José Manuel Ruíz Martínez Victoria Piedras Cruz
EL ROL DE LA MATEMATICA EN LA OPTICA 3.1. La óptica de Euclides Para ilustrar la parte que jugo la matemática en la construcción de la teoría científica, consideraremos el desarrollo de la óptica. Iniciaremos con Euclides que vivió en el año 300 antes de cristo, él no fue un geómetra, pero en su deseo de aplicar la geometría a la óptica. Concibió la luz como la propagación de líneas rectas, rectas, lo que posibilito la aplicación de la geometría en la óptica,pensó en la forma en que estaba relacionada la dirección del rayo que choca con la superficie de un espejo plano y el rayo reflejado.
Esta figura reduce laóptica a geometría , las líneas , ,n ,representan el rayo incidente el rayo reflejado y la normal a la superficie en el punto de incidencia, el ángulo entre el rayo incidente y rayo normal es conocido como ángulo de incidencia ,mientras que el angulo entre el rayo reflejado y la normal se conoce como ángulo de reflexión, esta es la relación entre Su aportación principal a la óptica fue la famosa ley de reflexión. Que dice que el ángulo de incidencia es igual al rayo de reflexión. 3.2 Herón. El principio del camino máscorto. Herónvivió
varios siglos después de Euclides, quizás100 años después de cristo, un hombre que jugo un gran rol en el desarrollo de
la ciencia, él construyo el primer autómata, hizo el primer intento por construir una máquina de vapor, desarrollo y aplico la trigonometría ampliamente,hizo siempre hincapié en la posibilidad de la aplicación matemática, Herón dio una prueba a la ley de reflexión de Euclides. Su prueba consistió en que tanto las leyes de Euclides, de que la luz se propaga rectilíneamente y que el ángulo de incidencia y el ángulo de reflexión son iguales , son consecuencia del principio propuesto por el mismo, La luz toma el camino más corto posible H. esta prueba la realizo utilizando la simetría y/o la congruencia de triángulos a partir de dos lados y un ángulo. 3.3 La prueba de simetría de Arquímedes Para concluir adecuadamente nuestros exámenes a la ley de reflexión consideraremos la prueba de Arquímedes ,no nos sorprende en vista de lo que sabemos del estilo de Arquímedes, su prueba la hace por simetría.
Si observamos la figura y consideramos que representa un tubo incidente, un cilindro muy estrecho por donde viajara un haz de luz a la superficie de un espejo, e representa un tubo de reflexión, un cilindro estrecho por donde viajara un haz de luz reflejado. Si consideramos como un acto experimental que el tubo incidente se convierte en tubo de reflexión y que el tubo de reflexión se convierte en un tubo incidente sin alterar sus ángulos de incidencia y de reflexión Arquímedes pregunto si el ángulo de incidencia es mayor que el ángulo de reflexión. Si es así el tubo incidente, y con el tubo de incidencia tanto que es en ambos mayor y
menor que . la hipótesis de que el ángulo de incidencia es menor que el ángulo de reflexión es insostenible, aprovechando la simetría de la situación Arquímedes nos maneja como conclusión que . 3.4Ptolomeo y refracción. El desarrollo de la óptica nos lleva a la obra de un gran astrónomo de Alejandría, Ptolomeo, que vivió desde el año 127 al 141 o 151 antes de cristo, poco después del tiempo de Herón, con profundo interés plantea algunas cuestiones relativas a la naturaleza de la luz, observo que la propagación de la luz cerca de laz superficie de la tierra no es precisamente rectilínea, es ligeramente curva, atribuye esta curvatura a que la luz pasa a través de capas de aire de diferente densidad, para comprender mejor este efecto realizo experimentos para medir la desviación de los rayos de luz al pasar del aire al agua.
A Rayo incidente Aire P Agua
Rayo refractado B Al entrar el rayo incidente al agua el rayo no continua en la dirección AP ,sufre una desviación , es decir se refracta, si al dibujo anterior le agregamos un rayo normal por encima y por debajo de la superficie de incidencia, podemos determinar los ángulos de incidencia y de refracción.
Aire
P
Agua
Ptolomeo encontró que dependía de , un cambio en el angulo de incidencia tenia como resultado un cambio en el angulo de refracción, en términos matemáticos es función de ,dicho , a pesar de sus esfuerzos la ley de la refracción lo eludió y el renuncio a ella. 3.5 Kepler y refracción un millar de años más tarde el problema fue abordado por Kepler (1571-1630), un astrónomo, que tenía un genio para encontrar la relación funcional de lo más recalcitrante de pares ordenados, nos ilustro con su capacidad. Tras años de trabajo conjeturo y checo hasta que finalmente dio una hipótesis que se adaptó a sus datos de observación, el mostro que cada planeta describe una elipse con el sol en el foco. y que las áreas barridas por los radios trazados desde el planeta al sol son iguales en intervalos de tiempo iguales.
