MAKALAH Mata Kuliah STATISTIKA
KHADEEJAH ASWI AKBAR 13050394007 PUTRI DESSY VIVIT L
13050394053
IGA ANDRIANITA
13050394055
S1 Pendidikan Tata Boga 2013
JURUSAN PENDIDIKAN KESEJAHTERAAN KELUARGA FAKULTAS TEKNIK UNIVERSITAS NEGERI SURABAYA 2015 – 2016
BAB I PENDAHULUAN A. Latar belakang Statistika pada dasarnya merupakan alat bantu untuk memberi gambaran atas suatu kejadian melalui bentuk yang sederhana, baik berupa angka-angka maupun grafik-grafik. Karena peranannya sebagai pembantu, maka kunci keberhasilan analisis statistika terletak pada pemakainya. Orang-orang yang telah mengumpulkan dan menggunakan statistika selama ribuan tahun. Statistika awal, seperti sensus bangsa Babilonia kuno, Mesir kuno, Cina kuno di gunakan untuk menghitung jumlah populasi untuk tujuan pemungutan pajak. Sejak abad ke-15 sampai sekarang, ahli-ahli statistika mulai menyadari bahwa statistika bisa di gunakan dalam berbagai bidang yang lebih luas. B. Rumusan masalah Adapun yang menjadi pokok permasalahan diatas adalah sebagai berikut : 1. Bagaimana menerapkan aturan konsep statistik dalam pemecahan masalah? 2. Bagaimana penjelasan tentang Momen ? 3. Bagaimana penerapan tentang Kemiringan ?
C. Tujuan 1. Menjelaskan penjelasan tentang Momen 2. Menjelaskan penjelasan tentang Kemiringan
BAB II PEMBAHASAN STATISTIKA
1. Pengertian Statistika Statistik adalah kumpulan data dalam bentuk angka maupun bukan angka yang disusun dalam bentuk tabel (daftar) atau diagram yang menggambarkan suatu masalah tertentu. Statistika adalah pengetahuan yang berkaitan dengan metode, teknis atau cara untuk mengumpulkan data, mengolah data, menganalisa data (dikoreksi satu persatu) dan menarik kesimpulan. Statistika dalam pengertian sebagi ilmu dibedakan menjadi dua yaitu: 1. Statistika Deskriptif Yaitu tahapan statistika yang berkenaan dengan pengumpulan, pengolaan, penganalisaan, dan penyajian sebagian atau seluruh data (pengamatan) tanpa pengambilan keputusan. 2. Statistika Inferensial Yaitu statistika yang berkenaan dengan penarikan kesimpulan berdasarkan data yang diperoleh, namun sebelum menarik kesimpulan dilakukan suatu dugaan yang dapat diperoleh dari statistika deskriptif.
1.
MOMEN
Misalkan diberikan variable x dengan harga-harga: x1, x2, …., xn. Jika A =sebuah bilangan tetap dan r = 0, 1, 2, ……., n, maka momen ke-r sekitar A, disingkatmr, didefinisikan oleh hubungan:
(1) …………………………… Untuk A = 0 didapat momen ke-r sekitar nol atau disingkat momen ke-r: (2) ..............................
Dari rumus (2), maka untuk r = 1 didapat rata-rata . Jika A = kita perolehmomen ke-r sekitar rata-rata, biasa disingkat dengan mr. Jadi didapat: (3) …………………………...
Untuk r = 2, rumus (3) memberikan varians s2 Untuk membedakan apakah momen itu untuk sampel atau untuk populasi, makadipakai simbul:mr dan mr’untuk momen sampel dan µr dan µr’untuk momen populasi. Jadi, mr dan mr’adalah statistik sedangkan µr dan µr’ merupakan parameter.Jika data telah disusun dalam daftar distribusi frekuensi, maka rumus-rumus di atas berturut-turut berbentuk: (4) ………………………..
(5) ………………………..
(6) ………………………..
dengan n = ∑fi, xi = tanda kelas interval dan fi = frekuensi yang sesuai dengan xi. Dengan menggunakan cara sandi, rumus 4 menjadi: (7) ………………………
Dengan, p = panjang kelas interval, ci = variabel sandi Dari mr’, harga-harga mr untuk beberapa harga r, dapat ditentukan berdasarkan hubungan: m2 = m2’ – (m1’)2 m3= m3’ – 3m1’m2’ + 2(m1’)3 m4= m4’ - 4 m1’m3’ + 6(m1’)2 m2’ - 3(m1’)4 contoh untung menghitung 4 buah momen sekitar rata-rata untk data dalam daftar distribusi frekuensi sbb:
2. KEMIRINGAN
Kemencengan atau kecondongan (skewness) adalah tingkat ketidaksimetrisan atau kejauhan simetri dari sebuah distribusi. Sebuah distribusi yang tidak simetris akan memiliki rata-rata, median, dan modus yang tidak sama besarnya sehingga distribusi akan terkonsentrasi pada salah satu sisi dan kurvanya akan menceng. Jika distribusi memiliki ekor yang lebih panjang ke kanan daripada yang ke kiri maka distribusi disebut menceng ke kanan atau memiliki kemencengan positif. Sebaliknya, jika distribusi memiliki ekor yang lebih panjang ke kiri daripada yang ke kanan maka distribusi disebut menceng ke kiri atau memiliki kemencengan negatif. Berikut ini gambar kurva dari distribusi yang menceng ke kanan (menceng positif) dan menceng ke kiri (menceng negatif).
