Gilmer Calderón Quispe Ingenierá Civil UNSCH
Contraseña del área protegida
Por: Gilmer Calderón Quispe
Paea la aradura que se muesta en la gra cálcular las ferzas en las baras La sección tansversal para todas los elementos esrectanglar esrectanglar con una base de 30cm y una altra de 40cm. módulo de elasticidad 2.1E6
N
X
Y
M
Ni
Nj
1
0
0
1
1
2
2
2
0
2
2
3
4
0
3
4
6
0
5
4
3
6
2
3
UNSCH Ayacucho - Perú
A
E
Node
Ux
Uy
Dx
Dy
0.12 2 ⋅ 10 6
1
1
1
0
0
3
0.12 2 ⋅ 10 6
4
1
1
0
0
3
4
0.12 2 ⋅ 10 6
4
5
4
0.12 2 ⋅ 10 6
5
6
5
0.12 2 ⋅ 10 6
NLF
Fx
Fy
6
6
1
6
0.12 2 ⋅ 10
7
2
6
0.12 2 ⋅ 10 6
2
0
-3
8
6
3
0.12 2 ⋅ 10 6
3
0
-3
9
2
5
0.12 2 ⋅ 10 6
10
3
5
0.12 2 ⋅ 10 6
- 1 -
Gilmer Calderón Quispe Ingenierá Civil UNSCH
k 1 =k 2 =k 3 =k 5 ‖ k j ≔ ni ← Ni ‖ j ⎡ 120000 0 -120000 0 ⎤ ‖ nj ← Nj ⎢ ‖ 0 0 0 0⎥ j 1 = k ⎢ ⎥ ‖ -120000 0 120000 0 ← xi X ‖ ni 0 0 0 0⎦ ⎣ ‖ ‖ xj ← X nj ‖ ⎡ 20481.238 -30721.857 -20481.238 ‖ yi ← Y ni ⎢ -30721.857 46082.7855 30721.857 ‖ k 4 =⎢ -20481.238 30721.857 20481.238 ‖ yj ← Y nj ‖ 30721.857 -46082.7855 -30721.857 ⎣ 2 2 ‖ ‖ l ← xj - xi + yj - yi ⎡ 20481.238 30721.857 -20481.238 xj - xi ‖ ⎢ 30721.857 46082.7855 -30721.857 ‖λ← l k 6 =⎢ ‖ -20481.238 -30721.857 20481.238 yj - yi ‖ μ ← ―― -30721.857 -46082.7855 30721.857 ⎣ ‖ l ‖ 2 ⎡0 μ ⋅ λ -λ 2 - μ ⋅ λ ⎤ 0 0 0⎤ ‖ A ⋅ E ⎡ λ ⎢ ⎥ 2 2 j j ‖ - μ ⋅ λ - μ ⎥ k 7 = ⎢ 0 80000 0 -80000 ⎥ μ ⋅ λ μ ‖ ―― ⋅ ⎢ 2 0 0 0 0 ⎢ -λ - μ ⋅ λ λ 2 μ ⋅ λ ⎥ ‖ l 2 2 0 -80000 0 80000 ⎣ ⎦ μ ⋅ λ μ ⎦ ⎣ - μ ⋅ λ - μ ‖
⎡0 0 0 80000 k 10 = ⎢ 0 ⎢0 ⎣ 0 -80000
0 0⎤ 0 -80000 ⎥ 0 0⎥ 0 80000 ⎦
‖
F ≔ f r , s ← 0 length N ‖ #n ← ‖ F ← matrix 2 ⋅ #n , 1 , f ‖ for i ∊ 1 , 2‥ length NLF
‖ ‖ ‖ ‖ ‖ ‖ ‖
‖ n ← NLF i
