BY: BY: ABHISEK PANDA 3.6 3. 6
SUPE SU PER R ST STRU RUCT CTUR URE E DE DESI SIGN GN::
3.6.1 AV AVAILABLE AILABLE DA DAT TA: • • • • • • • • • • • • • • • • • • • • • • • • • •
Efective span o T-beam bride: !"#$$m Tota% T ota% %ent& o bride: ''m (%ear )idt& o carriae )a* +#'m ,I( ': !.." / I( 0: 12!34 Kerb )idt&: 022mm ,bot& side5 pedestrians are a%%o)ed4 Parapet: !222 mm × !'2 mm × !'2 mm 6 !#'m c7c )it& $-cast iron pipes as rai%in (amber: ! in !22 ,$+#' mm at center %inear%* var*in to 8ero at 9erbs4 earin coat: "2mm Kerb &ei&t above pavement: 122mm ,ins;rmo;ntab%e t*pe4 Kerb t*pe: ;%% saet* ens;red Tota% T ota% 9erb &ei&t above dec9 s%ab: 1"2 mm (%ear dept& o
rade o concrete: ?$' Desin strent&: cd cd @ 2#0+ c97γ m?Pa ,Anne A1 o I( !!1: 12!!4 c9 >rade o stee% : Ce3!' ,IS !+"0 : 12224 Desi Des in n st stre ren nt& t& o st stee% ee% : *7! 7!#! #!' ' @ 2# 2#"+ "+ * ?P ?Pa a ,c% ,c%a;s a;se-!' e-!'#1#$ #1#$#$ #$ o I I( ( !!1:12!!4 Poissons ratio: µ @ 2#1 ,Anne-B= B-$-! o I( !!1:12!! 4 Ana%*sis o dec9 s%ab: Piea;ds c;rve
3.6.2 DESIGN OF INTERIOR SLAB PANEL: PANEL:
T&e s%ab is s;pported on o;r sides b* %onit;dina% and cross irders )&ic& c7c spacin is as s&o)n in t&e ;re above# T&e s%ab t&ic9ness is 1'2 mm and breadt& and %ent& respective%* are 1#'m and 3#'2+' m# t&e efective span )i%% be
BY: BY: ABHISEK PANDA ta9en as t&e c%ear span o t&e s%abs since t&ese are t&e contin;o;s s%abs# So efective )idt& Bef @ @ 1#!m and efective %ent&
Fig-7 (Int!i"! S#$% P$n# &it' "n &'# " T!$)*+ V'i)#, 3.6.2.1
Bn+ing "nt " t' S#$% P$n# +/ t" D$+ L"$+:
ei&t o s%ab @ 2#1' × !× !× 1' @ 0#1' 9N7m1 ei&t o )earin coat @ 2#2"2 × 11 ×! ×! @ !#+0 9N7m1 ei&t o camber @ 2#3' 9N7m1 Tota% T ota% dead )ei&t @ "#30 9N7m1 As Pie;ads c;rve is ;sed in desin5 &ence K @ B7< @ 1#'73#'2+' @ 2#'' A%so dead %oad moment is to be comp;ted and &ence ;7B @ !#2 and v7< @ !#2 Fsin Pie;ads c;rve or K@2#'5 ;7B @ !#2 and v7<@!#25 m!@2#23+ and m1@2#223 A%so or K@2#05 ;7B @ !#2 and v7< @ !#25 m!@2#23+ and m1 @ 2#2!0 Ater interpo%ation5 )e nd t&at m!@2#23+ and m1@2#2!3' Tota% T ota% dead %oad on t&e s%ab is iven b* @ "#30 ×1#'×3#'2+' @ .'#$$
BY: BY: ABHISEK PANDA S&ort span moment is ?B @ .'#$$ ,2#23+G2#12×2#2!3'4 @ 3#+0 9N-m
Bn+ing "nt +/ t" Li0 L"$+:
$. IRC IR C )#$ )#$ AA t!$)*+ V'i) V'i)#: #:
T&e )&ee% is p%aced at t&e center o t&e s%ab as s&o)n in t&e ;re previo;s%*# previo;s%*# Cor maim;m bendin moment to be occ;rred5 t&e %oad dispersion is ta9en to be occ;rrin t&ro;& )earin coat on%*# T&e %oad is disperses at 3' 2 t&ro;& t&e )earin coat as per Anne-B o I( !!1:12!!# Hence / .452 .4 1.1 and 0 3.6 2 .4 3.76 Hence ;7B @ 2#323 5 v7< @ 2#"$31 and K @ B7< @ 1#'73#'2+' @ 2#''# eerrin to Pie;ads c;rve5 Cor K @ 2#'5 and or above ;7B and v7< va%;es5 m! @ 2#2"3 5 m1 @ 2#22. Simi%ar%* or K @ 2#05 )e et m! @ 2#2.' and m1 @ 2#2$ Ater interpo%atin5 )e et m! @ 2#2". and m1 @ 2#2!. S&ort span bendin moment is iven b*5 ,ta9in contin;it* into acco;nt4 ?B @ 2#"×$'2×,2#2".G2#1×2#2!.4 @ 1'#."3 9N-m ?< @ 2#" ×$'2×,2#2!.G2#1×2#2".4 @ !2#$23 9N-m As per I( 0:12!25 c%a;se 12"#$5 or trac9ed ve&ic%es5 t&e impact actor is !2 or spans ;p to 32m# So ?B @ 1"#'" 9N-m and ?< @ !!#$$3 9N-m %. IRC )#$ )#$-AA -AA &'#+ 0'i)#: 0'i)# :
Co%%o)in Co%%o )in dif difere erent nt re reer erenc ences es and ;i ;ides des on bri bride de eni enineer neerin in55 it its s c%e c%ear% ar%* * ;nderst ;nd erstood ood t&a t&att t&o t&o;& ;& tra trac9 c9ed ed ve&i ve&ic%e c%e iv ives es t&e seve severe rest st efe efect ct a%o a%on n s&o s&ort rt span7direction b;t a%on %on span5 t&e )&ee%ed ve&ic%e ives severest efect# B* oin t&ro;& Essentia%s o Bride Enineerin: D#J ictorL and #(#( desin: B#(# P;nmia5 A#K Jain and A#K JainL )e nd t&e o%%o)in %oad positionin ives t&e severest efect amon ot&er combinations#
BY: ABHISEK PANDA
Fig-4 (L"$+ing " &'#+ 0'i)# "! 0!t )t,
A%so as per I( 0:12!3 specications5 no ot&er ve&ic%es can come on to t&e pane% d;rin t&e above arranement# Bn+ing "nt )$#)/#$ti"n +/ t" 8'# L"$+ -2:
T*re contact dimension : $22 mm × !'2 mm So ; @ 2#$G1×2#2"2 @ 2#302 m and v @ 2#!'G1×2#2"2 @ 2#$!2 m T&e va%;e o ;7B @ 2#!"3 5 v7< @ 2#20. and B7< @ 2#'' Fsin Pie;ads c;rve5 m! @ 2#11 and m1 @ 2#12 Hence ?B! @ 01#' ,2#11G2#1×2#14 @ !0#1' 9N-m and ?
BY: ABHISEK PANDA
Fig-9 (Bn+ing "nt )$#)/#$ti"n +/ t" 8'# L"$+-1,
So ; @ 1,;! G 4 @ 1,2#30G2#$+4 @ !#00m and v @ 2#$!m
∗
No) ; @ 1 @ 1×2#$+ @ 2#+3 and v @ 2#$! K @ 2#''5 ;7B @ 2#1.0 and v7< @ 2#20. Crom Pie;ads c;rve5 m! @ 2#!"3 and m1 @ 2#!". ?B @ !$#$" 9N-m and ?< @ !$#011 9N-m
Hence tota% moment is iven b*5 ?B1 @ ,12#2$ !$#$"4 ×2#' 9N-m @ $#$1' 9N-m ?<1 @ ,11#!.$ !$#0114 ×2#' 9N-m @ 3#1"' 9N-m Bn+ing "nt +/ t" 8'# L"$+-3: ∗
No) in t&is case ; @ 1,2#30G2#++4 @ 1#30m 5 v @ 2#$! m
∗ Ta9in ; @ 1 @ 1×2#++ @ !#'3 and v @ 2#$!5
K @ 2#''5 ;7B @ 2#0!0 and v7< @ 2#20. Hence m! @ 2#!1' and m1 @ 2#!3 ?B @ $1#2! 9N-m and ?<@ $3#'1 9N-m
BY: ABHISEK PANDA ?B$ @ $0#!2 - $1#2!O ×2#' @ 1#23' 9N-m ?<$ @ $0#!2 - $3#'1O ×2#' @ 2#+. 9N-m Bn+ing "nt +/ t" 8'# L"$+ $t - 5:
; @2#30m5 v @ 1,v!G4 @ 1,2#$! G !#23'4 @ 1#+!m
Bn+ing "nt +/ t" &'# L"$+ $t ;: ∗
; @ 1,;!G4 @ 1,2#30G2#$+4 @ !#00m and v @ 1,v!G*4 @ 1,2#$!G!#23'4 @ 1#+!m K @ 2#''5 ;7B @ 2#003 and v7< @ 2#02! (oecient m! @ 2#2.12' and m1 @ 2#21+ Ater m;%tip%*in )it& ,;!G4,v!G*4 )it& bot& coecients5 m! @ 2#!2!' and m1 @ 2#2$23
∗
; @ 1 @ 1×2#$+ @ 2#+3m5 v @ 1* @ 1×!#23' @ 1#2.m K @ 2#'""5 ;7B @ 2#1.0 and v7< @ 2#303 So m! @ 2#!$3 and m1 @ 2#232' ?;%tip%*in )it& *5 )e et m!@2#2'1 and m1 @ 2#2!0
∗
; @ 2#+3m5 v @ 1#+!m K @ 2#''5 ;7B @ 2#1.0 and v7< @ 2#02! m! @ 2#!1 and m1 @ 2#2$ and m;%tip%*in )it& ,v!G*4 @ 2#'2!$5 m! @ 2#202 and m1@2#2!'
