UNIVERSIDAD MAYOR DE SAN ANDRES FACULTAD DE INGENIERIA
LABORATORIO DE FISICA BASICA III
INFORME No 7 INDUCTANCI AI Estudiante GERMAN SANTIAGO Grupo Doente R. Fe!a
Laboratorio Física Básica II
INDUCTANCIA I
TRATAMIENTO DE DATOS Indutania de un so"enoide 1. Mediante un análisis de reresi!n" deter#inar $ dibu%ar la relaci!n L&'(N). *o#+arar la constante de la reresi!n con el ,alor es+erado" to#ando co#o diá#etro del selenoide el +ro#edio. *onsiderando -&/0123 4T #5A6 2 μ∗n∗π∗ D L= 7N 4
4 πx 10 L
−4
[ T m / A ]∗(
=
LT = 0.3610
450
[ ]
206.5 m
)∗π ∗12.95
2
−6 2 x 10 m
[
] 7N
4
#N $%&' TABLA N() N 89 < <9 9
" $%&' :1.; 118 1<8.1 191.< 1=:.=
GRAFICO N()* L+,-N.
>NI?. @>ISE TAN*ARA GERMAN SANTIAGO
Laboratorio Física Básica II 1; 1= 1 18 1 I$%&' ; = 8 8
'(0) & .<:0 2 9.3 R & 1 untos Línea a%ustada
89
<
<9
9
9
N
LE =0 . 3898
L4E -C6 .<;:;
4TL -C6 .<=1
#N $%&'
D 3.<;; D
8. e la Tabla 1 to#ar el ,alor de L corres+ondiente a 9 ,ueltas" L 9" $ co#+ararlo con el ,alor te!rico dado +or la ecuaci!n (;).Cacer lo #is#o con la inductancia del tra#o de 9 ,ueltas L 9. 2
ara N&9 ,ueltas en la ecuaci!n (;) 2
2
2
−7
L= π ∗D ∗N ∗10 / l 2
2
2
L= π ∗12.95
−6
10
2
LT+)/012 $%&'
LE4 -C6 1=:.=
L4T
-C6
1=8.<
Esti#ando el ,alor +ara N&9 −7 2 2 2 L= π ∗D ∗N ∗10 / l
>NI?. @>ISE TAN*ARA GERMAN SANTIAGO
−7
[ m ]∗450 ∗10 [ Tm/ A ] −3 206.5 x 10 [ m ]
D
.< D
Laboratorio Física Básica II
2
2
L= π ∗12.95
−6
10
[ m2 ]∗502∗10−7 [ Tm / A ] −3 206.5 x 10 [ m ]
LT+01334 $%&' LE 4-C6 1.1
LT 4-C6 8.
D ;9.3; D
Cone5i6n de indutores <. *o#+arar la inductancia L s con el ,alor te!rico dado +or la ecuaci!n (11) L e& L1 HL8 Le&8.3; 4#C6H11. 4#C6 Le+)2180 $9&' LS4 #C6 1<.3;
L4 #C6 1<.;8
e
D .8;D
. *o#+arar la inductancia L s con el ,alor te!rico dado +or la ecuaci!n (1=) L1 L Leq= L + L ∗
1
Leq=
2
2
2.78∗11.04 2.780 + 11.04
Le+01003 $9&' L+4 #C6 8.88
L4 #C6 8.88
e
D D
CUESTIONARIO )1 :Cu;ntas
a una indutania de )33 [ μH ]
>NI?. @>ISE TAN*ARA GERMAN SANTIAGO
Laboratorio Física Básica II
*on la ecuaci!n −7 2 2 2 L= π ∗D ∗N ∗10 / l Ree#+laando los datos − m N Tm A [ H ] = π ∗12.95 ¿ 10− [ ]∗ ∗10 −[ / ] 2
−6
100∗10
2
2
2
7
6
206.5 x 10
3
[m]
e donde obtene#os N&<9<.81 ,ueltas" ue +uede escribirse co#o <8< ,ueltas
01 :?or u@ "a di,erenia entre "os
21 :?or u@ "a indu tania es di,erente -=astante 9aor. uando se introdue una
41 :?or u@ "a indutania eui
>NI?. @>ISE TAN*ARA GERMAN SANTIAGO
Laboratorio Física Básica II 1 AG es una si>"a uti"iada en re"ai6n on a"a9=res ondutores :u@ si>nia esta si>"a De auerdo on "a respuesta on e" dato d :de u@ nu9ero ser; e" a"a9=re usado en "a=oratorio E5p"iar La sila AG sinica en inles A#erican ire Gaue" en es+aol uiere decir calibre de ala#bre estadounidense El ,alor d obtenido #ediante #edici!n 'ue de .<; (##)" si a+recia#os las tablas AG 8= 83
iá#etro (##) .: .<==
Esto uiere decir ue si se utili! esta re'erencia en los cables de cobre del laboratorio" se co#eti! un error" +ero esto +uedo ser %usticado" $a sea ue debido a ue no se eli#in! total#ente la resina +resente en los cables no se encontr! el ,alor real de diá#etro en el conductor" o +orue al no saber sobre la escala de re'erencia AG" no se buscaron ,alores +r!0i#os a los e#+leados en tabla en el +roceso de #edici!n
>NI?. @>ISE TAN*ARA GERMAN SANTIAGO