‖ F ‖ 2 ⋅ n - 1 , 1 ← Fxi ‖ F ← Fy i 2⋅n,1 ‖ ‖ return F
30721.857 ⎤ -46082.7855 ⎥ ⎥ -30721.857 46082.7855 ⎦ -30721.857 ⎤ -46082.7855 ⎥ ⎥ 30721.857 46082.7855 ⎦
⎡ 20481.238 -30721.857 -20481.238 30721.857 ⎤ -30721.857 46082.7855 30721.857 -46082.7855 k 8 =⎢ ⎥ 20481.238 -30721.857 ⎥ ⎢ -20481.238 30721.857 ⎣ 30721.857 -46082.7855 -30721.857 46082.7855 ⎦ ⎡ 20481.238 30721.857 -20481.238 -30721.857 ⎤ 30721.857 46082.7855 -30721.857 -46082.7855 k 9 =⎢ ⎥ -20481.238 -30721.857 20481.238 30721.857 ⎥ ⎢ ⎣ -30721.857 -46082.7855 30721.857 46082.7855 ⎦
⎡ 0⎤ ⎢ 0⎥ ⎢ ⎥ ⎢ 0⎥ ⎢ -3 ⎥ ⎢ 0⎥ ⎢ -3 ⎥ F = ⎢ ⎥ ⎢ 0⎥ ⎢ 0⎥ ⎢ 0⎥ ⎢ 0⎥ ⎢ ⎥ 0 ⎣ 0⎦
‖
K ≔ f r , s ← 0 length N ‖ #n ← ‖ for i ∊ 1 , 2‥ length M
‖ ‖ ‖ B ← matrix 4 , 2 ⋅ #n , f ‖ ‖ n ← Nii
UNSCH Ayacucho - Perú
- 2 -
Gilmer Calderón Quispe Ingenierá Civil UNSCH ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖
‖ m ← Nji ‖ ‖ B1 , 2 ⋅ n - 1 ← 1 ‖ ‖ B2 , 2 ⋅ n ← 1 ‖ ‖ B ←1 ‖ 3,2⋅m-1 ‖ B ←1 ‖ 4,2⋅m T ‖ KG ← KG + B ⋅ k i ⋅ B
⎡ 0.1405 0.0307 0.0307 0.0461 ⎢ 0 ⎢ -0.12 0 0 ⎢ ⎢ 0 0 ⎢ 0 0 K = ⎢ 0 0 ⎢ 0 ⎢ 0 ⎢ 0 0 ⎢ 0 0 ⎢ ⎢ -0.0205 -0.0307 ⎣ -0.0307 -0.0461
-0.12 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2605 0.0307 -0.12 0 0 0 -0.0205 0.0307 0.1261 0 0 0 0 -0.0307 -0.12 0 0.2605 -0.0307 -0.12 0 0 0 0 -0.0307 0.1261 0 0 0 0 0 -0.12 0 0.1405 -0.0307 -0.0205 0 0 0 0 -0.0307 0.0461 0.0307 -0.0205 -0.0307 0 0 -0.0205 0.0307 0.161 -0.0307 -0.0461 0 -0.08 0.0307 -0.0461 0 0 0 -0.0205 0.0307 0 0 -0.12 0 -0.08 0.0307 -0.0461 0 0 0
⎤ 0 0 ⎥ -0.0307 ⎥ -0.0461 ⎥ ⎥ 0 ⎥ 6 -0.08 ⎥ 10 0.0307 ⎥ -0.0461 ⎥ ⎥ 0 ⎥ 0.1722 ⎥ 0 ⎥ 0 …⎦
‖
K_m ≔ for i ∊ 1 , 2‥ length Node
