COLEGIO NACIONAL CESAR DAVILA ANDRADE.
NOMBRE:
VERONICA BACUILIMA.
MATERIA:
MATEMATICAS.
PROFESOR:
LIC. EDYSON BACULIMA.
CURSO:
NOVENO DE BASICA.
AÑO LECTIVO:
2012 – 2013.
NÚMERO RACIONAL. Los números racionales, son el conjunto de números fraccionarios y números enteros representados por medio de fracciones. Este conjunto está situado en la recta real numérica pero a diferencia de los números reales que son consecutivos, por ejemplo a 4 le sigue 5 y a este a su vez le sigue el 6, y los números negativos cuya consecución se da así, a -9 le sigue -8 y a este a su vez le sigue -7; los números racionales no poseen consecución pues entre cada número racional existen infinitos números que solo podrían ser escritos durante toda la eternidad. Todos los números fraccionarios son números racionales, y sirven para representar medidas. Pues a veces es más conveniente expresar un número de esta manera que convertirlo a decimal exacto o periódico, debido a la gran cantidad de decimales que se podrían obtener. Podemos empezar por decir que, un número racional es una cifra o valor que puede ser referido como el cociente de dos números enteros o más precisamente, un número entero y un número natural positivo. Es decir que es un número racional, es un número que se escribe mediante una fracción. Los números racionales son números fraccionarios, sin embargo los números enteros también pueden ser expresados como fracción, por lo tanto también pueden ser tomados como números racionales con el simple hecho de dar un cociente entre el número entero y el número 1 como denominador. Al conjunto de los números racionales se lo denota con la letra Q, que viene de la
palabra anglosajona “Quotient” traducción literal de cociente, y que sirve para recogerlos como subgrupo dentro de los números reales y junto a los números enteros cuya denotación es la letra Z. Por ello, en ocasiones se refieren a los números racionales como números Q. Un número racional puede ser expresado de diferentes maneras, sin alterar su cantidad mediante fracciones equivalentes, por ejemplo ½ puede ser expresado como 2/4 o 4/8, debido a que estas son fracciones reducibles. Asimismo existe una clasificación de los números racionales dependiendo de su expresión decimal, estos son:
Los números racionales limitados, cuya representación decimal tiene un número determinado y fijo de cifras, por ejemplo 1/8 es igual a 0,125.
Los números racionales periódicos, de los cuales sus decimales tienen un número ilimitado de cifras, pero se diferencian de los números irracionales porque de esas cifras se puede descubrir un patrón definido mientras que en los números irracionales sus cifras decimales son infinitas y no-periódicas. A su vez los números racionales periódicos se dividen en dos, los periódicos puros, cuyo patrón se encuentra inmediatamente después de la coma, por ejemplo 0,6363636363… y los periódicos mixtos, de los cuales el patrón se encuentra después de un número determinado de cifras, por ejemplo 5,48176363636363…
PROPIEDADES DE LOS NÚMEROS RACIONALES Existen para la suma y resta, y para la multiplicación y división, distintas propiedades de los números racionales, estos son:
Entre las propiedades de la suma y resta están: Propiedad interna: Según la cual al sumar dos números racionales, el resultado siempre será otro número racional, aunque este resultado puede ser reducido a su mínima expresión si el caso lo necesitara.
Propiedad asociativa.- se dice que si se agrupa los diferentes sumandos racionales, el resultado no cambia y seguirá siendo un número racional.
Propiedad conmutativa.- donde en la operación, si el orden de los sumando varía, el resultado no cambia, de esta manera:
Elemento neutro.- el elemento neutro, es una cifra nula la cual si es sumada a cualquier número racional, la respuesta será el mismo número racional.
Inverso aditivo o elemento opuesto.- es la propiedad de números racionales según la cual, existe un elemento negativo que anula la existencia del otro. Es decir que al sumarlos, se obtiene como resultado el cero.
Por otro lado, existen también las propiedades de los números racionales por parte de la multiplicación y la división, y estas son:
Propiedad interna.- en razón de que al multiplicar números racionales, el resultado también es un número racional.
Esta además aplica con la división:
Propiedad asociativa.- donde al agrupar diferentes factores la forma de la agrupación, no altera el producto.
Propiedad conmutativa.- aquí se aplica la famosa frase, el orden de los factores no altera el producto, entre los números racionales también funciona.
Propiedad distributiva.- al combinar sumas y multiplicaciones, el resultado es igual a la suma de los factores multiplicado por cada uno de los sumandos, veamos el ejemplo:
Elemento neutro.- en la multiplicación y la división de números racionales, existe un elemento neutro que es el número uno, cuyo producto o cociente con otro número racional, dará como resultado el mismo número.