∗
; @!#00 m and v @ 1#2.m K @ 2#''5 ;7B @ 2#003 and v7< @ 2#303 m! @ 2#2.' and m1 @ 2#2$"
BY: ABHISEK PANDA ?;%tip%*in )it& *,; !G4 @ 2#"+5 m!@2#2"$ and m1 @2#2$$ So m! @ ,2#!2!'G2#2'14-,2#202G2#2"$4O @ 2#2!2' m1 @ ,2#2$23G2#2!04-,2#2!'G2#2$$4O ≈ 2 ?B3 @ ?<3 @
37.5 0.460.31 37.5 0.460.31
2#2!2'G2#1×2O @ 1#+0! 9N-m 2#1×2#2!2'G2O @ 2#''1 9N-m
Bn+ing "nt +/ t" 8'# L"$+ $t -6:
! ; @ 1;!GO @ 12#30G2#++O @ 1#30 m and v @ 1v!GO @ 12#$!G!#23'O @ 1#+! m K @ 2#''5 ;7B @ 2#."3 and v7< @ 2#02! m! @ 2#20"5 m1 @ 2#21 ;!GOv!G*O @ !#1$×!#$'' @ !#0+ m!@2#!!$ and m1 @ 2#2$$3 ∗ 1 ; @ 1 @!#'3m and v @ 1* @ 1#2.m K@2#''5 ;7B @ 2#0!0 and v7< @ 2#303 m! @ 2#2.+5 m1 @ 2#2$" * @ 2#"23 Hence m! @ 2#2+" and m1 @ 2#2$2' ∗ $ ; @ 1;!GO @ 1#30m and v @ 1* @1#2.m K @ 2#''5 ;7B @ 2."3 and v7< @ 2#303 m! @2#2+3 and m1 @ 2#2$ *,;!G4 @ !#1"' m! @ 2#2.' and m1@2#2$" ∗ 3 ; @ 1 @ !#'3m and v @ 1,v!G*4 @ 1#+!m K @ 2#''5 ;7B @ 2#0!0 and v7< @ 2#02!1 m! @ 2#2.1 and m1 @ 2#21' ?;%tip%*in ,v!G*4 @ !#23$ )it& above coecients5 m! @ 2#2.0 and m1 @ 2#210 So na% coecients are5 m! @ ,2#!!$G2#2+"4-,2#2.'G2#2.04O @ 2 m1 @ ,2#2$$3G2#2$2'4-,2#2$"G2#2104O ≈2 T&e res;%tin moment is iven b*5 ?B0 @ ?<0 @ 2 9N-m ∗
Tota% bendin moment is iven b*5
BY: ABHISEK PANDA ?B@ !0#1'G$#$1'G1#23'G$#0$'G1#+0! @ 1"#2!0 9N-m ?< @ !'#1'G3#1"'G2#+.G2#2'G2#''1 @ 12#.$ 9N-m App%*in contin;it* and impact5 B 24.16 .4 1.14 26.;5 *N- L 2.93 .4 1.14 19.76 *N- T&e impact actor is ta9en as !" as per c%a;se-12"#3 o I( 0: 12!3# It can be seen t&at t&e moment a%on s&ort span or trac9ed %oad is reater )&i%e t&e )&ee% %oad bendin moment a%on t&e %oner span is severer# Hence t&e moment or trac9ed %oad )i%% be ta9en a%on s&orter direction and moment a%on %oner direction )i%% be considered rom )&ee% %oad in t&e desin o dec9 s%ab# 3.6.3 8IND LOAD ANAL
Since t&e str;ct;re is open in %onit;dina% cross section and it &as a%% possibi%ities t&at it )i%% be dro)ned inside )ater ;p to HC< %eve% d;rin storm= as t&e storm occ;rs in t&e tropica% reion especia%%* in India d;rin rain* season most o t&e times# Hence t&ere is no need to consider t&e %atera% )ind orce# B;t sti%% considerin )orst condition5 %ets ca%c;%ate t&e ;p%it orce# IS "+' ,part-III4 : !."+ )i%% be ;sed or t&is p;rpose# As per c%a;se-'#$5 IS "+' ,part - III4:!."+ sa*s t&at desin )ind speed is iven b* 5 V= V% * 1 * 2 * 3 b @ '2 m7sec ,Appendi -A4 @ !"2 9mp& ,or B&;banes)ar 8one4 As per c%a;se '#$5 t&e )ind speed is considered constant ;p to t&e &ei&t o !2m o an* str;ct;re# * 1 1.4 ,Tab%e-!45 * 2 1. ,Tab%e-15 (ateor* -15 c%ass - A4 and * 3 1 ,Q @ 225 c%a;se '#$#$#!4 Hence 8 @ !"2 × !#2" × !#22 × !#22 @ !.3#32 9mp& ≈ 1229mp& @ ''#'0 m7sec Fsin c%a;se- '#35 p8 @ 2#081 @ 2#0 × ,''#'041 @ !"'1#!' N7m1 @ !#"' 9N7m1 T&e so%idit* ratio is eM;a% to 22 in o;r case# Hence R @ 22 Crom tab%e-+ ,pae -!.45 ta9in @ 22andR @ 22 5 (! @ ,-4!#3 @ !#3 ,s;ction4 As per c%a;se 0#1#1#+ ,pae - 1+4 or over&ans s%opin ;p)ard5 (1 @ 2#+' and t&e positive sin indicates t&at t&is )i%% be actin do)n)ard# Hence tota% press;re
BY: ABHISEK PANDA orce per ;nit r;n on t&e s%ab )i%% be ca%c;%ated separate%* or t&e canti%ever and intermediate road )a* section#
Fig-1 (8in+ #"$+ "n S/>! St!/)t/!,
T&e press;re distrib;tion is as s&o)n in t&e ;re# C;p%it7m r;n @ (!p8A @ !#3 × #"' × 3#1 × !"#$$7!"#$$ @ !2#"+" 9N7m Cdo)n)ard 7m r;n @ (1p8A @ 2#+' × !#"'× $#0 × !"#$$7!"#$$ @ 3#..' 9N7m ≈ '9N7m Hence it can be seen t&at t&e canti%ever section )i%% not be eperiencin an* ;p%it orce and t&e )ind press;re )i%% be in t&e same direction as t&at o t&e %ive %oad# A%so it can be noted t&at as per c%a;se 1!1#' o I( 0: 12!35 no %ive %oad )i%% be considered on t&e dec9 )&en )ind speed eceeds !$2 9mp No) t&e %onit;dina% irders can be seen as %oaded as be%o) ;re or intermediate spans#
Fig-11 (8in+ #"$+ $)ting L"ngit/+in$##? "n S/>! St!/)t/!,
BY: ABHISEK PANDA Tota% ;p)ard orce actin on one s%ab pane% is iven b*5 !2#"+" × 3#12+' @ 3'#++ 9N .'#$$ ×2#" @ +0#103 9N ,dead %oad o s%ab pane%4# Hence it can be conc%;ded t&at since ;p%it press;re is %esser t&an t&e dead )ei&t o s%ab pane% itse%5 no daner o neative s;ction and &ence )ind press;re need not be considered# A%so as t&e e%evated area o t&e s%ab pane% is M;ite %ess5 t&ere is no daner o %atera% press;re# Hence t&is can be omitted# 3.6.; S@EAR FORCE CALCULATION FOR INTERIOR SLAB PANEL: 3.6.;.1
8'# L"$+ S'$!:
Co%%o)in I(-!!1:12!! ,B-$#$5 Anne- B-$45 t&e dispersion o %oad t&ro;& )earin coat / s%ab )i%% be at 3'U# Hence dispersion o %oad is iven b* 2#"'G1,2#2"G2#1'4 @!#'!m# Cor maim;m s&ear to occ;r 5 t&e %oad dispersion s&o;%d be )it&in ace o irder# So )&ee% %oad )i%% be 9ept at %east !#'!71@2#+''m rom t&e %onit;dina% irder ace= as s&o)n in t&e ;re#
Fig-12 (L"$+ +i>!i"n t'!"/g' +)* #$%,
eerrin I(-!!1:12!!5c%a;se-B $#1,pae-1+"45 be @a, 1 − a / ❑ %24Gb! b7%2 @
4.2075 2.1
@ 1#22$ V 1#22
@1#0 %2@1#! a@2#+''m b!@$#0G1 × 2#2"@$#+0m be@1#0 × 2#+'', 1 − 0.755 / 2.1 4G$#+0 @'#2!+m
BY: ABHISEK PANDA 350
@
5.017
@ 0.#+0$
(
69.763 × 2.1 − 0.755
?aim;m s&ear orce @
)
2.1
@33#0"! 9N7m S&ear orce )it& impact d;e to trac9ed ve&ic%e @ 3.#!' 9N7m 3.6.;.2 D$+ #"$+ '$!: Tota% dead )ei&t@ "#30 KN7m1 Tota% dead %oad s&ear@
8.46 × 2.1
@ "#""$ 9N7m
2
3.6.5 DESIGN BENDING OENT AND S@EAR FORCE:
Toa% ?B @ $#"!G1"#'"@$1#$. KN-m ?% @ !#"13G!.#+0@1!#'"3 KN-m Tota% s&ear orce@,"#""$G3.#!'4 KN7m @'"#2$ KN7m Since )e &ave considered %imit state met&od t&e above %oad va%;es )i%% be !#' times t&at o ca%c;%ated as per Ane A1 o I(: !!1-12!! So ?B @ 3"#'"' '2 9N-m ?% @ $1#$+0 $$ 9N-m ; @ "+#23' 9N7m ?inim;m efective dept& as per maim;m bendin moment is iven b* d @
√(
6
50 × 10 3
0.36 × 35 × 0.48 × 10
× ( 1 − 0.416 × 0.48 ) )
@ !2!#0$' mm As per tab%e !3#15 c%a;se !3#$#1#! ,pae !314 o I(!!1: 12!!5 (%ear cover @32G"@3" mm So5 d @ 1'2 − 3" @121 mm V !2!#0$ mm ,o94 Fsin !0 mm- ∅ bars5cover or s&ort span @ 1!2 − " @121mm and cover or %on span @121 − !0@!"0 mm# 3.6.6 REINFORCEENT DETAILS FOR INTEROIR SLAB PANEL: (i,A!$ " t# $#"ng '"!t +i!)ti"n
,Ast4B @
0.5 × 35 415
×⌊1−
√
6
1−
4.6 × 50 × 10 35 × 10
3
3
2
× 202
⌋ × 10 × 202
As per c%a;se -!0#0#!#! o I(:!!1-12!! ,Ast4min @ 2#10 ×
f ctm f yk
× btd
BY: ABHISEK PANDA Crom tab%e -0#' ,Pae-$"4o I( :!!1-12!! Cctm@1#" N7mm1 C*9@ 3!' N7mm1 Bt@!222 mm D @ 121 mm ,Ast4min@$'3#$'! mm1 A%so same c%a;se specied ,Ast4min@2#22!$btd @ 101#0mm1 ,Ast4ma@2#21'Ac @2#21' × 250 × 1000 =6250 mm1 Spacin o bars as per c%a;se-!0#0#!#!,34 o I(-12!! is5 sma 1& @ 1 × 1'2 @ '22 mm In o;r case5spacin o !0 mm ∅ bars is 2 1000 × π / 4 × 16 S 716.008
@1"2#"!!mmV 1'2 mm A%so as per c%a;se-!'#1#! ,14 o I(:!!1-12!!5 T&e c%ear distance bet)een t&e para%%e% main reinorcin bars s&o;%d not be %ess t&an dG!2@12G!2@$2 mm and 12 mm 5 )&ic&ever is reater D@ areate si8e @ ass;med 12mm or s%abs5 providin !0 mm- ∅ bars 6 11'mm c7c ,,Ast4B4provided @
1000 × π / 4 × 16
2
225
@".$#0! mm1 A%so as per c%a;se -!1#1#15 pae !12 o I(:!!1-12!!5 ;nder rare combination o %oads5t&e maim;m tensi%e stress %imits to 2#" * is to avoid ine%astic strain5 ;ndesirab%e crac9in7deormation o str;ct;re and a%so to acco;nt or %on term creep# e &ave ca%c;%ated t&e stee% area ta9in *d@2#"+ *9 , as per c%-!'#1#$#$ I(:!!112!!4 (onsiderin t&e )orst case i#e rare combination o %oads5 additiona% stee% area reM;ired @!
