTADÍSTICA Y PROBABILIDADES PROBABILIDADES DOCENTE: Econ. GÓMEZ MIGUEL Jesús Marino INTEGRANTES: CARHUANCHO LOZANO Luis Antonio CONDORI DELZO Luis Fernando WEISSY DE SOUZA Paula Angélica
2017 - OXAPAMPA
1.
INTRODUCCIÓN INTRODU CCIÓN ................................... .................. .................................. ................................... ................................... ................................... .................................... .................. 3
2.
ESTADÍSTICA ESTADÍST ICA .................................. ................. .................................. ................................... ................................... ................................... .................................... ........................ ...... 4 2.1.
La Estadística Estadíst ica como ciencia ................................... ................. ................................... ................................... .................................... ........................... ......... 4
2.2.
Para qué sirve la Estadística Estadíst ica .................................. ................ ................................... ................................... .................................... ........................... ......... 5
a)
Análisis de muestras.muestr as.- .................................. ................. ................................... ................................... ................................... ................................... ................... 5
b)
Descripción Descri pción de datos.- .................................. ................. ................................... ................................... ................................... ................................... ................... 5
c)
Contraste Contra ste de hipótesis.hipótesis .- .................................. ................. ................................... ................................... ................................... ................................. ............... 5
d)
Medición de relaciones entre variables estadísticas.- .................. ........................... .................. .................. .................. ........... .. 5
e)
Predicción.Predicció n.-.................................. ................. .................................. ................................... ................................... ................................... .................................... .................. 5
3.
ESTADÍSTICA ESTADÍST ICA DESCRIPTIVA DESCRIPTI VA ................................... .................. ................................... ................................... ................................... ................................... ................... 6 3.1.
Fundamentos Fundament os de la estadística estadísti ca descriptiva descripti va .................................. ................. ................................... ................................... ..................... .... 6
3.2.
Distribución Distr ibución de frecuencias frecuencia s ................................... ................. ................................... ................................... .................................... ........................... ......... 7 Para variables variabl es cuantitativas: cuantita tivas: .................................. ................. .................................. ................................... .................................... .............................. ............ 7
a)
Valor de la variable o intervalo de clase.- ................................. ................ ................................... ................................... ........................ ....... 7
b)
Frecuencia Frecuenci a absoluta .................................. ................. ................................... ................................... ................................... ................................... ..................... .... 7
c)
Frecuencia relativa ................................. ................ ................................... ................................... ................................... ................................... ........................ ....... 8
d)
Frecuencia Frecuenci a relativa porcentual.porcentua l.- ................................. ............... ................................... .................................. ................................... ...................... .... 8
e)
Frecuencia Frecuenci a absoluta acumulada .................................. ................ ................................... ................................... .................................... ..................... ... 8
f)
Frecuencia Frecuenci a relativa acumulada.acumulada. - ................................. ............... ................................... .................................. ................................... ...................... .... 8
g)
Frecuencia Frecuenci a relativa acumulada porcentual.porcentu al.- ................................... .................. ................................... ................................... ................... 9
3.3.
Distribución Distr ibución de frecuencias frecuencia s en puntos aislados ................................. ................ ................................... ................................. ............... 9
3.4.
Distribución de frecuencias frecuencias en intervalos intervalos de clase .................. ........................... .................. .................. .................. .............. ..... 12 Distribución de Frecuencias Frecuencias para Variables Cualitativas.............. Cualitativas....................... ................... ................... .................. ............. .... 16
3.5.
Representación Represe ntación Tabular y Grafica .................................. ................ ................................... .................................. .................................. ................. 17
3.5.1. Cuadros estadísticos: ....................................................................................................... 17 3.5.2. Representación Gráfica: .................................................................................................. 18 4.
EJEMPLOS EJEMPLO S ................................... .................. .................................. ................................... ................................... ................................... .................................... ......................... ....... 26
5.
CONCLUSIÓNES CONCLUSI ÓNES ................................... .................. .................................. ................................... ................................... ................................... .................................. ................ 29
6.
Bibliografía Bibliog rafía ................................. ................ .................................. ................................... ................................... ................................... .................................... ......................... ....... 30
2
1.
INTRODUCCIÓN INTRODU CCIÓN ................................... .................. .................................. ................................... ................................... ................................... .................................... .................. 3
2.
ESTADÍSTICA ESTADÍST ICA .................................. ................. .................................. ................................... ................................... ................................... .................................... ........................ ...... 4 2.1.
La Estadística Estadíst ica como ciencia ................................... ................. ................................... ................................... .................................... ........................... ......... 4
2.2.
Para qué sirve la Estadística Estadíst ica .................................. ................ ................................... ................................... .................................... ........................... ......... 5
a)
Análisis de muestras.muestr as.- .................................. ................. ................................... ................................... ................................... ................................... ................... 5
b)
Descripción Descri pción de datos.- .................................. ................. ................................... ................................... ................................... ................................... ................... 5
c)
Contraste Contra ste de hipótesis.hipótesis .- .................................. ................. ................................... ................................... ................................... ................................. ............... 5
d)
Medición de relaciones entre variables estadísticas.- .................. ........................... .................. .................. .................. ........... .. 5
e)
Predicción.Predicció n.-.................................. ................. .................................. ................................... ................................... ................................... .................................... .................. 5
3.
