Ley de hooke.
Valentina Lopez, Juan Pinzon, Laura Bossa, David Mayorga 5800370,5800372,5800421,5800369 Fisica Mecánica grupo 2 Universidad Militar Nueva Granada
10 Octubre 2016
Resumen Se realizó la respectiva lectura de la Ley de Hooke; con estos conocimientos realizamos la práctica correspondiente al presente tema; la cual en este caso fue tomar las distancias que había en un resorte cada vez que se agregaban pesos diferentes al soporte de la masa. Hay que aclarar que se realizó el experimentos para el primer resorte, para el segundo resorte, para los resortes en serie y los resortes en paralelo; en la tabla de datos se observa que se tomaron los valores valores de la masa, la distancia y la fuerza, con los cuales se realizó realizó cada gráfica. The respective reading Hooke’s Law was made; with this knowledge we carry out the corresponding practice to this issue; which in this case was the distances take on a spring was each time different weights were added to the mass support. It should be clarified that the experiments for the first spring, the second spring, for springs in series and parallel springs was performed; in the data table it shows that the values of mass, distance and force with which each graph was performed were taken.
OBJETIVOS Obtener a partir del análisis gráfico la ley de Hooke, como aplicación de las propiedades elásticas de los cuerpos
OBJETIVOS ESPECIFICOS Determinar la ecuación experimental que relaciona fuerza y deformación de un resorte. A partir de la ecuación obtenida deducir el valor de la constante de elasticidad del resorte para cada una de las combinaciones de los resortes.
La interpretación de esta ley nos dice que si ejerzo una fuerza F a un muel muelle le (sin (sin esti estira rar) r),, este este se alar alarga ga (o enco encoje je)) una una cant cantid idad ad x. De la misma forma, si alargo (o comprimo) un muelle (sin estirar) una cantidad x, sobre el muelle aparece una fuerza F. El signo negativo indica que la fuerza sobre el muelle es opuesta al estiramiento.
1. MARC MARCO O TEÓR TEÓRIC ICO O En esta práctica se pretende comprobar la validez de la ley de Hooke, que tiene por expresión: F = k ∗ x
F = K x
(2)
x = Lf − Lo
(3)
(1)
F es el módulo de la fuerza que aplicamos sobre el muelle o resorte.
Ecuacion de valor terico para resortes en serie: 1
k es la constante de elasticidad del material con el que se ha fabricado el muelle o resorte.
=
1
+
1
(4) K s K 1 K 2 Ecuacion para hallar Longitud inicial entre los dos resortes que se encuentan paralelos
x es la longitud del muelle una vez que ha sido estirado 1
3 DATOS Y ANALISIS DE RESULTADOS Universidad Militar Nueva Granada. Apellido Autor1, Apellido Autor2, etc. Título de la práctica.
Lo =
Lo1 + Lo2 2
(5)
Ecuacion de valor teorico para resortes en paralelo:
K p = K 1 + K 2
(6)
2. EXPERIMENTO Figura 3: Cinta Metrica.
2.1. Materiales 2.2. Descripción general de la práctica Realizamos la práctica correspondiente al presente tema; cual en este caso fue tomar las distancias que había en un resorte cada vez que se agregaban pesos diferentes al soporte de la masa, en este caso se agregaba la cantidad de peso que se quisiera en cada medida. Hay que aclarar que se realizó el experimentos para el primer resorte, para el segundo resorte, para los resortes en serie y los resortes en paralelo; en la tabla de datos se observa que se tomaron losvalores de la masa, la distancia y la fuerza, con los cuales se realizó cada gráfica.
3. DATOS Y ANALISIS DE RESULTADOS Figura 1: Soporte con resortes. Longitud inicial (Lo) =14.5 m(g)
Lf
120 150 170 200 300
18,2 20,4 22,1 24,1 31,7
Cuadro 1: Datos de resorte azul.
Figura 2: Juego de pesas.
X (cm)
F (N)
3,7 5,9 7,6 9,6 17,2
117600 147000 166600 196000 294000
Cuadro 2: Distancia Vs Fuerza «resorte azul» 2
3 DATOS Y ANALISIS DE RESULTADOS Universidad Militar Nueva Granada. Apellido Autor1, Apellido Autor2, etc. Título de la práctica.
Longitud inicial (Lo) = 29.5 m(g)
Lf
120 150 170 200 300
36,4 40,9 44 48,3 63,4
Cuadro 5: Datos de resortes en serie.
K 1 = 20620, 3
X(cm)
F(dinas)
Figura 4: Grafica desplazamiento Vs Fuerza
6,9 11,4 14,5 18,8 33,9
117600 147000 166600 196000 294000
Longitud inicial (Lo) =15 m(g)
Lf
120 150 170 200 300
19,2 21,4 23,1 25,1 32,7
Cuadro 6: Distancia Vs Fuerza «resortes en serie»
Cuadro 3: Datos del resorte rojo.
X(cm)
F(N)
4,2 6,4 8,1 10,1 17,7
117600 147000 166600 196000 294000
K s = 6,539, 89K s + 72,407, 86g Figura 6: Grafica desplazamiento Vs Fuerza
Cuadro 4: Distancia Vs Fuerza «resorte rojo»
1
K
=
s
1
=
K
s
1
K
1
K 1
1 20620,3
+ +
1
K 2 1 9501,47
= 1, 5374 × 10−4
s
K s =
1 1,5374×10−4
K s = 6504, 37
Porcentaje de Error %Error =
V alorTeorico−V alorExperimental ∗ V alorTeorico
%Error =
K 2 = 9501, 47 Figura 5: Grafica desplazamiento Vs Fuerza
6504,37−6539,89 6504,37
%Error = 0, 55 %
3
∗ 100
100
Universidad Militar Nueva Granada. Apellido Autor1, Apellido Autor2, etc. Título de la práctica.
Longitud Inicial (Lo) = 14.7 m(g)
Lf
120 150 170 200 300
18,7 20,6 22,3 24,3 31,9
Lo = Lo =
117600 147000 166600 196000 294000
2 14,5+15 2
V alorTeorico−V alorExperimental ∗ V alorTeorico
%Error =
4 5,9 7,6 9,6 17,2
Lo1 +Lo2
Porcentaje de Error
Cuadro 7: Datos de resortes en paralelo
F(N)
REFERENCIAS
Lo = 14, 75cm
%Error =
X(cm)
14,75−13,26 14,75
100
∗ 100
%Error = 0, 68 %
4. CONCLUSIONES Las deformaciones sufridas por un resorte son proporcionales a la masa.
Cuadro 8: Distancia Vs Fuerza «resortes de paralelo»
Hemos comprobado en esta practica la validez de la ley de hooke , observando que entre la fuerza ejercida en un extremo de un muelle y el desplazamiento del mismo existe una relación lineal. Hemos determinado también la cte. elástica de un muelle problema, obteniendo su valor experimental, con un error relativo muy pequeño frente al valor teórico conocido. En la gráfica hecha con los datos obtenidos, se pudo observar que fue una línea recta y ascendente todo el tiempo, quizás si los datos hubiesen variado se hubieran obtenido otro tipo de gráfica.
Referencias [1] http://www.proyectosalonhogar.com/Enciclopedia_Ilustrada/Ciencias/Le [2] http://es.wikipedia.org/wiki/Movimiento_arm %C3 %B3nico_simple
k p = 13,264, 16
[3] http://es.scribd.com/doc/32185802/Movimiento-armonicosimple-laboratorio
Figura 7: Grafica desplazamiento Vs Fuerza
4