‖ ‖ n ← Node i ‖ ‖ ‖ ‖ if Ux = 0 i ‖ ‖ ‖ ‖ K ← K ‖ ‖ ‖ ‖ else ‖ ‖ ‖ 10 ‖ ‖ C ← max K ⋅ 10 ‖ ‖ ‖ K 2 ⋅ n - 1 , 2 ⋅ n - 1 ← K 2 ⋅ n - 1 , 2 ⋅ n - 1 + C ‖ ‖ ‖ ‖ ‖ if Uy = 0 i ‖ ‖ ‖ ‖ ‖ ‖ K ← K ‖ ‖ else ‖ ‖ ‖ ‖ ‖ C ← max K ⋅ 10 10 ‖ ‖ ‖ K ← K +C 2⋅n,2⋅n 2⋅n,2⋅n ‖ ‖ ‖ ‖ ‖ return K ‖
⎡ 2.6048 ⋅ 10 9 0.0307 ⎢ 2.6048 ⋅ 10 19 ⎢ 0.0307 0 ⎢ -0.12 ⎢ 0 0 ⎢ 0 0 ⎢ 0 0 K_m = ⎢ ⎢ 0 0 ⎢ 0 0 ⎢ 0 0 ⎢ 0 ⎢ 0 ⎢ -0.0205 -0.0307
UNSCH Ayacucho - Perú
-0.12 0 0 0 0 0 0 0 0 0 0 0 0.2605 0.0307 -0.12 0 0 0 0.0307 0.1261 0 0 0 0 -0.12 0 0.2605 -0.0307 -0.12 0 0 0 -0.0307 0.1261 0 0 29 0 0 -0.12 0 2.6048 ⋅ 10 -0.0307 0 0 0 0 -0.0307 2.6048 ⋅ 10 39 -0.0205 -0.0307 0 0 -0.0205 0.0307 -0.0307 -0.0461 0 -0.08 0.0307 -0.0461 0 0 -0.0205 0.0307 0 0
- 3 -
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ 10 6 ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Gilmer Calderón Quispe Ingenierá Civil UNSCH ⎣ -0.0307
-0.0461
0
‖ ‖ ‖ ‖ ‖ n ← Node i ‖ ‖ ‖ ‖ if Dx = 0 ∧ Dy = 0 i i ‖ ‖ ‖ ‖ ‖ F ← F ‖ ‖ 2⋅n-1,1 2⋅n-1,1 ‖ ‖ ‖ F ← F n ‖ ‖ 2⋅n,1 2⋅ ,1 ‖ ‖ ‖ ‖ ‖ else ‖ ‖ ‖ C ← max K ⋅ 10 10 ‖ ‖ ‖ ‖ ‖ F 2 ⋅ n - 1 , 1 ← F 2 ⋅ n - 1 , 1 + Dxi ⋅ C ‖ ‖ ‖ ← F + Dy ⋅ C ‖ F ‖ i 2⋅n,1 ‖ ‖ ‖ 2⋅n,1 ‖ ‖ return F
F_m ≔ for i ∊ 1 , 2‥ length Node
‖
Δ ≔ f r , s ← 0 ‖ D ← matrix 2 ⋅ length N , 1 , f ‖ for i ∊ 1 , 2 ‥ 2 ⋅ length N
‖ ‖ ‖ Di , 1 ← concat “U” , num2str i ‖ ‖ ‖ R ← K_m -1 ⋅ F_m ‖ D R
‖ P i ≔ f r , s ← 0 length N ‖ #n ← ‖ B ← matrix 4 , 2 ⋅ #n , f ‖ n ← Ni i ‖ ‖ m ← Nj ‖ i ‖ B ‖ 1,2⋅n-1←1 ‖ B ‖ 2,2⋅n←1 ‖ ‖ B3 , 2 ⋅ m - 1 ← 1 ‖ ‖ B4 , 2 ⋅ m ← 1 ‖ ‖ R ← K_m -1 ⋅ F_m ‖ φ ← B ⋅ R ‖ ni ← Ni ‖ i ‖ ‖ nj ← Nji ‖ ‖ xi ← X ni ‖ xj ← X
UNSCH Ayacucho - Perú
-0.08
0.0307 -0.0461
0
0
…⎦
⎡ 0⎤ ⎢ 0⎥ ⎢ ⎥ ⎢ 0⎥ ⎢ -3 ⎥ ⎢ 0⎥ ⎢ -3 ⎥ F_m = ⎢ ⎥ ⎢ 0⎥ ⎢ 0⎥ ⎢ 0⎥ ⎢ 0⎥ ⎢ ⎥ 0 ⎣ 0⎦