ESTADÍSTICA ESTADÍST ICA DESCRIPTIVA DESCRIPTI VA ................................... .................. ................................... ................................... ................................... ................................... ................... 6 3.1.
Fundamentos Fundament os de la estadística estadísti ca descriptiva descripti va .................................. ................. ................................... ................................... ..................... .... 6
3.2.
Distribución Distr ibución de frecuencias frecuencia s ................................... ................. ................................... ................................... .................................... ........................... ......... 7 Para variables variabl es cuantitativas: cuantita tivas: .................................. ................. .................................. ................................... .................................... .............................. ............ 7
a)
Valor de la variable o intervalo de clase.- ................................. ................ ................................... ................................... ........................ ....... 7
b)
Frecuencia Frecuenci a absoluta .................................. ................. ................................... ................................... ................................... ................................... ..................... .... 7
c)
Frecuencia relativa ................................. ................ ................................... ................................... ................................... ................................... ........................ ....... 8
d)
Frecuencia Frecuenci a relativa porcentual.porcentua l.- ................................. ............... ................................... .................................. ................................... ...................... .... 8
e)
Frecuencia Frecuenci a absoluta acumulada .................................. ................ ................................... ................................... .................................... ..................... ... 8
f)
Frecuencia Frecuenci a relativa acumulada.acumulada. - ................................. ............... ................................... .................................. ................................... ...................... .... 8
g)
Frecuencia Frecuenci a relativa acumulada porcentual.porcentu al.- ................................... .................. ................................... ................................... ................... 9
3.3.
Distribución Distr ibución de frecuencias frecuencia s en puntos aislados ................................. ................ ................................... ................................. ............... 9
3.4.
Distribución de frecuencias frecuencias en intervalos intervalos de clase .................. ........................... .................. .................. .................. .............. ..... 12 Distribución de Frecuencias Frecuencias para Variables Cualitativas.............. Cualitativas....................... ................... ................... .................. ............. .... 16
3.5.
Representación Represe ntación Tabular y Grafica .................................. ................ ................................... .................................. .................................. ................. 17
3.5.1. Cuadros estadísticos: ....................................................................................................... 17 3.5.2. Representación Gráfica: .................................................................................................. 18 4.
EJEMPLOS EJEMPLO S ................................... .................. .................................. ................................... ................................... ................................... .................................... ......................... ....... 26
5.
CONCLUSIÓNES CONCLUSI ÓNES ................................... .................. .................................. ................................... ................................... ................................... .................................. ................ 29
6.
Bibliografía Bibliog rafía ................................. ................ .................................. ................................... ................................... ................................... .................................... ......................... ....... 30
2
CAPÍTULO 1 1. INTRODUCCIÓN En el presente informe vamos a tratar sobre el tema TABLAS DE FRECUENCIA lo que constituye básico y necesario para emprender una profesión. El tema mencionado es muy empleada por las carreras universitarias en general y ahora estamos enfocándolo más a la Ingeniería Ambiental , asimismo, el trabajo está desarrollada por partes; lo más didáctico posible. Cualquier investigación que se emprenda puede conducir a la acumulación de valores cuantitativos y cualitativos correspondientes a las diversas medidas efectuadas. Esta posibilidad, convierte a la estadística en una herramienta vital para el tratamiento de volúmenes de datos mediante tablas resúmenes conocidas como
Tablas Tablas de Fr ecuenci a.
Cabe preguntarnos, cuánto se utiliza la organización de datos sobre múltiples casos que ocurren y que están presentes en nuestra vida diaria; es bastante. Se espera que este trabajo alimente los conocimientos y sea de agrado para el lector.
“No confíes en lo que la estadística te dice hasta haber
Considerado con cuidado qué es lo que no dice.” William W. Watt
3
2. ESTADÍSTICA “La Ciencia es más una forma de pensar que una rama del conocimiento.”
Carl Sagan (1934-1996)
2.1.