− 0.8 0.87
@ 2#2"2 @ " o reM;ired stee% area#
So " o ,Ast4reM;ired @
8 100
× +!0#22' @ '+#1" mm1
Ast to be provided@+!0#22'G'+#1"@++$#1" (At,B>!"0. 493.61 2
mm1
".$#0!
mm1
,o94
BY: ABHISEK PANDA (ii, A!$ " t# $#"ng #"ng +i!)ti"n
Providin !1mm,Ast4< @
0.5 × 35 415
,Ast4min@2#10 ×
×
bars5
∅
[ √ 1−
f ctm f yk
6
1−
4.6 × 33 × 10 3
35 × 10
2
× 190
]
3
× 10 × 190
@ 3"2#'$ mm1
, c%-!0#0#!5I(:!!1-12!!4
×b f ×d
Cctm@ 1#" N7m1 ,tab%e-0#' o I(:!!1-12!!4 ,Ast4min @2#10 ×
2.8 415
× 1000 × 190 @$$$#$2! mm1
A%so as per same c%a;se 5 ,Ast4min @2#22!$btd@13+ mm1 ,Ast4ma@ 2#21'Ac@2#21' × 250 × 1000
@01'2 mm1
Spacin o bars as per c%a;se-!0#0#!#!,3 o I(:!!1-12!! is5 Sma S@
1&@1 × 250 =¿ '22 mm or 1'2mm , sma%%er va%;e is ta9en4 1000 × π / 4 × 12 480.53
2
@1$'#$0mm
Hence providin spacin o bars 6!+' mm c7c / ;sin !1mm ∅ bars 2
,,Ast4%4provided @
1000 × π / 4 × 12 175
@030#$2 mm1
A%so as per c%a;se-!'#1#!,14 o I(:!!1-12!!5 t&e c%ear distance bet)een t&e para%%e% main reinorcin bars s&o;%d not be %ess t&an dG!2@12G!2@$2 mm or 12 mm ,%arer va%;e is ta9en4# A%so asper c%a;se-!1#1#15P-!12 o %oads 5t&e ma tensi%e stress in stee% is %imited to 2#" *9 to avoid ine%astic stain 5;ndesirab%e crac9in7deormation o str;ct;re / a%so to acco;nt or %on term creep# Hence more area reM;ired is @ ,!
− 0.8 0.87
4,Ast4reM;ired
@2#2" × 3"2#'$@$"#33 mm1
BY: ABHISEK PANDA ,Ast%4reM;ired or creep crac9in @3"2#'$ +¿ $"#33 @'!"#.+ mm1 030#$2 mm1 ,Ast4<#prov@030#$2 mm1 Cor detai%ed reinorcement provision5 p%ease reer to Appendi B attac&ed )it& t&is t&esis#
∗
3.6.7 S@EAR C@EC IN INTERIOR DEC SLAB PANEL:
;"+#23' KN7m @ Ed#
[ 0.12 k ( 80 ρ f
rdc @
1
)
0.33
ck
]
+ 0.15 σ cp b)d
dc @,minG2#!' σ cp 4b)d K@!G
√
200
d
@ !G
√
200 250
,c%a;se- !2#$#15 I(:!!1-12!!4
,minim;m4 @!#".3 1#2 ,o94
min@ 2#2$!K $71 c9!71 @2#2$! × 1.9953 /2 × 350.5 ρ1=
@2#3+" and σ cp =0
A st
≤ 2#21 bw d
As% @, Ast4B 71
@".$#0!71@330#"2 mm1
b) @!2225 d @ 121 ρ1 @ 1#1! × 10− 3 @2#2211! 2#21
dc@
,o94
[ 0.12 × 1.894 × ( 80× 0.00221 × 35 ) ] × 1000 × 250 0.33
@!2$#0"3 KN7m
,dc4min@!!.#'2 KN7m So minim;m s&ear resistance isdc@ !!.#' KN7m No s&ear reinorcement is necessar* in s%abs# 3.6.4 DESIGN OF CANTILEVER SLAB:
≫ Ed @ "+#23' KN7m
BY: ABHISEK PANDA
Fig-13 (C$nti#0! >"!ti"n " S#$%, 3.6.4.1
D$+ #"$+ "nt:
Hand rai% ,%;mp s;m4@1 KN
@$#3' 9N-m
#(#( post @ 2#!' × 0.15 × 1 × 25
@2#'01 9N
@'#1' 9N
BY: ABHISEK PANDA ?S@!1#!' KN-m earin coat @ 2#2"2 × 1.05 × 22 @!#"' KN
Li0 #"$+ "n !%:
<#< @322 97m1@3 KN7m1
,c%- 12. o I(:0-12224
"nt +/ t" &'# #"$+:
As per I(-0:12!25 on%* I(-c%ass A / I(-c%ass-B e&ic%es can come to t&e canti%ever portion5since it can &ave a minim;m distance !'2 mm rom 9erb #
BY: BY: ABHISEK PANDA Fig-1; (8'# #"$+ "n )$nti#0! #$%,
Fsin I(-!!1:12!!5 Anne;re:B-$,145Pae-1+.5 efective dept& ,Be 4@ 4@ !#1aGb! a@2#0' m b!@ 0.25 + 2 × 0.080
@2#3! m
Be @!#1 @!#1 × 0.65 + 0.41 @!#!. m
√
dreM;ired @
6
119 × 10 3
0.36 × 35 × 0.48 × 10
× ( 1 − 0.416 × 0.48 )
@!'0#"2 mm Providin 32 mm c%ear cover /!0 mm
bars5
∅
Efective dept& provided is ≫ !'0#"2
dprovided @322-,32G"4@$'1 mm
,o94
3.6.9 REINFORCE REINFORCEENT ENT IN CANTILEVER SLAB:
?ain reinorcement is iven b* ,Ast4main @
0.5 × 35 415
[ √ 1−
6
1−
4.6 × 119 × 10 3
35 × 10
2
× 352
]
@.0"#32'0 mm1 Spacin o !0 mm- ∅ bars is iven b* S
π
@!222 × × 16 4
2
@12+#0 mm
3
× 10 × 352
BY: BY: ABHISEK PANDA Providin !0 mm-
∅
bars 6 !.2 mm c7c5
,Ast4main @ !2'"#11 mm1 Distrib;tion moment is iven b* ?dc @ !#' × [ 0.3 × 56.043 + 0.2 × 25.02 ] @$!#.3! 9N-m Distrib;tion reinorcement is ,Ast4dc @ $3.#1 mm1= Providin !1mm- ∅ bars 6 !+' mm c7c ,Ast4dcOprovided @030#1+ mm1
$3.#1 mm1
,o94
Detai%in o reinorcement is done in Appendi-B
∗
3.6. 3. 6.1 1
C@EC EC FO FOR S@ S@EAR IN CA CAN NTIL ILEV EVER ER POR ORT TIO ION N:
Tota% T ota% s&ear@dead %oad s&ear G %ive%oad s&ear @ 1$#!01 + ¿ !#' ×
5.7 1.19
+ 2.4 = 97.411
,)&ere !#!.@ be ,Anne-B$5I(:!!1-12!!44 Desin s&ear @ !#' × 97.41 @ !30#!!' 9N@Ed As per c%a;se-!2#$#1,14 o I(:!!1-12!!5 S&ear resistance o a str;ct;re is iven b* dc @2#!19
( 80 ρ
1/ 3
1
f ck ) + ( 0.15 σ cp ) b w d
S;bWect to min dc@,minG2#!' σ cp 4b)d K@!G
√
200
d
@!G
√
200 400
@ !#+
1#2
,o94
!71 min@2#2$!9$71 c9 c9
@2#2$! × 1.713 /2 × 351 /2
ρ
!
@
A sl sl bw d
@
1058.22 1000 × 400
@2#3! @ 1#03' × 10− 3
BY: BY: ABHISEK PANDA 1 /3
dc@2#!1 × 1.71 × ( 80 × 2.645 × 10− 3 × 35 ) ,dc4min@2#3! × 1000 × 400 Xdc @!03 9N
O × 103 × 400
@!'"#.$ 9N
@!03 9N
Ed @!30#!' 9N
,o94
A%so I(:!!1-12!!5c%-!2#$#1,'4 specied t&e o%%o)in criteria# ed ≤ 2#'b)dv cd cd @2#0!
− f ck
O
310
− 35
@2#0!