EJEMPLOS DE NÚMEROS RACIONALES Los números racionales son números fraccionarios, es decir que podríamos escribir cualquier cociente entre dos números enteros y llamarlo número racional, aquí un ejemplo:
Sin embargo, los números enteros también pueden ser incluidos dentro de los números Q, al formar un cociente con un número neutro, es decir de este modo:
NUMEROS IRRACIONALES. Los números irracionales tienen como definición que son números que poseen infinitas cifras decimales no periódicas, que por lo tanto no pueden ser expresados como fracciones. Estos números pueden haber sido descubiertos al tratar de resolver la longitud de un cuadrado según el Teorema de Pitágoras, siendo el resultado el número
√ o raíz cuadrada de dos, el ejemplo de números irracionales más claro e inmediato, cuya respuesta a su vez posee infinitas cifras decimales que al no poder ser fraccionado, fue llamado irracional, en el sentido de no poder escribirlo como una ración o varias raciones o fracciones. Para distinguir los números irracionales de los racionales, debemos tomar en cuenta que los números racionales si se pueden escribir de manera fraccionada o racional, por ejemplo: 18/5 que es igual a 3,6 por lo tanto es un número racional a diferencia de la raíz cuadrada de dos en cuyo resultado se obtienen infinito número de cifras decimales, y su fraccionamiento resulta imposible. De esta manera podemos definir a los números irracionales como un decimal infinito no periódico, es decir que cualquier representación de un número irracional, solo es una aproximación en números racionales.
NOTACIÓN DE LOS NÚMEROS IRRACIONALES La representación gráfica de los números irracionales se la hace con la letra I mayúscula. Se la utiliza de esta manera para diferenciarla de los números imaginarios, cuya representación es la i minúscula. Pero el símbolo no se representa en las ecuaciones al no constituir una estructura algebraica, y para no crear confusión, en ocasiones se los puede ver como R/Q como la representación de números irracionales por definición. Existen algunos casos especiales de números irracionales famosos que tienen su propia notación y simbología.
PROPIEDADES DE LOS NÚMEROS IRRACIONALES Además de ser un número infinito decimal no periódico, los números irracionales tienen otras propiedades como:
Propiedad conmutativa: en la suma y la multiplicación se cumple la propiedad conmutativa según la cual el orden de los factores no altera el resultado, por ejemplo, π+ϕ = ϕ+π; así como en la multiplicación, π×ϕ =ϕ×π.
Propiedad asociativa: donde la distribución y agrupación de los números da como resultado el mismo número, de manera independiente a su agrupación, siendo (ϕ+π)+e=ϕ+ (π+e); y de la misma manera con la multiplicación, (ϕ×π) ×e=ϕ× (π×e).
Propiedad cerrada: es decir que el resultado de la suma, resta, multiplicación, división o potenciación de un número irracional, siempre será un número irracional. Sin embargo la propiedad cerrada no se cumple en el caso de la radicación.
Elemento opuesto: existe un inverso aditivo, para la suma de números irracionales, es decir que para cada número tiene su negativo que lo anula, por ejemplo π -π=0 y de la misma forma un inverso multiplicativo que da como resultado 1, es decir ϕ×1/ϕ=1. La multiplicación es distributiva en relación a la suma y a la resta. Ejemplo:
(3+2) π =3π+2π=5π. CLASIFICACIÓN DE LOS NÚMEROS IRRACIONALES Dentro de la recta real numérica existen varios conjuntos de números, pero dentro de los números irracionales hay más tipos para clasificar, estos son:
Número algebraico.- se les llama así a los números irracionales que surgen de resolver alguna ecuación algebraica y se escribe con un número finito de radicales libres o anidados. En general, las raíces no exactas de cualquier orden se encuentran dentro de este conjunto, es decir las raíces cuadradas, cúbicas, etc.
Número trascendente.- este es un número irracional que no puede ser representado a través de un número finito de radicales libres o anidados, estos provienen de otro tipo de operaciones llamadas funciones trascendentes utilizadas mucho en trigonometría, logaritmos, exponenciales, etcétera. Aunque también pueden surgir de la simple acción de escribir números decimales al azar sin periodicidad y sin un patrón determinado, podemos decir que son decimales infinitos. Este último tipo, se diferencia del anterior porque no puede ser el resultado de una ecuación algebraica, en otras palabras, son relevantes a la clasificación porque no tienen una representación con un número radical.
EJEMPLOS DE NÚMEROS IRRACIONALES En primer lugar vamos a anotar los ya mencionados números irracionales algebraicos
con ejemplos, ya habíamos hablado de √2 o raíz cuadrada de dos que resulta de una ecuación algebraica, pero también tenemos otros ejemplos que podrían resultar son:
Por otro lado, tenemos a los números irracionales trascendentes, que no pueden representarse mediante radicales como se lo ha hecho en el ejemplo anterior, sino que deben ser representados con decimales infinitos no periódicos, y con tres puntos suspensivos para denotar que son infinitos, de lo contrario estaríamos escribiendo números durante toda la eternidad, así:
0,1961325454898161376813268743781937693498749… 0,01001000100001000001000000100000001000000001…
CONCLUSIONES.
-
Los números racionales, son el conjunto de números fraccionarios y números enteros representados por medio de fracciones.
-
Todos los números fraccionarios son números racionales, y sirven para representar medidas.
-
Un número racional puede ser expresado de diferentes maneras, sin alterar su cantidad mediante fracciones equivalentes
-
Los números irracionales son números que poseen infinitas cifras decimales que no pueden ser expresados como fracciones.