También observo que el cuadrado del periodo de revolución de un planeta con respecto al sol es proporcional al cubo de la distancia media de ese planeta al sol: esta es su tercera ley y se representa . como
3.6Fermat y el principio del camino más rápido. E n
la época de Fermat (1601-1665) la efervescencia intelectual de su época era la pregunta¿ la luz tiene una velocidad de propagación o su propagación es instantánea .Posiblemente galileo fue quien abordo esta pregunta experimentalmente, por la noche en la cima de una montaña hizo una señal con una linterna a un colega que se encontraba en una montaña contigua, su colega al ver la luz de la lámpara de galileo se descubrió a si mismo, galileo intento medir los intervalos entre enviar la señal y la recepción por su compañero, lomas que pudo decir fue la luz es instantánea. E ste
fenómeno llamo la atención de Fermat, en sus reflexiones pensaba la luz no se propaga instantáneamente, pero tiene una velocidad, entonces si el tiempo es la distancia dividida entre la velocidad, por lo que el camino más corto es el más rápido, explicaba que si consideramos que la luz se propaga a una velocidad constante es diferente para diferentes medios de propagación, supongamos que la luz tiene velocidad diferente en el aire y en el agua ,entonces, en los viajes a través del aire y del agua el camino más corto, noes el más rápido?un rayo por que se refracta no toma el camino más corto?intento comprobar que el principio del camino más corto de Herón, también era aplicado a la refracción. Fermat planteo un problema de un jugador de golf que se tenía que trasladar de un punto A hasta un punto B pasando a través de dos lugares que en los que se podían desarrollar velocidades diferentes, fue un problema que normalmente se atiende por calculo y el lo
resolvió por trigonometría, encontrando finalmente que:
=
sus
resultados fueron utilizados posteriormente por Descartes, Newton y Leibniz. 3.7 Teoríamecanicista de la luz de Newton Newton pensaba que la óptica de E uclides, Fermat y Herón podía explicarse mecánicamente. Lo primero que debe de explicar es la propagación rectilínea de la luz, su primera ley establece que un cuerpo en movimiento en línea recta continuara haciéndolo a menos que fuerzas externas actúen para cambiar este movimiento. Con el ingenio de Newton comparo la ley de E uclides con la de él , para ello supuso que la luz estaba compuesta de pequeñísimas partículas a las que llamo corpúsculos, debido a esto su teoría es conocida como la teoría corpuscular de la luz de Newton. De acuerdo con su teoría corpuscular un rayo de luz se refleja cuando sus partículas chocan con las constituyentes de la superficie del espejo, es por supuesto importante considerar el destino de una sola partícula incidente para saber que todas las demás se comportan de la misma manera en circunstancias similares. Primero vamos a considerar un caso especial la de un rayo incidente normal al espejo, que pasa cuando las partículas constituyentes del rayo viajan a través de NP hasta alcanzar P. en su intento por penetrar la superficie MM´ perpendicularmente hacia abajo se encuentran con una resistencia perpendicular hacia arriba(debido a las partículas constituyentes del espejo en la cercanía de P)consecuentemente la partícula regresa a lo largo de la normal. N
M
P
M´
Pasamos ahora al caso general se supone que es la velocidad de un rayo de luz en el aire es constante independientemente de su
orientación con respecto al espejo, así el problema es el siguiente: unapartícula viaja con velocidad a lo largo de AP y el ángulo con la normal es reflejado con velocidad v 1 a lo largo de PB que hace un angulo con la normal
N A
B
M
P
M´
Newton insiste en que la naturaleza de la superficie hace que presente una resistencia con una fuerza perpendicular hacia arriba, por lo el rayo incidente y el rayo reflejado tienen la misma velocidad, si igualamos las velocidades de los componentes tenemos que:
Por lo tanto Para la refracción Newton insiste en las fuerzas que se oponen a la penetración actúan perpendicularmente a la superficie. Para la reflexión como para larefracción el movimiento paralelo a la superficie se mantiene invariante. acepta que el rayo cambia de velocidad cuando es refractado y en lugar de que sea considera a
el rayo incidente es el mismo para ambos casos entonces:
Dando
=
=
donde =
Aire
P
Agua
3.8 Experimento de Fermat contra Newton. es directamente Tanto Newton como Fermat concluyen que sin embargo si comparamos las ecuaciones de proporcional al Fermat y de Newton en donde incluyen la constante de proporcionalidad nos damos cuenta que son reciprocas, newton hizo una demostración que duro más de 100 años de aceptación , sin embargo en la actualidad sabemos que la luz es más lenta en el agua que en el aire y que entonces la fórmula de Fermat fue la descripción correcta Tomas Huygens desarrollo una teoría contraria a la teoría corpuscular de la luz y proponía que la luz se mueve a través de ondas, el desarrollo matemático de la teoría de las ondas llevo a aceptar que la luz tiene un comportamiento como el descrito por Fermat este hecho llevo a la desestimación de la teoría corpuscular de la luz y a la aceptación de la teoría ondulatoria posteriormente se
conoce la teoría cuántica de Planck y la teoría de la relatividad de E instein. La teoría cuántica postula que la luz consiste en haces de partículas llamados fotones, que se mueven con la velocidad de la luz, así que estábamos nuevamente en la teoría newtoniana y se tuvo que reformular la mecánica clásica a una mecánica cuántica, llamada mecánica ondulatoria que sintetizo las teorías de Newton y de Huygens, esto es una pequeña prueba de que la ciencia es una mejora continua y adopción de nuevos hechos y que en la matemática se han formulado hipótesis que se han comprobado y utilizado muchos años después cuando el desarrollo tecnológico ha permitido realizar u observar experimentalmente estas hipótesis.