O@2#'$1
310
So 2#'b)dv cd cd@ 2#' × 1000 × 400 × 0.532 × 0.36 × 35 @!$32#03 KN
Ed
,o94
T&e %ive %oad app%ied is 2#0' m rom t&e ede o s;pport# T&e same c%a;se species t&at is t&e app%ied %oad is at a v i#e 2#'d 2#'d to 1d ,122m ,122mm m to "22mm "22mm 45t&en 45t&en t&ere )i%% be red;ction actor m;%tip%ied to ed#So in o;r case t&e dead %oad s&ear )i%% be as its i#e 1$#!01 KN B;t %ive %ive %oad s&ear )i%% be ,!#' ×
57 1.19
β @ red;ction actor@av71d
av@ 0'2 mm β @
650
%s@!#' ×
@2#"!1'
2 × 400 57 1.19
× 0.8125
@'"#$++KN
Tota% T ota% s&ear@"3 9N ed@!10 KN dc@!03 KN
!10 9N
,o94
4
×β
BY: ABHISEK PANDA ∗
It ma* be noted t&at t&e do)n)ard )ind orce )i%% be on%* ' × !#"@. KN aainst %ive %oad "0#11 KN# Hence5 t&ere is no need o combination o %oads ta9in )ind efect in to acco;nt#
3.6.11 DEFLECTION C@EC FOR CANTILEVER SLAB: T&e deection )i%% be c&ec9ed as per is 3'0:1222#since )e &ave diferent %oadin at diferent positions5)e &ave to consider t&em separate 3.6.11.1
Fi!t T!$i# (Ann-) " i ;56:2,:
S'"!t t! +)ti"n b× d
,Ir4end@
12
,Ir4mid @ Ccr @
3
3
=
1000 × 200 12 8
22.5 × 10
=6.67 × 108 mm4
mm , ( I gr ) at 0.65 m =29.35 × 10 m m 4
8
4
0.7 √ f ck =4.141 N / m m
2
8
,?r4end@
4.141 × 6.67 × 10
=27.6 kN − m
100
8
,?r4mid @
4.141 × 22.5 × 10 150
=62.115 kN−m
,?r42#0'm@+3#!'" 9N-m Ec @ 5000 √ f ck =2.958 × 104 N / m m2 Es @
5
2 × 10
N
E s , m= =6.76 E c mm 2
Transormed area o compression stee% @,m-!4ZAsc @$31+#.$mm1 Transormed area o tension stee%@mZAst @ 7152.08 m m2
1000 ×
x×
x 2
+ 3427.93 × ( x − 46 )=7152.08 × (152 − x )
[r 500 x2 + 10580.01 x − 1459363.34 =0 [r @33#3+mm At mid5 500 x2 + 10580.01 x − 1960008.94 =0 \@'1#.1mm At 2#0'm5 500 x2 + 10580.01 x − 2158693.7 =0 \@''#.+mm
BY: ABHISEK PANDA
Fig-15 (A!$ " Rin"!)nt in +i!nt )ti"n " )$nti#0! #$%,
,Ir4end@
1 3
× 1000 × ( 44.47 ) + 3427.93 × ( 44.47 − 46 ) + 7152.08 × ( 152 − 44.47 ) 3
2
2
@ 1.117 × 10 8 m m 4 ,Ir4mid @ 3.1264 × 108 m m4 ,Ir4at 2#0'm @ 5.58 × 108 mm4 8@ %ever arm iend@2#.d@!$0mm58mid@110mm58at 2#0'm@1'!mm ,?4end@9erbGport/rai%inG%#d;e pedestrian@+#3"G$#3'G2#.+G3#$'G$#13@!.#3.9n-m ,?mid4@)#cG#( s%ab@!$#!19n-m ?2#0'm@)&ee% %aod@30#+29n-m ¿ i m
,Ief 4end@
1.2 −
(
❑ ¿ I I I
(|gr )end ( !k ) (|eff )end <¿ (|r )end <¿ I − ¿ I (|r )mid (|eff ) mid =¿
)( )
(|r )end end x bw × × 1 − end d end b ( m )end d end (|r )end
to
8
1.117 × 10
@
1.2 −
27.6 19.49
×
136 152
(
1−
)
44.47 152
@ 3.67 × 108 m m4
BY: ABHISEK PANDA
So
I I 8
(|r )mid = 3.1264 × 10 mm (|eff )mid =¿
4
,Ief 4at 2#' m@ 88.84 × 10 8 m m4 >¿ ,Ir4at 2#0'm So ,Ief 4at 2#0' m@ 29.35 × 108 m m4 3
3 10212 × ( 1800 ) wl = =1.83 mm , " 1 4end@ 4 8 3 E c I r 3 × ( 2.958 × 10 ) × ( 3.67 × 10 )
, " 1 4mid @
(
15350 × 1800
(
4
8 × 2.958 × 10
, " 1 4At 2#0'm @
1
E c I r
[
)
3
) × ( 3.1264 × 10 ) 8
1.15 × w × l 2
2
+
]
wl 3
= 1.21 mm
3
=0.64 mm
Tota% deection d;e to s&ort tern %oadin @$#0"mm D)ti"n +/ t" '!in*$g acs@9$Ψcs%1 9$@2#',or canti%ever4 pt@2#+ 5pc@2#3 pt − pc
=0.26 < 1.0 √ p t 2#1'≤ pt − pc = 0.3 < 1.0 ( !k ) 93@2#+1
,Ψcs 4end@ 3.9 × 10− 7 acs@2#0$mm Note-:&ere at ot&er points5t&e ]Ψcs )i%% ive m;c& %esser va%;e re%atin %east s&rin9ae deection# Deection d;e to creep Ece @
Ec 1+#
# @!#0,or 1"-da*s strent&4
Ece @ 1.1377 × 104 N / m m2 m @Es7Ec @ !+#'" Transormed area or compression stee% ,m-!4Asc @ ."03#+ mm1 Transormed area or tension stee% mAst @ !"'."#.$ mm1
x 2
G ."03#+×,-304 @ !"'."#.$×,!'1-4
[r '221G1"30$#0$ $1"2"!$#'0 @ 2 [r @ '+#32 mm
BY: ABHISEK PANDA At mid: '221 G 1"30$#0$ '!32+20#'0 @ 2 [r @ +0#"'$mm At 2#0' m: '221 G 1"30$#0$ '0'+$"3#"$' @ 2 [r @ "!#0' mm Same %ever arm as ;sed beore )i%% be ;sed# So Simi%ar%* Ir#mid @ +#$×!2" mm3 and Ir at 2#0'm @ .#11×!2" mm3
@ 1#$2×!2" mm3
So Ir#end Ief#end Ir#end ,[K4 Simi%ar%* ,Ief 4mid@ − 4.17 × 108 mm4 <¿ ,Ir4mid ,Ief 4mid @ 7.3 × 108 mm4 ,Ief 4at 2#0'm @ 29.35 × 108 mm4 B;t in t&is case 5or ca%c;%atin perm# (reep ;sin above eM;ations / E ce5on%* permanent %oad )i%% be ta9en care o #no %ive %oad )i%% be t&ere So ,4end@9erb G#( po%/rai%in@'#1'G1#'01@+#"!1 9N7m ,4mid @#(G#( s%ab@!#"'G!$#'@!'#$' 9n7m
( $ end ) ×l ( $ mid ) ×l 3
,ai#cc4perm@
3 E ce × I eff
+
3
8 E ce × I eff
@,1#$.G!#$'4mm@$#+3mm S&ort term deection d;e to permanent %oad 7 % 812 × 10
3
3
3
3
15 % 35 × 10 × 1800 × 1800 + ai#perm @ @!#3G!#1!@1#0!mm 4 8 4 8 3 × 2 % 958 × 10 × 3 % 67 × 10 8 × 2 % 958 × 10 × 3 % 1264 × 10
So deection d;e to creep is iven b* $#+3-1#0!@!#!$mm Tota% deection is @$#0"G2#0$G!#!$ @'#33mm Ho)ever t&is deection )i%% be %esser in practica% as more acc;rate ca%c;%ations )i%% revea% t&e res;%t As per c%a;se !1#3#! o I(:!!1-12!!5t&e deection s&o;%d be %imited to @ cantile&er span 375
BY: ABHISEK PANDA @
1800
= 4.8 mm < 5.44 mm
375
N"& #t )')* it $ >! )#-23.2 " i:;56-2 s@112#1+5 pt@2#+ ?odication actor@!#1,-35p-$"4 pc@2#3 ?odication actor@!#!1 span =7 ( f!r cantile&er ) dept' span ?odied @+×!#!1×!#1@.#32" dept' span [;r @ 0.#32",o94 dept'
Basic
B;t revisin t&e section as providin !0 R bars 11'mm c7c / !1mm R bars611'mm a%ternative%*/rec&ec9in5t&e deection criteria is satised# Hence tota% reinorcement provided is iven b* !$.0 mm1# 3.6.11.2 S)"n+ T!$i#- R)')*ing " +)ti"n "! C$nti#0! S#$%(Ann ) " IS-;56:2,: S'"!t t! +)ti"n b× d
,Ir4end@
12
,Ir4mid @ Ccr @
3
3
=
1000 × 200 12 8
22.5 × 10
=6.67 × 108 mm4
mm , ( I gr ) .65 m= 29.35 × 10 mm 4
8
0.7 √ f ck =4.141 n / m m
4
2
8
4.141 × 6.67 × 10
,?r4end@
=27.6 kN − m
100
8
,?r4mid @
4.141 × 22.5 × 10 150
=62.115 kN−m
,?r42#0'm@+3#!'" 9n-m Ec @ 5000 √ f ck =2.958 × 104 N / m m2 Es @
5
2 × 10
n
E s , m= =6.76 E c mm 2
Transormed area o compression stee% @,m-!4ZAsc @$+12#.0mm1 Transormed area o tension stee%@mZAst @ 9436.96 m m2
@ 1000 × x × + 3720.96 × ( x − 46 )= 9436.96 × ( 152− x ) 2
@
2
500 x
+ 13157.92 x − 1605582.08 =0
BY: ABHISEK PANDA @@3'#21mm At mid @ 500 x2 + 13157.92 x − 2549278.08 =0 \@'.#3'mm At 2#0'm @ 500 x2 + 13157.92 x − 2811436.83 =0 \@01#.+mm ,Ir4end@
1 3
3
2
× 1000 × ( 45.02 ) + 3720.96 × ( 45.02 − 46 ) + 9436.96 × ( 152 − 45.02 )
2
@ 1.38 × 108 mm4 ,Ir4mid @ 4.2 × 108 m m4 ,Ir4at 2#0'm @ 5.27 × 108 m m4 8@ %ever arm# 8end@2#.d@!$0mm58mid@110mm58at 2#0'm@1'!mm ,?4end@9erbGport/rai%inG%#d;e pedestrian@+#3"G$#3'G2#.+G3#$'G$#13@!.#3.KN-m ,?mid4@)#cG#( s%ab@!$#!1KN-m ?2#0'm@)&ee% %aod@30#+2KN-m ¿ i m (|r )end end × × ,Ief 4end@ 1.2 − ( m )end d end
(
1−
x end d end
)
@
4.5 × 10
8
mm
to
4
(|r )end ❑ ¿ I I I
(|gr )end ( !k ) (|eff )end <¿ (|r )end <¿ I − ¿ I (|r )mid= 4.2 × 108 mm4 (|eff )mid =¿
,Ief 4at 2#0' m@
8
54.44 × 10
4 m m <¿ ,Ir4at 2#0'm@
8
29.35 × 10
mm
4
3
wl =1.5 mm , , " 1 4mid , " 1 4end@ 3 E c I r 1
E c I r
[
1.15 × w × l 2
2
+
]
wl 3
3
=0.64 mm
@
0.9 mm
5
, " 1 4At
2#0'm
@
BY: ABHISEK PANDA Tota% deection d;e to s&ort tern %oadin @$#23mm D)ti"n +/ t" '!in*$g acs@9$Ψcs%1 9$@2#',or canti%ever4 pt@2#.1 5pc@2#31' 93 0.37 < 1.0 2#1'≤ pt − pc = 0.495< 1.0 ( !k ) ,Ψcs 4end@ 5.55 × 10− 7 acs@2#.mm Deection d;e to creep-: Ece @
Ec 1+#
# @!#0,or 1"-da*s strent&4 Es N 4 =17.58 Ece @ 1.1377 × 10 5m@ 2 E ce mm
Transormed area o compression stee% @,m-!4ZAsc @!2+!2#0"mm1 Transormed area o tension stee%@mZAst @ 24541.68 mm2 Dept& o ne;tra% ais at diferent section At end at mid at 2#0'm \@0$#1mm @"'#'00mm @.!#2"mm ,Ir4end@ 2.80 × 108 mm 4 5 ,Ir4mid@ 9.03 × 108 m m4 ,Ir42#0'm@ 2.80 × 108 mm4 ,Ief 4mid@ − 5.63 × 108 m m4 <¿ ,Ir4mid ,Ief 4end @ 6.08 × 108 mm4 ,Ief 4at 2#0'm @ 47.80 × 10 8 m m4 = )&ic& s&o;%d not be reater t&an I r at 2#0'm ,4end@+#"!1 9N7m5 ,4mid @!'#$' 9N7m
( $ end ) ×l ( $ mid ) ×l 3
,ai#cc4perm@
3 E ce × I eff
+
3
8 E ce × I eff
@,1#1G!#!4mm@$#$mm S&ort term deection d;e to permanent %oad 3
7.812 × 10
3
3
3
× 1800 15.35 × 10 × 1800 + ai#perm @ @!#3G!#1!@1#0!mm 4 8 4 8 3 × 2.958 × 10 × 3.67 × 10 8 × 2.958 × 10 × 3.1264 × 10 Deection d;e to creep @ 2#0.mm ≈ 2#+2mm
Hence tota% deection @ $#23 G 2#.G2#+ @ 3#03 mm 3#" mm ,o94 3.6.12
ANC@ORAGE LENGT@ OF BARS:
3.6.12.1
Int!+i$t D)* S#$% P$n#:
BY: ABHISEK PANDA (i,
In '"!t +i!)ti"n:
main bars @ !0 mm ,%b#net4B@ ( a lb × A st re)
@
A st pr!&ided ( a
@
6 11' mm c7c
A st re)
,pae no-!'15 c%-!'#1#3#$5 o I(:!!1-12!!4
A st pr!&ided
716.005 893.61
@2#"0'
@! ,or strai&t bars4
%b @9 @
∅
∅ ∅
× 0.87 f y 4 f bd
16 × 0.87 × 415
, bd@$#2 N7mm1 tab%e-!'#$ o pae -!'25I(:!!1-
4 × 30
12!!4 @3"!#3 mm A%so 9@$2
or ?$' concrete o tab%e-!'#3 o I(:!!1-12!!O
%b @ $2 × 16 @ 3"2 mm %ets ta9e %b@3"2mm ,%b#net4B @! × 480 × 0.865 @3!'#2 mm * 312 mm %b#min @2#$%b @!33 mm
,or tension anc&orae4
%b#min @2#0%b@1"" mm
, or compression anc&orae4
%b#min@!2 %b#net
@!02 mm or !22 mm
%b#min
(ii, A st% re) A st % pr!&ided ( a
∅
@!