⎡ ⎡ “U1” ⎤ ⎢ ⎢ “U2” ⎥ ⎢⎢ ⎥ ⎢ ⎢ “U3” ⎥ ⎢ ⎢ “U4” ⎥ ⎢ ⎢ “U5” ⎥ ⎢ ⎢ “U6” ⎥ Δ=⎢⎢ ⎥ ⎢ ⎢ “U7” ⎥ ⎢ ⎢ “U8” ⎥ ⎢ ⎢ “U9” ⎥ ⎢ ⎢ “U10” ⎥ ⎢⎢ ⎥ “U11” ⎣ ⎣ “U12” ⎦
⎡ 0 ⎤⎤ ⎢ 0 ⎥⎥ ⎢ ⎥⎥ ⎢ 0.000001587 ⎥ ⎥ ⎢ -0.000099033 ⎥ ⎥ ⎢ -0.000001587 ⎥ ⎥ ⎢ -0.000099033 ⎥ ⎥ ⎢ ⎥⎥ ⎢ 0 ⎥⎥ ⎢ 0 ⎥⎥ ⎢ -0.000010713 ⎥ ⎥ ⎢ -0.000072242 ⎥ ⎥ ⎢ ⎥⎥ 0.000010713 ⎣ -0.000072242 ⎦ ⎦
⎡ -0.19038 ⎤ ⎢ 0 ⎥ P 1 = ⎢ ⎥ 0.19038 ⎣ 0 ⎦
⎡ 0.38077 ⎤ ⎡ -0.19038 ⎤ ⎢ 0 ⎥ ⎢ 0 ⎥ P 2 = ⎢ ⎥ P 3 = ⎢ ⎥ -0.38077 0.19038 ⎣ 0 ⎦ ⎣ 0 ⎦
⎡ 3.60555 ⎤ ⎢ 0 ⎥ P 4 = ⎢ ⎥ ⎢ -3.60555 ⎥ ⎣ 0 ⎦
⎡ 2.57115 ⎤ ⎡ 3.60555 ⎤ ⎢ 0 ⎥ ⎢ 0 ⎥ P 5 = ⎢ ⎥ P 6 = ⎢ ⎥ ⎢ -2.57115 ⎥ ⎢ -3.60555 ⎥ ⎣ 0 ⎦ ⎣ 0 ⎦
⎡ -2.14327 ⎤ ⎢ 0 ⎥ P 7 = ⎢ ⎥ 2.14327 ⎣ 0 ⎦
⎡ -1.02966 ⎤ ⎡ -1.02966 ⎤ ⎢ 0 ⎥ ⎢ 0 ⎥ P 8 = ⎢ ⎥ P 9 = ⎢ ⎥ 1.02966 1.02966 ⎣ 0 ⎦ ⎣ 0 ⎦
⎡ -2.14327 ⎤ ⎢ 0 ⎥ P 10 = ⎢ ⎥ 2.14327
- 4 -
Gilmer Calderón Quispe Ingenierá Civil UNSCH n
‖ ‖ yi ← Y ni ‖ ‖ yj ← Y nj ‖ 2 2 ‖ ‖ l ← xj - xi + yj - yi ‖ xj - xi ‖ λ ← ―― l ‖ ‖ μ ← yj - yi ‖ l ‖ ⎡ λ μ 0 0⎤ ‖ ‖ ← - μ λ 0 0 ‖ T ⎢ 0 0 λ μ ⎥ ⎢ ⎥ ‖ 0 0 μ λ ⎣ ⎦ ‖ ⎡ 1 0 -1 0 ⎤ ‖ A ⋅ E i i ‖ 0 0 0 0 ‖ kl ← ―― ⋅ ⎢ -1 0 1 0 ⎥ l ⎢ ⎥ ‖ ⎣ 0 0 0 0⎦ ‖ ‖ p ← kl ⋅ T ⋅ φ ‖ return p
UNSCH Ayacucho - Perú
- 5 -
Gilmer Calderón Quispe Ingenierá Civil UNSCH
Calcule las reacciones en los sopores y la ferza en cada uno delos elementos que componen la aradura que se muesta en la gra mediante el método directo de la rigidez. Comprebe el equilibrio en las juntas para vericar que los resultados obtenidos son corectos. es constante.
UNSCH Ayacucho - Perú
- 6 -
Gilmer Calderón Quispe Ingenierá Civil UNSCH
N
X
Y
M
Ni
Nj
A
E
Node
Ux
Uy
Dx
Dy
1
0
0
1
1
2
1
1
1
0
1
0
0
2
5
0
2
2
3
1
1
4
1
1
0
0
3
9
0
3
3
4
1
1
7
0
1
0
0
4
12.5
-5
4
4