La Estadística como ciencia La Estadística es la ciencia que se encarga de recoger, organizar e interpretar los
datos. Es la ciencia de los datos. En la vida diaria somos bombardeados continuamente por datos estadísticos: encuestas electorales, economía, deportes, datos meteorológicos, calidad de los productos, audiencias de TV. Necesitamos una formación básica en Estadística para evaluar toda esta información. Pero la utilidad de la Estadística va mucho más allá de estos ejemplos. La Estadística es fundamental para muchas ramas de la ciencia desde la medicina a la economía. Pero sobre todo, y en lo que a nosotros importa, es esencial para interpretar los datos que se obtienen de la investigación científica . Es necesario leer e interpretar datos, producirlos, extraer conclusiones, en resumen saber el significado de los datos. Es por lo
tanto una herramienta de trabajo profesional. Se recomienda leer la Introducción de Estadística: modelos y métodos de Daniel Peña, para conocer el desarrollo histórico de la Estadística. La Estadística (del latín, Status o ciencia del estado) se ocupaba sobre todo de la descripción de los datos fundamentalmente sociológicos: datos demográficos y económicos (censos de población, producciones agrícolas, riquezas, etc.), principalmente por razones fiscales. En el siglo XVII
el cálculo de probabilidades se consolida como disciplina independiente aplicándose sobre todo a los juegos de azar. Posteriormente (s. XVIII) su uso se extiende a problemas físicos (principalmente de Astronomía) y actuariales (seguros marítimos). Posteriormente se hace imprescindible en la investigación científica y es ´esta la que la hace avanzar. Finalmente,
en el siglo XIX, nace la Estadística como ciencia que une ambas disciplinas. El objetivo fundamental de la estadística es obtener conclusiones de la investigación empírica usando modelos matemáticos. A partir de los datos reales se construye un modelo que se confronta con estos datos por medio de la Estadística. Esta proporciona los méto dos de evaluación de las discrepancias entre ambos. Por eso es necesaria para toda ciencia que requiere análisis de datos y diseño de experimentos.
4
2.2.
Para qué sirve la Estadística
Ya hemos visto que la estadística se encuentra ligada a nuestras actividades cotidianas. Sirve tanto para pronosticar el resultado de unas elecciones, como para determinar el número de ballenas que viven en nuestros océanos, para descubrir leyes fundamentales de la Física o para estudiar cómo ganar a la ruleta. La estadística resuelve multitud de problemas que se plantean en ciencia: a) Análisis de muestras.- Se elige una muestra de una población para hacer inferencias respecto a esa población a partir de lo observado en la muestra (sondeos de opinión, control de calidad, etc.). b) Descripción de datos.- Procedimientos para resumir la información contenida en un conjunto (amplio) de datos. c) Contraste de hipótesis.- Metodología estadística para diseñar experimentos que garanticen que las conclusiones que se extraigan sean válidas. Sirve para comparar las predicciones resultantes de las hipótesis con los datos observados (medicina eficaz, diferencias entre poblaciones, etc.).
d) Medición de relaciones entre variables estadísticas.- (contenido de gas hidrógeno neutro en galaxias y la tasa de formación de estrellas, etc.) e) Predicción.- Prever la evolución de una variable estudiando su historia y/o relación con otras variables.
5
3. ESTADÍSTICA DESCRIPTIVA “Se cometen muchos menos errores usando datos inadecuados
Que cuando no se utilizan datos.” Charles Babbage (1792-1871) 6
3.1.
Fundamentos de la estadística descriptiva La aplicación del tratamiento estadístico tiene dos fases fundamentales:
Organización y análisis inicial de los datos recogidos.
Extracción de conclusiones válidas y toma de decisiones razonables a partir de ellos. Los objetivos de la estadística Descriptiva son los que se abordan en la primera de
estas fases. Es decir, su misión es ordenar, describir y sintetizar la información recogida. En este proceso será necesario establecer medidas cuantitativas que reduzcan a un número manejable de parámetros el conjunto (en general grande) de datos obtenidos. La realización de gráficas (visualización de los datos en diagramas) también forma parte de la estadística Descriptiva dado que proporciona una manera visual directa de organizar la información. La finalidad de la estadística Descriptiva no es, entonces, extraer c onclusiones
generales sobre el fenómeno que ha producido los datos bajo estudio, sino solamente su descripción (de ahí el nombre).
3.2.
Distribución de frecuencias Esto se lleva a cabo en una tabla de frecuencias:
Según (Rodríguez, 2005) son tablas de trabajo estadístico que presentan la distribución de un conjunto de datos. El primer paso para el estudio estadístico de una muestra es su ordenación y presentación en una tabla de frecuencias.
7
Distribución de frecuencias para variables cuantitativas: Son tablas de trabajo estadístico que presentan la distribución de un conjunto de datos cuando la variable es cuantitativa ya sea discreta o continua Cuando la variable es discreta se llama distribución de frecuencia en puntos aislados, cuando la variable es continua se llama distribución de frecuencias en intervalos de clase. Para construir este tipo de tablas se deben tomar en cuenta los siguientes elementos:
Para variables cuantitativas:
a) Valor de la variable o intervalo de clase.- también se le conoce como clase, resulta de la clasificación o categorización de la variable, se presenta por puntos y por
a los intervalos.