,o94
In #"ng +i!)ti"n:
@
480.53 646.30
@2#+3$
2#+' ,or strai&t bars4
BY: ABHISEK PANDA %b @9
∅
@$2 × 12 @$02mm 12 × 0.87 × 415
or %b@
4×
@ $0!#2' mm
So %b @ $02 mm %b#net @! × 360 × 0.75 @ 1+2 mm %b#min @2#$%b@!2" mm
,tension anc&or4
@2#0 %b@1!0 mm %b#min @!2 %b#net
∅
,compression anc&or4
@!12 mm or !22 mm
%b#min
3.6.12.2 A st% re) A st % pr!&ided
C$nti#0! #$%:
@
872.56 1058.22
@2#"13
,c%-!'#1#3#$ o I(:!!1-12!!4
( a @!
%b@9
∅
@$2 × !1@$02 mm
%b#net @2#"13 × [email protected]#03 $22 mm 3.6.13 CANTILEVER SLAB STIFFENING: As per c%a;se -!0#0#!#3-,!4,a4/,b4 o I(:!!1-12!!5t&e ;ns;pported ede o a s%ab para%%e% to trac /be*ond t&e c%ear road )idt& /&avin var*in dept& s&a%% be stifened at an* partic;%ar point to t&e resistin moment o '22mm adWacent strip at t&at partic;%ar point# ,Ast B42#'m stripOin main s%ab bet)een irder @ ,Ast B42#'m stripOin canti%ever section @
93.61 2
1396.26
,Ast %42#'m stripOin main s%ab bet)een irder @
2
= 698.132 m m2> 446.805 mm2 ( !k )
646.27
,Ast <42#'m stripOcanti%ever s%ab bet)een irder @ 3.6.1;
= 446.805 mm2
2
=323.135 mm2
646.27 2
=323.135 mm2
DESIGN OF LONGITUDINAL GIRDER:
BY: ABHISEK PANDA Efective span@!"#$$ m rid )idt&@322mm s%ab t&ic9ness@1'2 mm ?ain beam spacin@1#' m Dept& o rib @ !322 mm Tota% dept& @!322G1'2G!'2@!"22mm@D ($,
REACTION FACTOR:
(o;rbons met&od can be app%ied to o;r desin since span to dept& ratio is reater t&an 1# Arranement o c%ass-AA trac9ed %oad or maim;m eccentricit* is as iven be%o)#
Fig-16 (A!!$ngnt " )#$-AA t!$)*+ #"$+ "! $i/ ))nt!i)it?,
As per (o;rbons orm;%a 5 @
∑w
!
n
+ ∑ I
∑d
deO
2
x
@eaction actor It ma* be noted t&at A@c since t&e same %oadin can be reversed in t)o cases# A@
2 $ 1 3
!G
3 I 2 × 2.5
2
× I
× 2.5 × 1.1 O
n@ no o irders @$ d@spacin o irders@1#' m !@$'2 KN
BY: ABHISEK PANDA ¿ ⇒ A@c@
w 3
!G
3 × 1.1 2 × 2.5
O
, @+22 9N @ tota% a%e %oad 4
B @ 1!7$!G2O @ 1!7$ @2#$$ (%,
DEAD LOAD:
F!" )$nti#0! #$%:
ei&t o parapet rai%in@1 9N7m earin coat@2#2"2 × !#2' × 11@!#"3" 9N7m (anti%ever s%ab@2#$ × !#" × 1' @ !$#' 9N7m Kerb@2#1" × 0.75 × 25 @ '#1' 9N7m Parapet @ 2#32 9N7m Tota% dead %oad rom canti%ever s%ab @1$9N7m XTota% dec9 s%ab %oad @1 × 1$G"#30 × '#3 @.!#0"3 9N7m
2#3 × 1.4 × 25 @ !'#'2 9N7m Tota% )ei&t per irder @ ,$$#1$G!'#'4@3"#+" ≈
49
9N7m
C!" gi!+!:
Dead )ei&t o one cross irder is@2#$ × !#3 × 25 @!2#'2 9N7m T&is %oad epands ;p to 1#' m bot& sides on intermediate irder Hence reaction rom cross irder @ !2#'2 × 1#'@10#1' 9N
BY: ABHISEK PANDA T&e end cross beams )i%% not be considered since t&eir %oads )i%% be direct%* transerred to s;pport t&ro;& piers# Hence end reactions need not be considered# T&e presentation is as o%%o)s
Fig-17 (R$)ti"n !" C!" Gi!+! "n L"ngit/+in$# Gi!+!,
?aim;m dead %oad bendin moment at center o span is5 ,?ma4dead %oad @
49 × 18.33
2
8
+
26.25 × 18.33 4
+
26.25 × 18.33 4
@1$22 9N-m
Tota% dead %oad s&ear at s;pport is ,dead4s@ (),
49 × 18.33 2
+
26.25 × 2 2
+
26.25 2
@3""#30
3".9N
LIVE LOAD BENDING OENT IN GIRDER:
Span @!"#$$ m5 Impact @!2= or maim;m bendin moment to occ;r5 t&e %ive %oad is p%aced centra%%* on t&e span as s&o)n be%o)#
BY: ABHISEK PANDA
Fig-14 (P"iti"n " C#$-AA t!$)*+ L"$+ "! $i/ %n+ing "nt,
1 2
,
3.6825 + 4.5825
4^ × 700 =2892.75 +N -m
2893 kN
−m Bendin moment )it& impact / reaction actor ,?%4o;ter irder@2#''$ × 1.10 × 2893 =1759.812 +N −m 1760 kN−m ,?%4inner irder@2#$$$ × 1.10 × 2893 =1059.711060 kN − m
(+,
is
iven
b*
LIVE LOAD S@EAR:
Cor s&ear orce to be maim;m5t&e %oadin s&o;%d be arraned as s&o)n be%o)#
Fig-19 (Li0 #"$+ $!!$ngnt "! $i/ '$! "!) ,
BY: ABHISEK PANDA &ee% %oad p%aced at startin )i%% be ivin maim;m s&ear i#e# startin point o eit&er end= eit&er ]A or ]B # Aain one )&ee% &as to be p%aced on one irder to ive severe efect as t&e distrib;tion %oad )i%% occ;r on%* or one )&ee% %oad# eaction o ])1 on irder-B is iven b* $'2 ×
0.45
eaction o ]1 on irder-A is iven b* $'2 ×
2.5 2.05 2.50
@0$ 9N @1"+ 9N
Tota% %oad on irder B @$'2G0$ @ 3!$ KN ?aim;m reaction on s;pport o irder ]B is @
413 × 16.53 18.33
@ $+1#33 9N
?aim;m %ive %oad s&ear inc%;din impact @!#! × 372.44 =409.68 410 kN
TABLE-;(Dign Bn+ing "nt $n+ S'$! "!) "n Gi!+! 4
Bn+ing "ntGi! +!
D.L Bn+ing "nt
L.L Bn+ing "nt
T"t$# Bn+ing "nt
Unit
[;ter >irder
1$22
!+02
3202
9N-m
Inner >irder
1$22
!202
$$02
9N-m
S'$! F"!)Gi!+ !
D.L S'$!
L.L S'$!
T"t$# S'$!
Unit
[;ter >irder
3".
3!2
"..
9N
Inner >irder
3".
3!2
"..
9N
(, CALCULATION OF BENDING OENT USING @ENDR<-AEGAR ET@OD: nE I r
A @,
12 4
π
4
EI 4 3 '
()
BY: ABHISEK PANDA ¿ 2 -. ' π C@ 4, 4, 4 E I r 2n
¿
c@
E I 1 E I 2
@!