5
1
1
5
16
0
5
5
6
1
1
6
21
0
6
6
7
1
1
7
25
0
7
8
7
1
1
NLF
Fx
Fy
8
21
5
8
9
8
1
1
9
16
5
9
10
9
1
1
8
0
-3
10
12.5
5
10
11
10
1
1
9
0
-2
11
9
5
11
12
11
1
1
10
0
-1
12
5
5
12
13
12
1
1
11
0
-6
13
0
5
13
1
13
1
1
12
0
-3
14
1
12
1
1
13
3.6
-2
15
2
12
1
1
16
12
3
1
1
17
3
11
1
1
18
3
10
1
1
19
10
5
1
1
20
5
9
1
1
21
5
8
1
1
22
6
8
1
1
⎡ 0.2 0 -0.2 0 ⎤ ⎢ 0 0 0 0⎥ k 1 =⎢ ⎥ -0.2 0 0.2 0 ⎣ 0 0 0 0⎦
⎡ 0.25 0 -0.25 0 ⎤ ⎢ 0 0 0 0⎥ k 2 =⎢ ⎥ -0.25 0 0.25 0 0 0 0⎦ ⎣ 0
⎡ 0.0539 0.077 -0.0539 -0.077 ⎤ 0.077 0.11 -0.077 -0.11 k 4 =⎢ ⎥ -0.0539 -0.077 0.0539 0.077 0.077 0.11 ⎦ ⎣ -0.077 -0.11
⎡ 0.2 0 k 5 =⎢ -0.2 ⎣ 0
⎡ 0.0609 -0.0762 -0.0609 0.0762 ⎤ -0.0762 0.0952 0.0762 -0.0952 k 7 =⎢ ⎥ ⎢ -0.0609 0.0762 0.0609 -0.0762 ⎥ ⎣ 0.0762 -0.0952 -0.0762 0.0952 ⎦
k 10 =
⎡ 0.2857 0 -0.2857 0 ⎤ 0 0 0 0
UNSCH Ayacucho - Perú
k 11 =
⎡ 0.0539 -0.077 -0.0539 0.077 ⎤ ⎢ -0.077 0.11 0.077 -0.11 ⎥ k 3 =⎢ ⎥ -0.0539 0.077 0.0539 -0.077 0.11 ⎦ ⎣ 0.077 -0.11 -0.077 0 -0.2 0 ⎤ 0 0 0 ⎥ 0 0.2 0 0 0 0⎦
⎡ 0.2 0 k 8 =⎢ -0.2 ⎢ ⎣ 0
⎡ 0.25 0 k 6 =⎢ -0.25 ⎣ 0
0 -0.25 0 ⎤ 0 0 0 ⎥ 0 0.25 0 0 0 0⎦
⎡ 0.2857 0 -0.2857 0 ⎤ 0 -0.2 0 ⎤ 0 0 0 0 0 0 0 ⎥ k 9 =⎢ ⎥ 0 0.2 0 ⎥ -0.2857 0 0.2857 0⎥ ⎢ 0 0 0⎦ 0 0 0⎦ ⎣ 0
⎡ 0.25 0 -0.25 0 ⎤ 0 0 0 0
k 12 =
⎡ 0.2 0 -0.2 0 ⎤ 0 0 0 0
- 7 -
Gilmer Calderón Quispe Ingenierá Civil UNSCH -0.2857 0 0 ⎣ 0 ⎡0 0 0 0.2 k 13 = ⎢ ⎢0 0 ⎣ 0 -0.2
0.2857 0 0 0⎦
0 0 ⎤ 0 -0.2 ⎥ 0 0 ⎥ 0 0.2 ⎦
-0.25 0 0 ⎣ 0
-0.2 0 ⎣ 0 0
0.2 0 0 0⎦
⎡ 0.0707 0.0707 -0.0707 -0.0707 ⎤ ⎡0 0 0.0707 0.0707 -0.0707 -0.0707 k 15 = 0 0.2 k 14 = ⎢ ⎥ ⎢ ⎢ -0.0707 -0.0707 0.0707 0.0707 ⎥ ⎢0 0 ⎣ -0.0707 -0.0707 0.0707 0.0707 ⎦ ⎣ 0 -0.2
0 0 ⎤ 0 -0.2 ⎥ 0 0 ⎥ 0 0.2 ⎦
