Cerita tentang peran masyarakat desa saat menghadapi bencana letusan gunung api. Dibuat dan diterbitkan oleh Yayasan IDEP untuk Penanggulangan Bencana Berbasis Masyarakat. Selama ini, tinda…Full description
Standar operasional prosedur sebelum, saat dan sesudah terjadi bencana tsunami.Deskripsi lengkap
Full description
Makalah kelompok mengenai Pariwisata dalam rangka KKL ke Aceh
ryhr
Informe del sismo en Chile 2010Descripción completa
sunami
gracias po su aporteDescripción completa
museum acehDeskripsi lengkap
tsunami palu
quran on tsunami lessons
Full description
Full description
disaster keperawatan
ece seminar on tsunami warning systemFull description
Modelo de Informe Psicológico Del Cuestionario Desiderativo
UNIDAD 2
Modelo de tsunami Nombre:Cristian Vázquez González Pantalla 6/6 05/11/2009
1.1.- Escribe tu nombre en la portada. 2.2.- Responde a las preguntas preguntas que te haga el cuesonario 3.- Revísalo Revísalo y envíalo a la plataforma plataforma en la pagina ! de la unidad 2
"##
%$&'()*) 2 +agina !
MODELO Tsunami. El movimiento de un tsunami se puede describir con una función senoidal de dos variables independientes (x,t) como la siguiente ue representa una onda via!era"
t x D T
y Asen#
O tambi$n como la siguiente expresión %a ue v & 'f
# x t D T v
y Asen
Donde" % & es la posición vertical del nivel del agua (altura de la ola) en un instante t % en un lugar determinado ale!ado del epicentro del tsunami. nidades en metros. (m). & es la altura m*xima de la ola con respecto al nivel normal del mar. nidades en metros. (m). t & es el tiempo o instante ue deseamos considerar. Es una variable independiente. nidades en minutos. (min) T & es el periodo entre ola % ola. Es decir, es el tiempo ue tardan en aparecer dos olas sucesivas. nidades en minutos. (min). x & es la posición a considerar medida a partir del epicentro u origen del tsunami. nidades en metros. (m). Es decir, es la distancia ue existe entre el epicentro % el punto a considerar como la costa de una pla%a. Es una variable independiente pero en este problema se considera fi!a. (m). ' & es la longitud de onda ue existe entre ola % ola. nidades en metros. (m) & es la velocidad de despla+amiento del tsunami. nidades de metros por minuto. (mmin).
v
D & Distancia con respecto al nivel del mar ue sirve para a!ustar un modelo. nidades en metros. (m). f & es la frecuencia de la onda. nidades de ciclos por segundo.(ciclosseg). (-ert+) ---------------------------------------------------------------------------------------------------------------------
DE/0O Adaptacioó n Eric Paredes V
Paó gina 2
"##
%$&'()*) 2 +agina !
1ota" Este caso no es igual al desaf2o de la plataforma. upongamos ue tenemos los siguientes datos de un tsunami ue se produce en su epicentro en el mar. a).3 La altura de las olas en la costa es de #4 metros. b).3 La profundidad del lec-o marino en la costa es de #5 metros. c).3 6onsidera ue la velocidad del tsunami es de 74 8m-r. d).3 El epicentro se encuentra a 944 8ilómetros de la costa. e).3 El per2odo entre una ola % otra ola es de #4 minutos.
:reguntas" ;.3 6on la información anterior determina la función senoidal de la altura de la ola del tsunami con respecto al tiempo, en la costa. olución" %&sen <#= t 3 x >?D (;) % ,
O también como la siguiente expresión ya que: @& sen <#= t A x >?D (#) T B La amplitud promedio de la ola del tsunami es: #43(3#5)& 75 #.5 # # & ##.5m. T min. C&944 m& 944,444m. 74(;444) & 74,444 & . mmin 4 4 F&748mD.5 En la ecuación 2 tenemos los valores sustituidos como: @& sen <#= ( t A x ) ? D ##.5 sen < #= (t A 944,44 ) >3# T v #4 ,
@#.5 sen .#9G; (t 3 ;#44 ) 3# #.5 sen <4.G;7; (t 3;#44)>3# #4 ,
Adaptacioó n Eric Paredes V
Paó gina 3
"##
%$&'()*) 2 +agina !
/unción seno multiplicada es" @#.5 sen <(4.G;7; (t)3(4.G;7;) (;#44)>3# @#.5 sen <4.G;7; t3GH.I#)>3# 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
#.3 Jrafica la ecuación de la altura de la ola en la costa en una gr*fica de altura contra tiempo %a sea con Kinplot, Excel, Jeogebra u otro graficador. olución" 0 0
5
10
15
20
25
30
-0.5
-1
-1.5
-2
-2.5
-3
-3.5
Adaptacioó n Eric Paredes V
Paó gina
"##
%$&'()*) 2 +agina !
3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 G.3 uponga a-ora ue el tsunami se despla+a a una velocidad de 4 8m-r % adem*s la profundidad del lec-o marino en la costa es de #4 metros. Determina la función senoidal de la altura de la ola del tsunami en función del tiempo cuando se tiene esta nueva velocidad de despla+amiento % con la nueva profundidad del lec-o marino. Los dem*s datos son iguales" Es decir, los datos de este caso son a).3 La altura de las olas en la costa es de #4 metros. b).3 La profundidad del lec-o marino en la costa es de #4 metros. c).3 6onsidera ue la velocidad del tsunami es de 4 8m-r. d).3 El epicentro se encuentra a 944 8ilómetros de la costa. e).3 El per2odo entre ola % ola es de #4 minutos. olución" A=20 T=20min. X=800 km=800,000m 60(1000)= 60,000=1000 60 60 V= 60km/h D= 0
Sustituyendo los valores de la ecuaci ón 2 tenemos: Y=Asen 2= (t- x )+D =20 sen 2= (t- 800,000)+0 T v 20 1000 Y= 20 sen 2= (t- 800,000)+0 =20 sen (0.3141 (t-800) >?4 20 1000
Multiplicando la funci ón seno tenemos: Y=20 sen (0.3141) (t) – (0.3141) (1200)+0 Y= 20 sen (0.3141-376.92)+0
7.3 Jr*fica la función senoidal de la respuesta G. Es decir, la gr*fica de la altura de la ola contra tiempo ba!o las condiciones de la pregunta G. olución"
1.5
1
0.5
0 0
5
10
15
20
25
30
-0.5
-1
-1.5
333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 5.3 6ómo es la velocidad de un tsunami con respecto a la longitud de onda si el periodo permanece constante, es decir, son directamente proporcionales o inversamente proporcionales la velocidad % la longitud de ondaN olución" @a ue F& 'f & ' T 6on la gr*fica anterior podemos ver ue a medida ue aumenta la velocidad del tsunami aumenta la longitud de onda si el periodo permanece constante. Esto uiere decir ue son directamente proporcionales ambos. 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333