, a los
b) Frecuencia absoluta.- es el número de veces que se repite un determinado valor de la variable; en el caso de intervalos es el número de observaciones comprendidas
con (,…); donde "" representa el número de valores distintos que toma la variable o el número de intervalos considerados ( ≤ ). Asimismo, la suma de las frecuencias absolutas es igual al entre dicho intervalo. Se representa por
número total de observaciones y se expresa al siguiente modo:
⋯ ∑ =
c) Frecuencia relativa.- Es representado por
, es el cociente de la frecuencia
absoluta de cada clase entre el número total de observaciones, esta frecuencia se denota con (
,…). Entonces: ℎ ú
La frecuencia relativa simple toma valores comprendidos entre 0 y 1, es decir:
0 ≤ ℎ ≤ 1 Asimismo, la suma de las frecuencias relativas simples es igual a 1, es decir:
ℎ ℎ ⋯ ℎ ∑ℎ 1 =
d) Frecuencia relativa porcentual.- Es la frecuencia relativa multiplicada por 100. Se
ℎ%
representa por y se considera como el porcentaje de observaciones correspondientes a cada clase. La frecuencia porcentual está comprendida entre 0 y 100. Donde
ℎ % ℎ 100 e) Frecuencia absoluta acumulada.- resulta de acumular o sumar sucesivamente las
donde: . . . ⋯
frecuencias absolutas. Se representa por
f) Frecuencia relativa acumulada.- resulta de acumular o sumar sucesivamente
donde: ℎ ℎ ℎ ℎ ℎ ℎ . . ℎ ℎ ⋯ℎ 1
las frecuencias relativas se representa por
8
La frecuencia relativa acumulada toma valores comprendidos entre 0 y 1 es decir:
0 ≤ ≤ 1 g) Frecuencia relativa acumulada porcentual.- es la frecuencia relativa acumulada multiplicada por 100%. Se representa por:
% ×100 3.3.
Distribución de frecuencias en puntos aislados: Cuando la variable es discreta generalmente los valores de la variable son pocos, por lo que puede considerarse cada uno de ellos como una clase. La distribución de frecuencias absolutas toma la siguiente forma: TABLA N° 1 Distribución de frecuencias absolutas en puntos aislados Valores de la variables
Frecuencias absolutas
⋮
⋮
Total
n
EJEMPLO 1 Los siguientes datos hipotéticos corresponden a una muestra de pequeñas empresas según su número de trabajadores afiliados al Sistema Privado de Pensiones (SPP). 0 – 1 – 4 – 3 – 0 – 2 – 2 – 2 – 1 – 2 2 – 3 – 3 – 3 – 2 – 4 – 2 – 4 – 1 – 2 2 – 2 – 3 – 4 – 3 – 3 – 3 – 2 – 2 - 1 Construya una distribución de frecuencias absolutas
9
SOLUCIÓN: Para la construcción de una distribución de frecuencias tal como se indicó anteriormente primero se clasifican o determinan los distintos valores de la variable y luego se tabula, tal como se muestra en la siguiente tabla: TABLA N° 2 Distribución de pequeñas empresas según su número de trabajadores afiliados al SPP N° DE TRABAJADORES
CONTEO
N° DE EMPRESAS
0
2
1
IIII
4
2
IIII IIII II
12
3
IIII III
8
4
IIII
4
Total
------------------
30 Fuente: Datos hipotéticos
A continuación le mostraremos una distribución de frecuencias ampliada para las diferentes frecuencias descritas. TABLA N° 3 Distribución de frecuencias ampliadas
⋮
⋮
⋮
ℎ ℎ ℎ ⋮ ℎ
⋮
Total
n
-
1.00
-
ℎ ×100 ×100 ℎ% % ℎ% % ⋮ ⋮ ℎ% % 100
-
10
EJEMPLO 2 a) Construir una distribución de frecuencias ampliada para las diferentes frecuencias dadas b) Interpretar
, ,ℎ% %
SOLUCIÓN a) TABLA N° 4 Distribución de pequeñas empresas según su número de trabajadores afiliados al SPP N° de trabajadore
N° de
Frec.
empresa Acumulad
Frec.
Frec.
relativa
relativas
Frec.
Frec.
Porcentua Porcentual
s
s
a
s
acumulada
l
ℎ
s
ℎ %
0
2
2
0.07
0.07
7
7
1
4
6
0.13
0.20
13
20
2
12
18
0.40
0.60
40
60
3
8
26
0.27
0.87
27
87
4
4
30
0.13
1.00
13
100
Total
30
-
1.00
-
100
-
Acumulad a
%
Fuente: Datos Hipotéticos b) Interpretación
: Hay 12 pequeñas empresas que tienen 2 trabajadores afiliados SPP. : Hay 18 pequeñas empresas que tienen 2 trabajadores o menos afiliados al SPP. ℎ% : El 40% de pequeñas empresas tienen 2 trabajadores afiliados al SPP. % : El 60% d pequeñas empresas tienen 2 trabajadores o menos afiliados al SPP.
11
3.4.
Distribución de frecuencias en intervalos de clase Se utiliza generalmente cuando la variable es cuantitativa continua, aquí los
valores de las variables son números por lo cual no puede considerarse cada uno de ellos como una clase, lo cual es necesario agruparlos en intervalo de clase. Se siguen los siguientes pasos para la construcción: Intervalos de Marcas clase clase
+ ⋮ +
⋮
de Frecuencias absolutas
⋮
Frecuencias relativas
ℎ / ℎ ℎ ⋮ ℎ
Frecuencias absolutas acumuladas
⋮
Frecuencias relativas acumuladas
/ ⋮
1) Determinar el Rango (R): Se obtiene restando el valor máximo y el valor mínimo Así: R=Valor Max. – Valor Min. 2) Determinar el número de intervalos (m): El criterio a seguir para determinar el número de intervalos generalmente del mismo tamaño es que el mismo sea suficiente pequeño para lograr la simplificación deseada, pero la suficientemente grande para minimizar los posibles errores de clasificación. Naturalmente, no es conveniente utilizar muchos intervalos de pequeña amplitud ya que en un caso extremo, equivaldría a trabajar con los datos originales. -
Considerar el número de intervalos entre 5 y 20
5≤≤20 Utilizar la regla de Sturges para determinar el número de intervalos 13.33log Donde n es el número de observaciones.