⎡ 0.0609 -0.0762 -0.0609 0.0762 ⎤ -0.0762 0.0952 0.0762 -0.0952 k 16 = ⎢ ⎥ ⎢ -0.0609 0.0762 0.0609 -0.0762 ⎥ ⎣ 0.0762 -0.0952 -0.0762 0.0952 ⎦
⎡0 0 0 0.2 k 17 = ⎢ ⎢0 0 ⎣ 0 -0.2
⎡ 0.0539 0.077 -0.0539 -0.077 ⎤ 0.077 0.11 -0.077 -0.11 k 18 = ⎢ ⎥ -0.0539 -0.077 0.0539 0.077 ⎥ ⎢ 0.077 0.11 ⎦ ⎣ -0.077 -0.11
⎡ 0.2707 ⎢ 0.0707
0.0707 -0.2 6.7919 ⋅ 109 0
UNSCH Ayacucho - Perú
0 0 -0.25 0 0.4187 -0.0762 -0.0539 0.077 0 0 0 0 0 0 0 0 0 0 -0.0539 -0.077 0 0 -0.0609 0.0762 0 0
0 0
⎡0 0 ⎢ 0 0.2 k 22 = ⎢ ⎢0 0 ⎣ 0 -0.2
0 0 0 0 0 0 0 0 0 0 0 0 -0.0762 -0.0539 0.077 0.5152 0.077 -0.11 0.077 0.1078 0 -0.11 0 0.2199 0 -0.0539 -0.077 0 -0.077 -0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.077 0 0 -0.11 0 0 0 0 0 -0.2 0 0 0.0762 0 0 -0.0952 0 0 0 0 0 0 0 0
0 0
⎡0 0 0 0 ⎤ 0 -0.2 0 0.2 ⎥ k 20 = ⎢ 0 0 ⎥ ⎢0 0 0 0.2 ⎦ ⎣ 0 -0.2
0 0 ⎤ 0 -0.2 ⎥ 0 0 ⎥ 0 0.2 ⎦
⎡ 0.0539 -0.077 -0.0539 0.077 ⎤ -0.077 0.11 0.077 -0.11 k 19 = ⎢ ⎥ -0.0539 0.077 0.0539 -0.077 ⎥ ⎢ 0.11 ⎦ ⎣ 0.077 -0.11 -0.077
⎡ 0.0707 0.0707 -0.0707 -0.0707 ⎤ ⎢ 0.0707 0.0707 -0.0707 -0.0707 ⎥ k 21 = ⎢ ⎥ ⎢ -0.0707 -0.0707 0.0707 0.0707 ⎥ ⎣ -0.0707 -0.0707 0.0707 0.0707 ⎦
⎡ 0.2707 0.0707 -0.2 0 0.0707 0.2707 0 0 ⎢ 0 0.45 0 ⎢ -0.2 0 0 0.2 ⎢ 0 ⎢ 0 0 -0.25 0 ⎢ 0 0 0 0 ⎢ 0 0 0 ⎢ 0 0 0 0 ⎢ 0 ⎢ 0 0 0 0 ⎢ 0 0 0 0 ⎢ 0 0 0 ⎢ 0 0 0 0 ⎢ 0 ⎢ 0 0 0 0 K = ⎢ 0 0 0 0 ⎢ 0 0 0 ⎢ 0 0 0 0 ⎢ 0 ⎢ 0 0 0 0 ⎢ 0 0 0 0 ⎢ 0 0 0 ⎢ 0 ⎢ 0 0 0 0 ⎢ 0 0 0 0 ⎢ 0 0 0 0 ⎢ 0 ⎢ -0.0707 -0.0707 0 ⎢ -0.0707 -0.0707 0 -0.2 ⎢ 0 0 0 0 -0.2 0 0 ⎣ 0
0.25 0 0 0⎦
0 0
0 0
0 0 0 0 0 0 -0.0539 -0.077 0.3785 0.0707 -0.2 0 0 0 -0.0707 -0.0707 0 0 -0.0539 0.077 0 0 0 0 0 0
0 0
0 0 ⎤ 0 -0.2 ⎥ ⎥ 0 0 ⎥ 0 0.2 ⎦