Untuk mengetahui bahwa konsentrasi distribusi menceng ke kanan ataumenceng ke kiri, dapat digunakan metode-metode berikut : 1. Koefisien Kemencengan Pearson Koefisien Kemencengan Pearson merupakan nilai selisih rata-rata dengan modusdibagi simpangan baku. Koefisien Kemencengan Pearson dirumuskan sebagai berikut:
Keterangan : Sk = koefisien kemencengan pearson Aoabila secar empiris didapatkan hubungan antarnilai pusat sebagai:
Maka rumus kemenccengan diatas dapat dirubah menjadi:
Jika nilai sk dihubungkan dengan keadaan kurva maka: 1)
Sk =0
2)
Sk>0
kurva memiliki bentuk simetris Nilai-nilai terkonsentrasi pada sisi sebelah kanan (
terletak
di sebelah kanan Mo), sehingga kurva memiliki ekor memanjang ke kanan, kurva menceng ke kanan atau menceng positif; 3)
sk< 0
Nilai-nilai terkonsentrasi pada sisi sebelah kiri (
terletak di
sebelah kiri Mo), sehingga kurva memiliki ekor memanjang ke kiri, kurva menceng ke kiri atau menceng negatif. Contoh soal : Berikut ini adalah data nilai ujian statistik dari 40 mahasiswa sebuah universitas. Nilai Ujian Statistika pada Semester 2, 2010
a) Tentukan nilai sk dan ujilah arah kemencengannya (gunakan kedua rumus tersebut) ! b) Gambarlah kurvanya ! Penyelesaian:
Oleh karena nilai sk-nya negatif (-0,46) maka kurvanya menceng ke kiri ataumenceng negatif. b. Gambar kurvanya :
2. Koefisien Kemencengan Bowley Koefisien kemencengan Bowley berdasarkan pada hubungan kuartil-kuartil (Q1,Q2 dan Q3) dari sebuah distribusi. Koefisien kemencengan Bowley dirumuskan : Koefisien kemencengan Bowley sering juga disebut Kuartil Koefisien Kemencengan.Apabila nilai skB dihubungkan dengan keadaan kurva, didapatkan : 1) Jika Q3 – Q2 > Q2 – Q1 maka distribusi akan menceng ke kanan atau menceng secara positif. 2) Jika Q3 – Q2 < Q2 – Q1 maka distribusi akan menceng ke kiri atau menceng secara negatif. 3) skB positif, berarti distribusi mencengke kanan.
4) skB negatif, nerarti distribusi menceng ke kiri. 5) skB = ± 0,10 menggambarkan distribusi yang menceng tidak berarti dan skB> 0,30 menggambarkan kurva yang menceng berarti. Contoh soal : Tentukan kemencengan kurva dari distribusi frekuensi berikut : Nilai Ujian Matematika Dasar I dari 111 mahasiswa, 1997
Penyelesaian : Kelas Q1 = kelas ke -3
Karena skB negatif (=−0,06) maka kurva menceng ke kiri dengan kemencengan yang berarti. 3. Koefisien Kemencengan Persentil Koefisien Kemencengan Persentil didasarkan atas hubungan antar persentil (P 90,P50 dan P10) dari sebuah distribusi. Koefisien Kemencengan Persentil dirumuskan :\
Keterangan : skP= koefisien kemecengan persentil , P = persentil 4. Keofisien Kemencengan Momen Koefisien Kemencengan Momen didasarkan pada perbandingan momen ke-3 dengan pangkat tiga simpang baku. Koefisien menencengan momen dilambangkan dengan α3. Koefisien kemencengan momen disebut juga kemencengan relatif. Apabila nilai α3dihubungkan dengan keadaan kurva, didapatkan : 1) Untuk distribusi simetris (normal), nilai α3= 0, 2) Untuk distribusi menceng ke kanan, nilai α3 = positif, 3) Untuk distribusi menceng ke kiri, nilai α3= negatif, 4) Menurut Karl Pearson, distribusi yang memiliki nilai α3> ±0,50 adalah distribusi yang sangat menceng 5) Menurut Kenney dan Keeping, nilai α3 bervariasi antara ± 2 bagi distribusi yangmenceng. Untuk mencari nilaiα3, dibedakan antara data tunggal dan data berkelompok. a. Untuk data tunggal Koefisien Kemencengan Momen untuk data tunggal dirumuskan :
α3 = koefisien kemencengan momen b. Untuk data berkelompok Koefisien kemencengan momen untuk data berkelompok dirumuskan : Koefisien kemencengan momen untuk data berkelompok dirumuskan :
dalam pemakaiannya, rumus kedua lebih praktis dan lebih mudah perhitungannya.
DAFTAR PUSTAKA Statistika, (2000) kar. J. Supranto, jilid 1 Chap.6 edisi keenam, halaman 126 –145 Statistika, Teori dan Aplikasi (2001), Bab 05, kar. Wayan Koster, edisi pertama, halaman 93134 Bambang Kustituanto dan Rudy Badrudin, Statistika I, Seri Diktat Kuliah, Penerbit Gunadarma, Jakarta, 1994 Haryono Subiyakto, Statistika 2, Seri Diktat Kuliah, Penerbit Gunadarma, Jakarta, 1994 Levin, Richard dan David Rubin, Statistics for Management, Prentice Hall, New Jersey, 1991 Ronald E Walpole, Pengantar Statistika, edisi terjemahan, PT Gramedia Jakarta, 1992 Santoso, Singgih 2001. Aplikasi Excel dalam Statistik Bisnis. Elex Media Komputindo. Jakarta. http://statistikakeruncingan.blogspot.com/2013/06/makalah-presentasi-statistika.html http://portal-statistik.blogspot.com/2014/02/statistik-deskriptif-dengan-spss.html http://ikarokhmasari3.blogspot.com/2014/04/momen-kemiringan-dan-kurtosis_16.html www.gudangmateri.com