<@ span o bride dec9 @ !"#$$ m & @ spacin o %onit;dina% irders @ 1#' m n @ n;mber o cross irders @ ' EI @ e;ra% riidit* o %onit;dina% irder (J @ torsiona% riidit* o %onit;dina% irder E I 1 / E I 2 @ e;ra% riidities o t&e o;ter / inner %onit;dina% irders E I r @ e;ra% riidit* o one cross beam #
Fig-2 (Si>#i+ T-%$ L"ngit/+in$#gi!+! )ti"n,
As per c%a;se +#0#!#1 o I( :!!1-12!! 5 t&e efective ane )idt& )i%% be ca%c;%ated# Bef# ! @ 2#1 ×b 1+ 0.1 l 0
@2#1 × 1.05 + 0.1 × 18.33 =2.043 m
2#1%2@$#00m V 1#23$ m B)@2#3 m Bef @1 × 1#23$G2#3
,o94
BY: ABHISEK PANDA @3#3"0 m B@ 1#' m 3#3"" m X bef @1#'m
Fig-21 (Si>#i+ T-%$ C!" gi!+! )ti"n,
bef#!@2#1b!G2#!%2 @2#1 × 2.1037 + 0.1 × 0.7 × 2.5
2#1%2 @2#1 × 0.7 × 2.5=0.35 > 0.596 m Xbef#!@2#$' m bef @1 × 0.35 + 0.3=1 m b @3#'2+' mV!m
,o94
L"ngit/+in$# gi!+!: A 1+ A
2
A 1 x 1 + A 2 x 2 x´ =
❑
@
2.5 × 0.25 × 0.125 + 1.55 × 0.4 × 1.025 2.5 × 0.25 + 1.55 × 0.4
@2#'+ m
I<@
2.5 × 0.25 12
3
3
0.4 × 1.55 + ( 2.5 × 0.25 ) × ( 0.448 ) + + ( 0.4 × 1.35 ) × 0.452 = 0.3795 m 2
2
12
4
BY: ABHISEK PANDA C!" gi!+!: A 1 / 1+ A 2 / 2 x´ = A 1+ A 2 1 × 0.25 × 0.125 + 0.3 × 1.55 × 1.025 1 × 0.25 + 0.3 × 1.55
I r =
1 × 0.25 12
0.2261 m
3 2
+ 1 × 0.25 × 0.585 +
0.3 × 1.55
@2#+!2 m
3
+ 0.3 × 1.55 × 0.3152
12
4
18.33
A @
2.5 12 4
π
4$ ×
×
5 × E × 0.2261
E × 0.3795
=144.64
J @ a3 b b 2500 = =10 a 250
¿ ⇒ 0= 0.312 Brides 4
, Tab%e-+#$ o N# Kris&na aW; 5Desin o
b 1550 = = 3.875 a 400
¿ ⇒ 0= 0.2787 J @ a$ b @ 2#$!1 × 0.253 × 2.5 + 0.2787 × 0.4 3 × 1.55 @ 2#2$." m4 2
C@
π 2.5 0.43 E × 0.0398 =0.0102 0 × × 2 ×5 18.33 E × 0.2261
T)o etreme va%;es o ]C can be ta9en into ana%*sis i#e# C @ 2 or C @ 1 %
¿ 2
Ta9in C @ 2 or ana%*sis 5 (|1 − 2 ) 0
√(
( 3 √ A ) 3 + 3 √ A
2 3 = 2 4 +¿
)
BY: ABHISEK PANDA
¿ ¿ ⇒ 2 3 @
4 ¿ 5 2 4=0.83 ( 3!r !6ter girder , 3 =0 ) 2 ❑
2 4=¿ 2#$0 ,Cor inner irder5 C @ 24
Dign "nt "! t!i"! gi!+! :
Dead %oad moment @ 1$22 9N-m
@ 1".$ × 1.1 × 0.83
Tota% moment @ 3.3!#22 9N-m
4060 k
@ 103!#$! 9N-m N-m as ca%c;%ated ;sin (o;rbons met&od
Int!i"! gi!+!:
Dead %oad moment @ 1$22 9N-m
@!!3'#0$ 9N-m
3446 kN − m > 3360 kN − m
as ca%c;%ated b* (o;rbon
(, ODIFIED COURBONS ET@OD:
e : Internationa% Jo;rna% o scientic / Enineerin researc& o%;me 3 5 Iss;e $ 5?arc& 12!$ ,ISSN 111. -''!"4 St;d* o Efectiveness o (o;rbon ] s T&eor* in t&e Ana%*sis o T beam brides 7
B*: ?#># Ka%*an / &etti /# P# S&riram As per Wo;rna%5 t&e* &ave st;died t&e 3-%ane / 0-%ane bride o spans var*in !'m-$' or minim;m $-%onit;dina% irders var*in n;mber o irders# T&e* &ave combined (o;rbons met&od /ri%%ae met&od ,STAAD pro4 to et t&e res;%ts# As per Wo;rna%5 Pi @
Z correction actor
[r @ e &ave ca%c;%ated a @ c@[;ter irder @2#''$)
BY: ABHISEK PANDA b@inner irder@2#$$$) (orrection actor is iven b*5 Y@ correction actor5@ span o bride \@!"#$$m ¿ y =0 . 000134 × ¿ @ 2#.1!3 ,ro;nded ;p to 3 decima%4 A@(@ ,o;ter irder4 corrected@2#''$Z2#.1!3@2#'2.' B@, inner irder4 corrected@2#$$$Z2#.1!3@2#$20" Tota% bendin moment [;ter irder@1$22G1".$Z!#!2Z2#'2.'@$.1!#32 KN-m Inner irder@1$22G1".$Z!#!2Z2#$20"@$1+0#$$ KN-m [;t o a%% $-ana%*sis5 Hendr*-Jaear met&od ives t&e &i&est moment Desin moment[;ter %onit;dina% irder@!#'Z3++!#$!@+3!!#'2@+3!1 KN-m Intermediate irder@!#'Z$1+0@'!0. 9N-m Desin s&ear S&ear orce @"+!Z!#'@!$3"#'2 9N (g,
DESIGN OF REINFORCEENT OF OUTER GIRDER:
250 1600
(
×
1-0 . 416 ×
250 1600
@!!+"!9N-m Imposed moment ca%c;%ated @+3!1 9N-m@?a ?; VV?a ,&ence ne;tra% ais %ies inside ane section4
)
BY: ABHISEK PANDA ,Ast4reM;ired @
0. 5 × 35 415
×[1 −
√
1−
4 .6 × 7412 × 106 35 × 2500 × 15602
] × 2500 × 1560
@!$+32#12 mm1 providin $2mm dia bars as main reinorcin bars5 Tota% bars reM;ired @
So Ast#reM @ @ .3'$#02 mm1 Providin !0- 1" mm R bars in 3- ro)s5 ,Ast4provided @ ."'1#2$ mm1 ∗ Cor detai%in o reinorcement5 p%ease reer to Appendi-B attac&ed )it& t&is t&esis# (i, CALCULATION OF ANC@ORAGE LENGT@: (%a;se -!'#1#3#$ o I(:!!1-12!! O/t! gi!+! a a (|s ) pr!&ided 8 l bmin
❑ ( a l b
BY: ABHISEK PANDA ¿
A A (|st ) pr!&ided @! at a section (|st ) re)d
❑ ¿ ( a @!
So % b@ @
()( ) ∅
×
4
30 4
×
f yd f bd
0.87 × 415 3
@.21#01' * 903 mm
[r %b@9_@[email protected] %b#net @%[email protected]$mm %b#min@2#$%b@1""#.mm or !22mm or !2_@$22mm Inn! gi!+! % b@
28 4
×
0.87 × 415 3
=842.45 * 843 mm
%b#net @"3$mm
2 3
%b#net,!0#'#!#3# o I( :!!1-12!!4
@021mm,o;ter irder4 @'01mm,inner irder4 (H, BAR CURTAILENT:
As )e 9no) )&en t&e %oad is divided in t&e same ratio as t&e span is divided at a point )&ere B#?oment to be ca%c;%ated5 maim;m B#? is obtained# In I
(i, L"$+ $t /$!t! >$n $t ;.5425 !" n+ " gi!+!
BY: ABHISEK PANDA Fig-22.1 (B$! )/!t$i#nt-8'# #"$+ $t /$!t! >$n, T&e %oad arranement is as s&o)n in t&e ;re ta9in I
@
1 2
[ 3.44 +2.764 ] × 700 =2171.40 kN −m
Dead %oad moment: @ 488.46 × 4.5825 − 49 × 4.58252 × 0.5 =1724 kN −m As per H-J met&od5 )&ee% %oad B?
inc%;din
impact
/
coecient
@ Tota% desin moment on o;ter irder@ 1.5 (1982.5 + 1724=5560 k N − m ) Tota% desin moment on inner irder@ 1.5 (1724 + 1.1 × 2171.40 × 0.36 ) @$"+0 9N-m (ii, L"$+ $t $ +it$n) 6.47; !" n+ " gi!+!
Fig-22.2 (B$! )/!t$i#nt-8'# #"$+ $t 6.47; !" n+ " gi!+!,
&ee% %oad moment@ 700 × [ 3.45 + 4.3 ] × 0.5 =2712.5 kN−m Dead%oad moment@ 488.46 × 6.874 − [ 49 × 0.5 × 6.8742 + 26.25 × 2.2165 ] @1!319N-m Tota% desin b#m on o;ter irder d;e to impact and H#J coecient @ 2712.5 × 1.1 × 0.83 + 2142= 6928 kN−m 1.5
Tota% desin
b#m on inner irders d;e 2712.5 × 1.1 × 0.36 + 2142 =4825 kN − m
to impact and
1.5
(iii,L"$+ $t $ +it$n) 2.29125 !" n+ " gi!+!
H#J coecient@
BY: ABHISEK PANDA
Fig-22.3 (B$! )/!t$i#nt-8'# #"$+ $t 2.29125 !" gi!+! n+,
&ee% %oad moment@ 700 × [ 1.6112 + 2.005 ] × 0.5 @!1009N-m Dead %oad moment@ 488.46 × 2.29125 − 49 × 0.5 × (2.29125 )=991 kN −m Tota% desin moment on o;ter irder@ 1.5 ( 991+ 1.1 × 0.83 × 1266 )=3220.30 k N − m Tota% desin moment on inner irder@ 1.5 ( 991+ 1.1 × 0.36 × 1266 ) =2238.50 kN −m ,94 REJUIRED STEEL AREA AS PER BAR CURTAILENT: (1,L"$+ $t /$!t! >$n $t ;.5425 !" n+ " gi!+! O/t! gi!+!:
Providin !0-$2mm R bars 5,Ast#reMd4[#>@ Note-:3-bars are c;rtai%ed be*ond t&e section providin deve%opment %b#net etension i#e at $#0+.'m rom ends o irders# Inn! gi!+!: ¿ A st% re) @ ¿ ¿ Providin !1-1"mmdia bars 5 Note-:3-bars are c;rtai%ed be*ond t&e section providin deve%opment %b#net etension i#e at $#+$.'m rom ends o irders (2,L"$+ $t $ +it$n) 6.47; !" n+ " gi!+! O/t! gi!+! :
BY: ABHISEK PANDA
¿ Providin !.-$2mm dia bars 5 @ A st % pr!& ¿ ¿ Note-:!-bars are c;rtai%ed at a distance o '#.+!m rom ends o s;pport Inn! gi!+!: ¿ A st% re)
¿ ¿
¿
Providin !'-1"mm dia bars@ A st % pr!& ¿ ¿ Note-:!-bars are c;rtai%ed at a distance o 0#2$!m rom ends o s;pport (3, L"$+ $t $ +it$n) 2.29125 !" n+ " gi!+! O/t! gi!+!:
¿ A st% re)d
¿ ¿
¿
Providin !2-$2mm dia bars5@ A st % pr!& ¿ ¿ Note -:!2-$2mm dia bars are c;rtai%ed rom !#$""m rom ends o s;pport Inn! gi!+!:
¿ A st% re)
¿
Providin "mm R bars 5 A st % pr!& ¿ ¿ ¿ ¿ Note -:"-1"mm R bars are c;rtai%ed rom !#33"1'm rom ends o irder
BY: ABHISEK PANDA
,[FTE >IDE4
,INNE >IDE4 Fig-23 (B$! )/!t$i#nt P!nt$ti"n "! L"ngit/+in$# Gi!+!, (#, CALCULATION OF INDUCED S@EAR AT DIFFERENT SECTIONS: (i, 8'# #"$+ $t t$!ting
BY: ABHISEK PANDA
Ci-13#! ,S&ear orce ca%c;%ation-&ee% %oad at startin4
App%*in impact5 tota% s&ear @3'3#$9N Aain reaction at s;pport is @ Dead %oad s&ear @ Tota% s&ear@"..9N ` .22 9N (ii, S'$! $t 9.165 !" n+ " gi!+!