3) Determinar la Amplitud Interválica (C) se obtiene dividiendo el rango entre el número de intervalos
12
4) Determinar los límites de clase, de manera que cada observación se clasifique sin ambigüedades en una sola clase.
( ) ( ) . . (− )
13
5) Determinar las marcas de clase, la marca de clase o punto medio de cada intervalo se halla mediante la semisuma de límite inferior y del límite superior. Así:
() 2 () Los cuales presentamos a continuación: Intervalos
() () ( ) ( ) . . (− )
6) Finalmente se halla frecuencia absoluta de cada clase.
Marca de clase
. .
EJEMPLO 3: Los siguientes datos corresponden a una muestra aleatoria de los gastos semanales en dólares de una muestra de 20 turistas que se alojarán en el hotel “Los Delfines” de la ciudad de Lima en Febrero del 2004: 400 – 500 – 550 – 600 – 680 – 750 – 780 – 850 – 1000 – 850 630 – 640 – 650 – 700 – 740 – 750 – 800 – 750 – 890 – 950 La información fue obtenida de los registros de consumo de clientes de dicho hotel. a) Construir una distribución de frecuencias absolutas utilizando la regla de Sturges. b) Construir una distribución de frecuencias ampliadas para las diferentes frecuencias dadas. c) Interpretar
,,ℎ%,%.
SOLUCIÓN Siguiendo los datos establecidos: -
Hallando el Rango (R) R=Valor Max. – Valor Min. R=1000-400=600
-
Hallando el número de intervalos (m)
13.33log log201.30 n=20 m=13.33 × 1.30 = 5.33 m= 5 intervalos
-
Hallando la amplitud Interválica (C)
-
Determinando los límites de clase y sus respectivas marcas de clase Intervalos Marca de clase
= 120
() () (400520) (520640) (640760) (760880) (8801000)
460 580 700 820 940
14
a) Determinando la distribución de frecuencias absolutas Intervalos
() () (400520) (520640) (640760) (760880) (8801000)
Marca de clase
Conteo
N° de turistas
460 580 700 820 940
II III IIII – III IIII III
2 3 8 4 3
Total
-
-
15
20
Fuente: Registro de consumo de cliente Hotel “Los Delfines”
b) A continuación le mostramos la distribución de frecuencias ampliada para las diferentes frecuencias dadas: TABLA N° 5 Distribución de turistas según sus gastos semanales en dólares Hotel “Los Delfines” - Lima
Febrero-2004 Gastos semanales en dólares
Marca de clase
N° de turistas
{400-520) {520-640) {640-760) {760-880) {880-1000) Total
460 580 700 820 940 -
2 3 8 4 3 20
() ()
ℎ
ℎ %
2 5 13 17 20 -
0.10 0.15 0.40 0.20 0.15 1.00
0.10 0.25 0.65 0.85 1.00 -
10 15 40 20 15 100
10 25 65 85 100 -
Fuente registros de consumo de clientes Hotel “Los Delfines”
c) Interpretando
: 3 turistas tuvieron gastos semanales de $520 o más pero menos de $640 : 5 turistas tuvieron gastos semanales de $400 o más pero menos de $640 ℎ% : El 15% de los turistas tuvieron gastos semanales de $520 o más pero menos de $640 % : El 25% de los turistas tuvieron gastos semanales de $400 o más pero menos de $640
Distribución de Frecuencias para Variables Cualitativas : Este tipo de
distribución se utiliza para clasificar los datos de una variable cualitativa nominal u ordinal también toma el nombre de distribución de frecuencias por atributos. TABLA N° 6 Distribución de frecuencias para variables cualitativas Variables
⋮
Frecuencias Absolutas
Frecuencias Relativa
Frecuencia relativa porcentual
n
1.00
100%
⋮
Total
ℎ ℎ ℎ ⋮ ℎ
ℎ % ℎ% ℎ% ⋮ ℎ %
EJEMPLO 4 Los siguientes datos corresponden a una muestra aleatoria de 30 docentes de la Universidad Los Ángeles de Chimbote según su estado civil del semestre 2004-II:
Dónde: S: “Soltero”; C: “ Casado; V: “Viudo” y D: “Divorciado
La información fue obtenida de la oficina de personal de dicha universidad a) Construir una distribución de frecuencias absolutas, relativas y relativas porcentuales b) Interpretar
y ℎ%
16
TABLA N° 7 Distribución de docentes según su estado civil Universidad Los Ángeles de Chimbote Semestre 2004-II Estado Civil
N° de docentes
Frecuencia relativa
ℎ
Frecuencia relativa
Soltero 7 0.23 Casado 18 0.60 Viudo 2 0.07 Divorciado 3 0.10 Total 30 1.00 FUENTE: Oficina de personal- Universidad Los Ángeles de Chimbote.