0 0 0 0 0 0 0 0 0 0 0 0 -0.077 0 -0.11 0 0.0707 -0.2 0.4906 0 0 0.45 0 0 0 -0.25 0 0 -0.0707 0 -0.0707 0 0 0 -0.2 0 0.077 0 -0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 …
0 0
⎤
⎡ 0 ⎤ 0 ⎢ ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ F = ⎢ ⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢ -3 ⎥ ⎢ 0 ⎥ ⎢ -2 ⎥ ⎢ ⎥ ⎢ 0 ⎥ ⎢ -1 ⎥ ⎢ 0 ⎥ ⎢ -6 ⎥ ⎢ ⎥ ⎢ 0 ⎥ ⎢ -3 ⎥ ⎢ 3.6 ⎥ ⎣ -2 ⎦
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
⎤ ⎥
- 8 -
⎡ 0 ⎤ ⎢ 0 ⎥
Gilmer Calderón Quispe Ingenierá Civil UNSCH ⎢- . ⎢ 0 0 ⎢ 0 0 ⎢ 0 ⎢ 0 0 ⎢ 0 ⎢ 0 0 ⎢ 0 0 ⎢ 0 0 ⎢ ⎢ 0 0 ⎢ 0 0 ⎢ 0 0 K_m = ⎢ 0 0 ⎢ ⎢ 0 0 ⎢ 0 0 ⎢ 0 0 ⎢ 0 0 ⎢ ⎢ 0 0 ⎢ 0 0 ⎢ 0 0 ⎢ 0 0 ⎢ ⎢ -0.0707 -0.0707 ⎢ -0.0707 -0.0707 ⎢ 0 ⎢ 0 0 -0.2 ⎣
⎡ ⎡ “U1” ⎤ “U2” ⎢⎢ ⎥ ⎢ ⎢ “U3” ⎥ ⎢ ⎢ “U4” ⎥ ⎢ ⎢ “U5” ⎥ ⎢ ⎢ “U6” ⎥ ⎢⎢ ⎥ ⎢ ⎢ “U7” ⎥ ⎢ ⎢ “U8” ⎥ ⎢ ⎢ “U9” ⎥ ⎢ ⎢ “U10” ⎥ ⎢⎢ ⎥ ⎢ ⎢ “U11” ⎥ ⎢ ⎢ “U12” ⎥ ⎢ ⎢ “U13” ⎥ Δ=⎢⎢ “U14” ⎥ ⎢⎢ ⎥ ⎢ ⎢ “U15” ⎥ ⎢ ⎢ “U16” ⎥ ⎢ ⎢ “U17” ⎥ ⎢ ⎢ “U18” ⎥ ⎢⎢ ⎥ ⎢ ⎢ “U19” ⎥ ⎢ ⎢ “U20” ⎥ ⎢ ⎢ “U21” ⎥ ⎢ ⎢ “U22” ⎥ ⎢⎢ ⎥ ⎢ ⎢ “U23” ⎥ ⎢ ⎢ “U24” ⎥ ⎢ ⎢ “U25” ⎥ ⎣ ⎣ “U26” ⎦
⎡ 3.6364 ⎤ ⎢ 0 ⎥ P 1 = ⎢ ⎥ -3.6364
. 0 0.2 -0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.2 0 0 0 0
- . 0 0.4187 -0.0762 -0.0539 0.077 0 0 0 0 0 0 0 0 0 0 -0.0539 -0.077 0 0 -0.0609 0.0762 0 0
0 0 0 -0.0762 -0.0539 0.077 0.5152 0.077 -0.11 0.077 6.7919 ⋅ 10 19 0 -0.11 0 6.7919 ⋅ 10 29 0 -0.0539 -0.077 0 -0.077 -0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.077 0 0 -0.11 0 0 0 0 0 -0.2 0 0 0.0762 0 0 -0.0952 0 0 0 0 0 0 0 0
⎥ ⎢ 0 ⎥ ⎥ 0 ⎢ 0 ⎥ ⎥ ⎢ 0 ⎥ 0 ⎥ ⎢ 0 ⎥ 0 ⎥ ⎢ ⎥ -0.0539 ⎥ ⎢ 0 ⎥ ⎥ ⎢ 0 ⎥ -0.077 ⎥ ⎢ 0 ⎥ 0.3785 ⎥ ⎢ 0 ⎥ 0.0707 ⎥ ⎢ ⎥ ⎥ -0.2 ⎢ 0 ⎥ ⎥ ⎢ 0 ⎥ 0 ⎥ ⎢ 0 ⎥ 0 F_m ⎥ =⎢ 0 ⎥ 0 ⎥ ⎢ ⎥ ⎥ -0.0707 ⎢ 0 ⎥ ⎥ ⎢ -3 ⎥ -0.0707 ⎥ ⎢ 0 ⎥ 0 ⎥ ⎢ -2 ⎥ 0 ⎥ ⎢ ⎥ ⎥ -0.0539 ⎢ 0 ⎥ ⎥ ⎢ -1 ⎥ 0.077 ⎥ ⎢ 0 ⎥ 0 ⎥ ⎢ ⎥ 0 ⎥ ⎢ -6 ⎥ ⎥ 0 ⎢ 0 ⎥ ⎥ ⎢ -3 ⎥ 0 ⎥ ⎢ 3.6 ⎥ 0 ⎥ ⎣ -2 ⎦ 0 … ⎦