Ci-13#1 ,S&ear orce ca%c;%ation-&ee% %oad at midd%e4
Trac9 s&ear orce at midd%e is @ Dead %oad s&ear@ Tota% s&ear@!.0#12'`1229N (iii, S'$! $t ;.5425 !" n+ " gi!+!
Ci-13#$ ,S&ear orce ca%c;%ation-&ee% %oad at M;arter span4
BY: ABHISEK PANDA
Trac9 s# at 3#'"1'm@
1 2
[ 0.75+ 0.5536 ] × 413 × 1.1=296.113 kN
Dead %oad s&ear@ 489 − ( 49 × 4.5825 )= 264.46 kN Tota% s&ear@'0!9N (i0, S'$! $t 1.95 !" n+ " gi!+!
Ci-13#3 ,S&ear orce ca%c;%ation-&ee% %oad at !#.' m rom end4 <#< s&ear@$0!#33!9N D#% s&ear @ 489 − ( 49 × 1.95 )=393.45 kN Tota% s&ear@+''9N
(0,
S'$! $t 3. !" n+ " gi!+!
Ci-13#' ,S&ear orce ca%c;%ation-&ee% %oad at $#2 m rom end4 <#< s&ear@$$'#$39N D#< s&ear@3".-,3.Z$4@$319N Tota% s&ear@0+"9N (0i, S'$! $t 6.47375 !" n+ " gi!+!
Ci-13#0 ,S&ear orce ca%c;%ation-&ee% %oad at 0#"+$+'m rom end4 <#< s&ear@1$.#$1'9N D#< s&ear@ 489 − ( 49 × 6.87375 + 26.25 ) =126 kN
BY: ABHISEK PANDA Tota% s&ear@$00 9N (0ii, S'$! $t ;.3425 !" n+ " gi!+!
Ci-13#+ ,S&ear orce ca%c;%ation-&ee% %oad at 3#$"1' m rom end4 Trac9 s&ear at 3#$"1' m @ 2#' 2#+0!G2#'03O×!#!2×3!$ @ $2! 9N Dead %oad s&ear @ 3". ,3.×3#$"1'4 @ 1+' 9N Tota% s&ear orce @ '+0 9N ,viii4 Ass;min bearin @3'2mm / an %i9e compression e%d at an an%e 3'5tota% dept& ;p to )&ic& s&ear reinorcement is not necessar* is iven b*5 3'2G!'02@12!2@1#2!m Hence s&ear at 1#2!m rom end o irder is
Ci-13#" ,S&ear orce ca%c;%ation-&ee% %oad at 1#2!m rom end4 <#% s&ear@ 413 × 1.1 × 0.5 ( 0.8903 + 0.694 )= 360 kN D#d s&ear@ 489 − ( 49 × 2.01 )=390.51 kN Tota% s&ear@+'2#'!KN * 751 kN (, S@EAR RESISTANCE C@EC: 0.645 ( !k ) π
2 2 No) A sw =1 × × 30 =706 m m ( !6ter girder )
4
/
π
1×
4
× 28 =615 m m ( inner girder ) 2
2
As per c%a;se !2#$#$#$ o I(:!!1-12!!5
as
BY: ABHISEK PANDA & rds =
No)
asw × × f ywd ( c!t# + c!t( ) sin( s
s@2#03'm 8@2#.d@2#.Z!'02@!332mm f ywd @2#"Z3!'@$$1 N / mm2
( 9 0ds)4 % :
@
( 9 0ds) I %:
@
706
1
=721.55 kN √ 2 9 0d % m ax @ ∝cw bw & 1 f cd ( c!t# + c!t( ) / ( 1 + cot2 # ) @!Z322Z2#.Z!'02Z2#0Z2#$0Z$'Z171 @313'#0.0VV+1!#'' KN ,o94 × 1404 × 332 × 2 ×
645
615
× 1404 × 332 × 2 ×
1
√ 2 @01"#'3$ 313'#0.0 9N ,o94 Desin s&ear resistance o member )it&o;t s&ear reinorcement is iven b*
[
dc @
645
(
]
0.33
)
0.12 k 80 ρ1 f ck
+ 0.15 σ cp × bw d ( cl− 10.3.2 !f I0- :112 − 2011 )
σ cp @2 3
1
2
f ck 2
vmin@
0.031 k
K@
√
1+
200
d
=1 +
√
200 1560
=1.358 < 2 ( !k )
vmin@2#1. ,dc4min@ ( & min + 0.15 σ cp ) bw d @2#1.Z322Z!'02@!"!#!2' 9N A st
No) ρ1=
bw d
Since &a% reinorcement is a%)a*s avai%ab%e t&ro;&o;t5 , ρ1 4[#>@ , ρ1 4I#> @ ,dc4[#> @
0.5 × 14137.167 400 × 1560 0.5 × 9852.03 400 × 1560
@
0.33
( !k )
[ 0.12 × 1.358 ( 80 × 7.89 × 10
282 kN > & 0dc% min
(n,
=7.89 × 10− 3< 0.02
[ 0.12 × 1.358 ( 80 × 0.01133 × 35) ] × 400 × 1560
318 kN > & 0dc% min
,dc4I#>@
=0.01133< 0.02
−3
× 35 )
0.33
] × 400× 1560
( !k )
S@EAR REINFORCEENT DISTRIBUTION ON OUTER GIRDER:
Tota% s&ear at ace o s;pport@ .229N
BY: ABHISEK PANDA Ho)ever as its simp%* s;pported / a bearin o 3'2mm is provided5a an %i9e compression ie%d )i%% eist &avin steepest an%e @3' ;p to )&ic& no s&ear reinorcement )i%% be necessar*# so t&e efective section or s&ear )i%% be at 2#3'G!#'02@1#2!m rom end o irder Tota% s&ear at 1#2!m@+'!9N Desin s&ear@!#'Z+'!@!!10#'2 9N S&ear resisted b* irder )it&o;t s&ear reinorcement @ ,dc4[#>@$!" 9N Hence desin s&ear or )&ic& s&ear reinorcement )i%% be provided@Ed @,!!10#'2-$!"4KN@"2"#'2 9N T&e s&ear resistin capacit* o avai%ab%e bent ;p bars at t&at section is +1!#'' 9N B;t as per c%a;se -!2#$#$#$,14/ c%a;se-!0#'#1,$4 o I( :!!1-12!!5on%* '2 o t&e s&ear )i%% be resisted b* t&e bent ;p bars Hence s&ear to be resisted b* %in9s7stirr;ps 808.50
B*
2
=404.25 kn 0.5 × 10 × 0.6 × 0.36 × 35 × 400 × 645
c&ec9:,as)#ma4bent ;p bars@
1
√ 2
=4154.21 mm2 > 706 mm2 ( !k )
× 0.8 × 415
V0!'mm1,o94
4×
π 4
2
2
× 8 = 201.062 m m =201 m m
2
Fsin c%a;se-!2#$#$#1 o I(:!!1-12!!5 rd#ma@ @
cw bw & 1 f cd
∝
f cd
( c!t# + tan# )
1 × 400 × 0.9 × 1560 × 0.6 ×
0.36 × 35 2
@1!11#"3"9NVV323#1' 9N ,o94 As per same c%a;se 5spacin o vertica% stirr;ps iven b* S@ @
asw × f ywd × × c!t# & rds 201 × 0.9 × 1560 × 0.8 × 415 × 1 3
404.25 × 10
= 231.766 mm
)#min@
0.072 × √ f ck
f yk
=
0.072 × √ 35 415
=1.026 × 10− 3
BY: ABHISEK PANDA Provided s&ear reinorcement ratio is , ρ
A sw
)4@
s × bw × sin ∝
=
201 200 × 400
=2.125 × 10− 3>¿ , ρ
4,o94
)#min
S&ear orce at 3#'"1'm rom ends o irder '0!9N# Here no bent ;p bars are avai%ab%e Desin s&ear@"3!#'9N ,As%4o#@
18 ×
π 4
2
2
× 30 =12723.45 m m
¿
¿
8620.53
=0.0138 * 0.02 4o#@2#212$. V 2#215 ρ ! 4i#@ 400 × 1560 ¿ ¿ ,vrdc4o# @ 0.12 × 1.358 × ( 80 × 0.02 × 35 )0.33 × 400 × 1560=383.855 * 383 kN ρ
!
,vrdc4i# @ 0.12 × 1.358 × ( 80 × 0.0138 × 35 )0.33 × 400 × 1560 =339.615 * 339 kN S&ear to be resisted b* stirr;ps is ,"3!#'-$"$4 9N @3'"#' 9N d#ma@1!11#"3"V3'"#'2 9N,o94 Spacin o stirr;ps is 201 × 0.9 × 1560 × 0.8 × 415 × 1
S@
3
458.50 × 10
= 204.344 mm
s@
166 × 10
3
=564.408 mm
As per c%-!0#'#1,+4 o I(:!!1-12!!5 S%ma @2#+'d,!Gcot4@2#+'Z!'02Z!@!!+2mmV'03#32"mm,o94 B;t As per c%-!0#'#$,$534 o I(:!!1-12!!5 species or torsion criteria to be satised5t&e minim;m spacin s&o;%d be $'2mm or 1
o;ter perimeter o t&e memberO@
8
1 8
× 3200 =400 m }( lesser !f tw! )
So provide 3-%eed -"mm R vertica% stirr;ps 6$02mm c7c in t&e midd%e strip band o %ent& 3#'"1'm Aain it s&o;%d satis* , ρ )4min , ρ )4min @ 1.026 × 10− 3 , ρ
4
) prov
(",
@
201 350 × 400
=1.436 × 10− 3 > ( ρw ) min ( !k )
S@EAR REINFORCEENT DISTRIBUTION ON INNER GIRDER:
BY: ABHISEK PANDA 2#3'G!#'0@1#2!m rom irder end Tota% desin s&ear@!!10#'29N ,dc4I#>@1"1 9N Desin s&ear or )&ic& s&ear reinorcement )i%% be provided@"33#'29n Bent ;p bars s&ear resistance is ,ds4I#> @01"#'3$ 9N B;t it )i%% be ta9in on%*
844.50 2
=422.25 kN
est 311#1'9n )i%% be ta9en care o b* t&e vertica% stirr;ps# Providin "mm R -3 %eed stirr;ps5 As)@12! mm2 (%-!2#$#$#1 o I(:!!1-12!! species rd#ma@1!11#"3"9N VV 311#1'9N,o94 Co%%o)in same c%a;se5 spacin o stirr;ps5 S@
201 × 0.9 × 1560 × 0.8 × 415 × 1 3
422.25 × 10
= 221.88 mm
Provide "mm-3%eed stirr;ps 6122mmc7c ;p to 3#$"1'm rom end o irder on bot& sides , ρ )4min @ 1.026 × 10− 3 , ρ
4
) prov
@
201
=2.5125 × 10− > ( ρw ) min ( !k ) 3
200 × 400
S&ear at 3#$"1'm is iven b* '+0 9N# Desin s&ear@!#'Z'+0@"039N No bent ;p bars are avai%ab%e &ere# ,dc4I#>@$$. 9N S&ear to be resisted b* stirr;ps@'1'9N d#ma@1!11#"39N VV'1'9N Spacin o stirr;ps is iven b* S@
201 × 0.9 × 1560 × 0.8 × 415 × 1 302.50 × 10
3
=178.46 mm
Provide "mm-3%eed stirr;ps 6!02mmc7c ;p to 0#"+$+'m S&ear at 0#"+$+'m rom end o irder is= Desin s&ear@!#'Z$02@'3.9N ,Ast4avai%ab%e@
¿ ρ
!