ℎ % 23 60 7 10 100
c) Interpretando:
: Hay 18 docentes que son casados ℎ%: El 60% de los docentes son casados. 3.5.
Representación Tabular y Grafica Una vez que Ud. Ha recolectado y clasificado la información, resulta imprescindible
representarlo de manera adecuada, de tal forma que le permita hacer un análisis útil. Existen dos tipos de presentación: Los cuadros estadísticos y gráficos. 3.5.1. Cuadros estadísticos: Es un arreglo tubular de filas y columnas en donde se representan a los datos de una manera bajo un ordenamiento convencional pr edeterminado con el objeto de facilitar su lectura, análisis e interpretación. - Partes de un cuadro estadístico: Las partes de un cuadro estadísticos son: código o número, titulo, encabezado, columna principal o matriz, cuerpo y fuente.
17
CUADRO N°1
CODIGO
Casos recibidos por la defensoría del pueblo según tipo
Titulo
Perú: 2001-2002 tipo
año
2001 Quejas 18059 Petitorios 5486 Consultas 25357 TOTAL 48897 FUENTE: Defensoría del pueblo. Oficinas de información de sistema
2002 18782 80328 24837 51693
a) Código: Número de identificación. b) Título: Expresar en forma resumida la información que contiene, se coloca en la parte superior del pueblo El título de un cuadro estadístico debe ser completo y conciso. Se refiere a completo en que debe tener los cuatro elementos fundamentales: población, variable, lugar y tiempo. Se refiere a conciso en que debe ser breve. c) Encabezado: Primera flas del cuadro, explica las categorías y el objeto de cada una de las columnas. d) Columna principal o matriz: Formada por la primera columna y nos indica también las características. e) Cuerpo: Su formación se presenta en filas y columnas. f) Fuente: Se coloca en la parte inferior del cuadro y nos indica el lugar en donde se obtuvieron los datos contenidos en el cuadro. 3.5.2. Representación Gráfica: Un gráfico es la representación de un fenómeno estadístico por medio de figuras geométricas (puntos, líneas, rectángulos, paralelepípedos, etc.) cuyas dimensiones son proporcionales a la magnitud de los datos representados. Su objetivo principal es la representación de los datos en forma gráfica, que permita a simple vista darse cuenta del conjunto de elementos representados y de evidenciar sus variaciones y características. El gráfico es un auxiliar del cuadro estadístico no lo sustituye sino lo complementa. Entre los gráficos más usuales tenemos: Gráfico de bastones Histograma de Frecuencias Polígono de Frecuencias; Gráficos de Barras Gráfico de Sectores Circulares Gráfico Lineal.
18
CÓDIGO TÍTULO I
CUERPO VARIABLE
FUENTE
Escalas usadas en el trazo de un gráfico: la mayoría de los gráficos se representan en las llamadas “Sistema de Coordenadas Cartesianas” donde hay dos ejes, X (eje horizontal) e
Y (eje vertical). En el eje X se colocan las diferentes clases de la variable y en el eje Y se colocan las frecuencias (absolutas o porcentuales). La escala de medida que se usan deben ser de la misma longitud o algo mayor la horizontal que la vertical. En general, las 2 escalas deben guardar una proporción 1 a 1 y 1 a 2, es decir, que si el eje vertical mide 10cm el eje horizontal debe medir entre 10 y 20. Esta exigencia se hace con el fin de no distorsionar el fenómeno que se estudia. Principales tipos de gráficos: a) Gráficos de Bastones: También se le conoce como diagrama de frecuencias, se utiliza generalmente para descubrir datos cuando la variable es discreta y su construcción se hace levantando segmentos perpendiculares al eje de la variable y con una altura proporcional a su frecuencia absoluta o relativa porcentual.
19
EJEMPLO: Los gráficos N° 1 y N° 2 muestra el gráfico de bastones para frecuencias absolutas y relativas porcentuales de la tabla N°4. GRÁFICO N° 01 Pequeñas empresas según su número de trabajadores afiliados al SPP 14
20
12 s a s er
10 p e e
8 d °
6 4 2 0 1
2
3
4
N° de Trabajadores
Fuente: Datos hipotéticos
GRÁFICO N° 02 Porcentajes de pequeñas empresas según el número de trabajadores afiliados al SPP
j
50 40 30 20 10
N° de trabajadores
0 1
2
3
4
Fuente: Datos hipotéticos
b) Histograma de Frecuencias: Este gráfico se utiliza para describir datos cuando la variable es cuantitativa continua. Su construcción se hace levantando sobre el eje de la variable rectangular que tengan por base la amplitud de intervalo de clase y una altura proporcional a su frecuencia absoluta o relativa porcentual. EJEMPLO: Los gráficos N° 3 y N° 4 muestran el gráfico de bastones para frecuencias absolutas y relativas porcentuales de la tabla N° 7. 21
GRÁFICO N° 3
Turistas según sus gastos semanales en dólares hotel “Los Delfines” – Lima
Febrero: 2004
9 8 7 s a 6 t s i r 5 u t e 4 d ° 3 N 2 1 0 400
520
640
760
880
1000
gastos semanales en soles Fuente: Registros de Consumo de Clientes. Hotel “Los Delfines”.