⎡ -199.078391 ⎤ ⎤ 0 ⎢ ⎥⎥ ⎢ -217.260209 ⎥ ⎥ ⎢ -155.663251 ⎥ ⎥ ⎢ -231.805664 ⎥ ⎥ ⎢ -277.827152 ⎥ ⎥ ⎢ ⎥⎥ 0 ⎢ ⎥⎥ 0 ⎢ ⎥⎥ ⎢ 307.745801 ⎥ ⎥ ⎢ -284.216702 ⎥ ⎥ ⎢ ⎥⎥ ⎢ 301.200346 ⎥ ⎥ ⎢ -140.677065 ⎥ ⎥ ⎢ 295.963982 ⎥ ⎥ ⎢ ⎥⎥ 0 ⎢ ⎥⎥ ⎢ 98.63808 ⎥ ⎥ ⎢ -140.677065 ⎥ ⎥ ⎢ 68.910807 ⎥ ⎥ ⎢ -294.216702 ⎥ ⎥ ⎢ ⎥⎥ ⎢ 48.101717 ⎥ ⎥ ⎢ -474.411882 ⎥ ⎥ ⎢ 29.392626 ⎥ ⎥ ⎢ -307.827152 ⎥ ⎥ ⎢ ⎥⎥ 8.010807 ⎥ ⎥ ⎢ ⎢ -155.663251 ⎥ ⎥ ⎢ 26.010807 ⎥ ⎥ ⎣ -10 ⎦⎦
⎡ 3.6364 ⎤ ⎢ 0 ⎥ P 2 = ⎢ ⎥ -3.6364
UNSCH Ayacucho - Perú
⎡ 15.5118 ⎤ ⎢ 0 ⎥ P 3 = ⎢ ⎥ -15.5118
⎡ 9.2342 ⎤ ⎢ 0 ⎥ P 4 = ⎢ ⎥ -9.2342
⎡ 1.3091 ⎤ ⎢ 0 ⎥ P 5 = ⎢ ⎥ -1.3091
- 9 -
Gilmer Calderón Quispe Ingenierá Civil UNSCH
⎡ 1.3091 ⎤ ⎢ 0 ⎥ P 6 = ⎢ ⎥ -1.3091 ⎣ 0 ⎦
⎡ -2.0956 ⎤ ⎢ 0 ⎥ P 7 = ⎢ ⎥ 2.0956 ⎣ 0 ⎦
⎡ -5.3455 ⎤ ⎡ 3.6 ⎤ 0 0 P 11 = ⎢ ⎥ P 12 = ⎢ ⎥ ⎢ 5.3455 ⎥ ⎢ -3.6 ⎥ ⎣ 0 ⎦ ⎣ 0 ⎦
⎡ -5.9455 ⎤ ⎢ 0 ⎥ P 8 = ⎢ ⎥ 5.9455 ⎣ 0 ⎦
⎡ 2⎤ 0 P 13 = ⎢ ⎥ ⎢ -2 ⎥ ⎣ 0⎦
⎡ 8.4987 ⎤ ⎡ 6⎤ ⎢ 0 ⎥ ⎢ 0⎥ P 16 = ⎢ ⎥ P 17 = ⎢ ⎥ -8.4987 -6 ⎣ 0 ⎦ ⎣ 0⎦
⎡ 6.5568 ⎤ ⎢ 0 ⎥ P 21 = ⎢ ⎥ ⎢ -6.5568 ⎥ ⎣ 0 ⎦
UNSCH Ayacucho - Perú
⎡ -5.9455 ⎤ ⎢ 0 ⎥ P 9 = ⎢ ⎥ 5.9455 ⎣ 0 ⎦
⎡ 0.0872 ⎤ ⎢ 0 ⎥ P 18 = ⎢ ⎥ -0.0872 ⎣ 0 ⎦
⎡ -5.3455 ⎤ ⎢ 0 ⎥ P 10 = ⎢ ⎥ 5.3455 ⎣ 0 ⎦
⎡ -5.1426 ⎤ 0 P 14 = ⎢ ⎥ ⎢ 5.1426 ⎥ ⎣ 0 ⎦
⎡ 1.1335 ⎤ ⎢ 0 ⎥ P 19 = ⎢ ⎥ -1.1335 ⎣ 0 ⎦
⎡0⎤ 0 P 15 = ⎢ ⎥ ⎢0⎥ ⎣0⎦
⎡ 2⎤ ⎢ 0⎥ P 20 = ⎢ ⎥ -2 ⎣ 0⎦
⎡0⎤ ⎢0⎥ P 22 = ⎢ ⎥ ⎢0⎥ ⎣0⎦
- 10 -
Gilmer Calderón Quispe Ingenierá Civil UNSCH
[1] "RESOLUCIÓN DE ARMADURAS EN 2D CON EL MÉTODO MATRICIAL DE LA RIGIDEZ " David Oriz Soto [2] INTRODUCTION TO FINITE ELEMENTS IN ENGINEERING 3ra edicion Tirupaty R. Chandrupatla Ashok D. Belegundo
UNSCH Ayacucho - Perú
- 11 -