4I#>@
π
16 ×
4
2
× 28 =9852.035 mm
9852.035 400 × 1560
2
=0.016 < 0.02
¿ ,dc4I#>@$'0#023 9N S&ear to b resisted b* %in9s and7stirr;ps
BY: ABHISEK PANDA ,'3.-$'0#02349n@!.1#$.09n * 193 kN Providin minim;m s&ear reinorcement spacin o $'2mm c7c5 201 × 0.9 × 1560 × 0.8 × 415 × 1
ds@
350
= 267.691 kN > 193 kn ( !k )
So Provide "mm-3%eed stirr;ps 6$'2mmc7c in midd%e strip-band o %ent& 3#'"1'm , ρ )4min @ 1.026 × 10− 3 , ρ
4
) prov
(>,
@
201 350 × 400 × 1
=1.436 × 10− 3 > ( ρw ) min ( !k )
SURFACE REINFORCEENT:
Fig-25 (S/!$) Rin"!)nt >!"0ii"n, S;race reinorcement )i%% be provided ta9in a s;race area o t&e cover portion o;tside o t&e stirr;ps# S;race area on one ace o irder@"+Z!322@!1!"22mm1 2#2! Act#et @!1!"mm1 e &ave side ace reinorcement o approimate%* '-!1mm dia bars )&ic& provide '0'#'mm1 Providin !2mm R bars 6!'2mmc7c5tota% stee% area provided per ;nit r;n is
@ Tota% reinorcement@!1+3#.+0V!1!"mm1,[K4 S;race area on %o)er end i#e at oot o [email protected]@$0"22 @2#2! Act#et@$0"mm1 Provision o 3-!0mm R bars )i%% be ivin
BY: ABHISEK PANDA
@ A%so stirr;ps )i%% be ivin @ Tota% area provided@.+0#1'mm1V$0"mm1,o94 ∗ A%% t&e s;race reinorcement bars are perect%* anc&ored/&ence )i%% be servin as s&ear reinorcement a%so appear same c%a;se,'4 a%so ∗ A%so side ace %onit;dina% bars )i%% be servin as side ace reinorcement or stabi%it* as per c%a;se-10#'#!#$ o IS-3'0:1222 (, C@EC FOR BAR CURTAILENT ADEJUAC< AS PER CURTAILENT OF GIRDER BARS: T&e c&ec9 )i%% be done as per c%a;se !0#'#!#$ of I(:-!!1-12!!,pae -!+04/ c%a;se-!0#'#!#3 of I(:!!1-12!!,pae -!++4 Beore c&ec9in5it ma* be noted t&at t&e %onit;dina% bar c;rtai%ment r;%e as per ;re-!0#1 o I(:!!1-12!!,pae -!++4 )i%% be ta9en care o or end sections on%* since at end o irders5t&ere is maim;m s&ear /minim;m reinorcement is actin ;pon a%% ot&er sections )i%% be o;nd saer i a;tomatica%%* i end section are o;nd saer Crs@tensi%e capacit* o reinorcement
n@n;mbers o bars at ends5 d@diameter o bars
@1''1#!!19N ,Crs4I#>@
8×
π 4
2
× 28 × 0.87 × 415 =2778.54 kN
T&e above Crs s&o;%d be reater t&at CsG
BY: ABHISEK PANDA
Efective s&ear )i%% occ;r at 1#2!m rom end /its va%;e is !!10#'29N Cs@2#3'Z!!10#'2 ` '2+9N At ends ?ed * 0 ⇒
2 ed
=0
Ctd@2#' Ed, c!t#−c!t( 4
@2#'Z!!10#'2Z!@'0$#1'9N A%so anot&er va%;e o Cs appear -!0#1,A4 is 2 Ed
+ N Ed =0
CsG Ctd @'0$#1'G'2+@!2+2#1'9n1''1#!!1 9n@,Cs4o# At midd%e5 2 ed
, ,
2 ed 2 ed
@
2 edmax 6
4[#>@ 4I#>@
7412 × 10
0.9 × 1560 5169 × 10
=5280 kN
6
0.9 × 1560
=3682 kN
,Cs4[#>@'1"29n5,Cs4i#@$0"19N ,∴ Ed@2/ a%so
Ctd
2 Edmax
4
,CS4[#>@1''1#!!1×1@'!23#1139N ,CS4I#>@!++"#'3×1@$''+#2"9N As per c%a;se -!0#'#3,'4 o irc:!!1-12!!53-!0mmR bars )&ic& are provided as side ace reinorcement )i%% be servin as resistin bars or bendin o irder section# So tensi%e capacit* o tota% 3-!0mm R bars is iven b*5 So ,CS4[#>@'!23#113G1.2#$+3@0$.3#02 9N V,o94 ,CS4I#>@$"3+#3'39N V$0"19N ,o94 3.6.15 DESIGN OF CROSS GIRDER:
BY: ABHISEK PANDA Se%-)ei&t@2#$Z!#3Z1'@!2#' 9N7m S%ab %oad )i%% be distrib;ted as s&o)n be%o)
Fig-26 (D$+ #"$+ +it!i%/ti"n !" #$% "nC!" Gi!+!, Dead %oad rom s%ab @1Z2#'Z1#'Z!#1'Z"#30@10#3$+'
So ;d% %oad @
26.4375 2.5
=10.575 kN / m
Tota% %oad ,dead )ei&t4 @1!#2+'9N7m Ass;min riid cross irder5 eaction on %onit;dina% irder is @
21.075 × 5 3
=35.125 kN
Cor ma# Bendin moment5 t&e %oads s&o;%d be 9ept at eM;a% distance rom intermediate %onit;dina% irder o bot& sides o cross irder#
BY: ABHISEK PANDA
Fig-27 (8'# #"$+ $!!$ngnt "! $i/ %n+ing "nt "n C!" Gi!+!, No) or ca%c;%atin %oad5 o%%o)in diaram ma* be provided at benecia%
@
2×
350 2
( 4.5075 − 0.9 )
×
4.5078
=280.12 kN
eaction on eac& %onit;dina% irder @
280.12 × 2 3
=186.75 kN
?a# Bendin moment on cross irder ;nder %oad @!"0#+'Z!#3+'@1+'#3'0 9N-m In c&ec9in impact5 ?c @$2$9N-m Dead %oad moment ;nder )&ee% %oad 5 @
( 1.475 )
35.125 × 1.475 − 21.075 ×
2
2
=28.884 kN −m
Tota% desin moment@$$19N-m F%timate moment @ ?; @3."9N-m Since t&e cross irder ed at intermediate irder5,-4ve moment )i%% eist#
BY: ABHISEK PANDA As per D#J victor5 Essentia% Brides Enineerin5 reerrin to ?orrice-
498 × 10
(
,Ast 4Gve@
0.87 × 415 × 1660 × 1 − 0.416 ×
250 1600
)
=886.45 m m2
Providin 3-12mm R bars ,Ast 4provided @!1'0#03mm1 Provision o 3-!0-mm R bars at top )i%% ive ,Ast 4-ve@"23#1'mm1V,Ast 4reM;ired @!$'#!'1mm1 Provide 3-!1mm R bars eac& ace ;niorm%* as side reinorcement# 3.6.15.1
S@EAR C@EC FOR CROSS GIRDERS:
(%-!2#$#1 o I(:!!1-12!! K@!#$$ vmin@2#1"! cp@2 ρ1 @1#0!"Z!2-$ dc@2#!1Z!#$$Z,"2Z1#0!"Z!2-$Z$'42#$$Z$22Z!022@!3+#"$! 9N dc#min@2#1"!Z$22Z!022@!$3#""2 9N Desin s&ear Ed @!#'!"0#+'G$'#!1'O@$$1#"!1' 9N Etra s&ear to be resisted b* stirr;ps is @!"3#." * 185 kN Providin "mm dia -3 %eed stirr;ps As) @12!mm1 Spacin,s4@ '!.#3$mm5"mm R 3-%eed 6$22mm c7c Aain s&ear reinorcement ratio ¿ ρw @
s ×b w × sin (
¿
,c%-!0#'#1 o I( !!1:12224
A
❑ @!#1"..Z!2-$ ¿ ρ (|w ) @
¿
0.072 × √ 35 415
=1.026 × 10−3
BY: ABHISEK PANDA
¿ Ass;mim ρ 4min 5 ¿ ¿ s@
201 −3
300 × 1 × 1.026 × 10
=653.021 mm >300 mm ( !k )
Fig-24 (Rin"!)nt +t$i#ing " C!" Gi!+!,
(%a;se -!0#'#1 o I(:!!1-12!!,05 +5 "5.54 species t&at smin@dG!2@$2mm 32mm 1_s@1Z"@!0mm Sma@2#+'d,!Gcot4@2#+'Z,!G24@!13'mm As per t&e (%a;se -!0#'#$ o I(:!!1-12!!5 T&e %in9s )i%% not to be o reater spacin o o%%o)in !7" ,perimeter o member4@3"+#'mm or $'2mm [;r provision o $22m ,o9a*4 3.6.16 ODIFIED ANC@ORAGE FOR BARS AT T@E ENDS OF GIRDERS: At t&e ends o irders5bearin avai%ab%e is on%* 3'2mm#&ence standard .2 bend as per !'#1 o irc:!!1-12!! )i%% be provided# So modied %b#net )i%% be %b#net @2#+Z%bZ!@2#+%b %b @.2$mm,or $2mm R bars4 %b @"3$mm,or 1"mm R bars4 ,%b#net4[#> @0$1mm ,%b#net4I#> @'.2mm
BY: ABHISEK PANDA
REFERENCES:
!# I(:!!1-12!!= ([DE [C PA(TI(E C[ ([N(ETE [AD BID>ES5 INDIAN [AD ([N>ESS 1# I(:0-12!3= STANDAD SPE(ICI(ATI[NS AND ([DE [C PA(TI(E C[ [AD BID>ES= SE(TI[N : II <[ADS AND STESSES $# I(:0-12!2= STANDAD SPE(ICI(ATI[NS AND ([DE [C PA(TI(E C[ [AD BID>ES= SE(TI[N : II <[ADS AND STESSES 3# I(-SP-!$= >FIDEES AND (F<ETS '# IS 3'0 : 1222= INDIAN STANDAD PN AIDS C[ EINC[(ED ([N(ETE T[ IS : 3'0-!.+" +# IS : "+' !."+= INDIAN STANDAD ([DE [C PA(TI(E C[ DESI>N <[ADS ,[THE THAN EATHFAKE4 C[ BFIS AND STF(FTES "# IS-SP : $3,S/T4-!."+= HANDB[[K [N ([N(ETE EINC[(E?ENT AND DETAI