GRÁFICO N° 4
Porcentaje de turistas según sus gastos semanales en dólares hotel “Los Delfines” Lima Febrero: 2004 45 40 35 e j 30 a t 25 n e c 20 r o P 15 10 5 0 400
520
640
760
880
1000
gastos semanales en soles
Fuente: Registros de Consumo de Clientes. Hotel “Los Delfines”.
c) Polígono de Frecuencias: Este se utiliza también para describir datos cuando la variable es cuantitativa continua. Su construcción se hace uniendo los puntos medios superiores de los rectángulos en el histograma. EJEMPLO: Los gráficos N° 5 y N° 6 muestran el polígono de frecuencias para frecuencias absolutas y frecuencias relativas porcentuales. 22
GRÁFICO N° 5 Turistas según sus gastos semanales en dólares Hotel “Los Delfines” – Lima Febrero: 2004 10 8 6 4 2 0 280
400
520
640
760
880
1000
1120
Fuente: Registros de Consumo de Clientes. Hotel “Los Delfines”.
GRÁFICO N° 6 Porcentaje de turistas según sus gastos semanales en dólares Hotel “Los Delfines” – Lima Febrero: 2004 50 40 30 20 10 0 280
400
520
640
760
880
1000
1120
Fuente: Registros de Consumo de Clientes. Hotel “Los Delfines”.
d) Gráfico de Barras: Este Gráfico se utiliza para describir datos cuando la variable es cualitativa nominal u ordinaria. Su construcción se hace levantando barras proporcionales a la frecuencia absoluta o relativa porcentual de la cualidad que representan.
Recomendaciones para su construcción: -
Todas las barras deben tener el mismo grosor.
-
El espacio entre barras debe ser de la misma magnitud y constituye la mitad del ancho de la barra.
-
23
El ancho de la barra debe ser el doble del espacio que se deja entre barra y barra.
-
La escala de frecuencia debe empezar por cero.
-
Las barras por estética deben ordenarse de mayor a menor cuando se pueda.
-
No se debe recargar las barras tratando de expresar muchos productos en cada uno de ellas.
-
Si el gráfico tiene muchas barras es mejor expresarlo con un gráfico lineal.
Gráfico de Barras Simples: Para su construcción deben contar con un cuadro de entrada simple (una sola variable, utilizaremos la información dada el cuadro N° 2). CUADRO N° 2 Casos recibidos por la defensoría del pueblo según tipo Pero: 2002 Tipo de Casos Quejas Petitorios consultas TOTAL
N° de casos recibidos 18782 8038 24837 51693
Fuente: Defensoría del Pueblo. Oficina de Información de Sistemas y Estadísticas.
EJEMPLO: El gráfico N° 7 muestra el gráfico de barras simples con los datos del Cuadro N° 2 GRÁFICO N° 7 Casos recibidos por la defensoría del Pueblo según tipo Perú-2000
Tipos de casos 35000
24
30000 25000 20000 15000 10000 5000 0 Quejas
Petitorios
Consultas
Fuente: Defensoría del Pueblo. Oficina de Información de Sistemas y Estadísticas.
e) Gráfico de Sectores Circulares o Pastel: Al igual que el gráfico de barras este gráfico se utiliza generalmente para representar variables cualitativas (nominal u ordinal). Se usa frecuentemente cuando se desea comparar cada categoría de la variable con respecto al total. Para su elaboración se utiliza una circunferencia, siendo necesario que los valores absolutos y/o porcentuales sean traducidos en grados. A cada categoría le corresponde un sector de la circunferencia. EJEMPLO: El gráfico N° 8 muestra el gráfico de sectores circulares. Hallando los ángulos de cada sector: TIPOS DE CASOS ANGULOS
°= ×360°131°
QUEJAS
PETITORIOS
×360°56° °=
CONSULTAS
°= ×360°173°
TOTAL
360°
Se puede comprobar que la suma de los tres sectores da 360°, tal como lo podemos observar en la tabla N° 3 TABLA N° 03 Casos recibidos por la defensoría del pueblo según tipo Tipo de Caso Quejas Petitorios Consultas TOTAL
°
% 36 16 48 100
18782 8038 24873 51693
131° 56° 173° 360°
La representación gráfica seria la que aparece en el gráfico N° 8
GRAFICO N° 8 Porcentaje de casos recibidos por la Defensoría del pueblo según tipo Perú 2002
36% Quejas 48%
Petitorios Consultas
16%
Fuente: Defensoría del Pueblo. Oficina de Información, Sistemas y Estadísticas.
25
4. EJEMPLOS Ejemplo I
Supongamos que el número de hijos de una muestra de 20 familias es el siguiente:
2 1 1 3 12 51 234 2 3214 2 3 2 1 OBJETIVOS:
× ℎ ×
a) b) Hallar el porcentaje de la familia que tiene 4 hijos TABLA N° 1 DISTRIBUCIÓN DE EL NÚMERO DE HIJOS DE 20 FAMILIAS
1 2 3 4 5
6 7 4 2 1 n=20
ℎ
0.30 0.35 0.20 0.10 0.05 1
6 13 17 19 20
0.30 0.65 0.85 0.95 1.00
ℎ %
30% 35% 20% 10% 5% 100% Fuente: Propia
SOLUCIÓN:
7×0.0519×0.30
a) =6.05 b) El porcentaje de la familia que tiene 4 hijos es 10 %
Ejemplo 2
Numero de litros de agua potable que consumen a diario, para alimentación y aseo personal cada alumno del I semestre de la carrera de mecánica del Instituto de Educación Superior Tecnológico Público - Oxapampa. El número de litros que cada alumno consume es: 4, 6, 14, 8, 5, 5, 7, 7, 10, 11, 12, 13, 15, 8, 14, 11, 15, 10, 7, 5, 13, 7, 7, 8, 15, 7, 8, 10
OBJETIVO: Cuál es el % de alumnos que consumen más litros de agua.
26
TABLA N° 2 DISTRIBUCIÓN DE LOS LITROS DE AGUA POTABLE QUE SE CONSUMEN A DIARIO Xi 4 5 6 7 8 9 10 11 12 13 14 15 total
fi 1 3 1 6 4 0 3 2 1 3 2 3 29
hi 1/29 3/29 1/29 6/29 4/29 0 3/29 2/29 1/29 3/29 2/29 3/29 1
hi(%) 3.44827586 10.3448276 3.44827586 20.6896552 13.7931034 0 10.3448276 6.89655172 3.44827586 10.3448276 6.89655172 10.3448276 100
Fi 1 4 5 11 15 15 18 20 21 24 26 29
Hi 1/29 4/29 5/29 11/29 15/29 15/29 18/29 20/29 21/29 24/29 26/29 29/29
Hi(%) 3.44827586 13.7931034 17.2413793 37.9310345 51.7241379 51.7241379 62.0689655 68.9655172 72.4137931 82.7586207 89.6551724 100
Fuente: Propia
RPTA: El 20% de alumnos consumen más agua.
Ejemplo 3
Siendo las 12:00 am me encuentro en un lugar donde la gente concurre a diario me refiero al Mercado Santa Rosa - Oxapampa, para poder adquirir los datos que necesito y así realizar mi tabla de frecuencia de. 32, 31, 28, 29, 33, 32, 31, 30, 31, 31, 27, 28, 29, 30, 32, 31, 31, 30, 30, 29, 29, 30, 30, 31, 30, 31, 34, 33, 33, 29, 29
MI OBJETIVO ES saber cuál es el mayor % de edad de las personas que concurren en el Mercado SANTA ROSA
27
TABLA N° 3 DISTRIBUCION DE LAS EDADES DE PERSONAS QUE CONCURREN AL MERCDO SANTA ROSA A HORAS 12: 00 XI 27 28 29 30 31 32 33 34
fi 1 2 6 7 8 3 3 1 31
Hi 1 3 9 16 24 27 30 31 -
hi 0.032 0.065 0.194 0.226 0.258 0.097 0.097 0.032 1
H1 Hix100% 0.032 3.2 0.097 6.5 0.291 19.4 0.517 22.6 0.775 25.8 0.872 9.7 0.969 9.7 100.1 3.2 Fuente: datos hipotéticos
RPTA: EL 25.8% es el porcentaje mayor de personas de 31 años que concurren al mercado. Ejemplo 4
Un nuevo hostal va abrir sus puertas en la ciudad de Oxapampa. Antes de decidir el precio de sus habitaciones, el gerente investiga los precios por habitación de 06 hoteles de esta ciudad. Los datos obtenidos (en nuevo sol) fueron: 15, 20, 10, 15, 35, 30
TABLA N° 4 DISTRIBUCIÓN DE HABITACIONES Xi 10 - 16 17 - 23 24 - 30 31 - 37 total
fi 3 1 1 1 6
hi 1/2 1/6 1/6 1/6 1
hi(%) 50.00 16.67 16.67 16.67 100.00
Fi 3 4 5 6
Hi 1/2 2/3 5/6 6/6
Hi(%) 50 66.67 83.33 100
Fuente: Propia Nota: La información comprende los hostales Royal, Arias, San Martín, Yanachaga, Ruffner.
28
29
5. CONCLUSIÓNES
La estadística descriptiva sintetiza conjuntos de datos mediante tablas o gráficos
resumen, con el fin de poder identificar el comportamiento característico de un fenómeno y facilitar su análisis exhaustivo.
Una tabla de frecuencia tiene una escala que incluye todos los números en los
datos. Una tabla de frecuencia también tiene un intervalo, el cual separa la escala en partes iguales.