Los artículos manufacturados por una compañía se producen en 3 máquinas distintas manejadas por tres operarios diferentes. El dueño desea saber si hay diferencia (a) entre los operarios y (b) entre las máquinas. Se realiza un experimento para conocer el número de artículos producidos al día, con los resultados que recoge la siguiente tabla. tabla. Establecer la deseada información al nivel de significación 0.05. Formulación de hipótesis: 1) H0: A = B = C = D y no existen diferencias significativas entre las máquinas H1: algún i j y existen diferencias significativas significativas entre las máquinas 2) H0: 1 = 2 = 3 y no existe diferencia significativa entre los operadores H1: algún i j y existe diferencia significativa entre los operadores Operador 1
2
3
Máquina A Máquina B
23 27 24 34 30 28
Máquina C
28 25 27
Solución:
Calculamos los totales de filas, de columnas, la media de columnas, la media de filas y la media total, como se indica en el siguiente cuadro: Operador total Media de 1
2
3
de fila
fila
Máquina A
23
27
24
74
74/3
Máquina B
34
30
28
92
92/3
Máquina C
28
25
27
80
80/3
Total de columna
85 82
79
Total final =
246
Media total =
82/3
Media de columna
85/3 82/3 79/3
La variación de las medias de filas respecto de la media global es: VR = = 3[( 74/3 – 82/3 82/3 )2 + ( 92/3 – 82/3 82/3 )2 + ( 80/3 – 82/3 82/3 )2 ] = 56 ; VR = 56 La variación de las medias de columnas respecto de la media global es: VC = 3[( 85/3 – 82/3 82/3 )2 + ( 82/3 – 82/3 82/3 )2 + ( 79/3 – 82/3 82/3 )2 ] = 6 ; VC = 6 La variación total es: V = ( 23 – 82/3 82/3 )2 + ( 27 – 82/3 82/3 )2 + ( 24 – 82/3 82/3 )2 + ( 34 – 82/3 82/3 )2 + ( 30 – 82/3 82/3 )2 + ( 28 – 82/3 82/3 )2 +( 28 – 82/3 )2 + ( 25 – 82/3 82/3 )2 + ( 27 – 82/3 82/3 )2 +] = 88 ; V = 88 La variación aleatoria es VE = V – ( ( VR + + VC ) = 88 – ( 56 + 6 ) = 26 ; VE = 26 Con estos datos hacemos el análisis de varianza del siguiente cuadro: Variación
Grados de libertad
Cuadrado medio
VR = 56
a – 1 1 = 2
ŜR = 56/2 = 28
VC = 6
b – 1 1 = 2
2 ŜC = 6/2 = 3
VE = 26
(a-1)(b-1) = 4
2 ŜE = 26/4 = 6,5
V = 88
a b – 1 1 = 8
2
F ŜR / ŜE = 4,31
con 2 y 4 G. L . ŜC / ŜE = 0,46 con 2 y 4 G. L .
de la tabla F para un nivel de significación 0,05 y con 2 y 4 G. L.: F.95 = 6,94 RESPUESTAS:
a) como 0,46 < 6,94 , para un nivel de significación 0,05 concluimos que no existe diferencia significativa entre operarios. b) como 4,31 < 6,94 , para un nivel de significación 0,05 concluimos que no existe diferencia significativa entre maquinas.
Una empresa quiere comparar cuatro tipos de llantas: A, B, C y D. Sus vidas medias en rodaje (en miles de millas) se dan en siguiente tabla, donde cada tipo ha sido probado en seis coches similares asignados al azar a las llantas. Determinar si hay diferencia significativa al nivel de significación (a) 0.05 y (b) 0.01 entre las llantas. A
33 38 36 40 31 35
B
32 40 42 38 30 34
C
31 37 35 33 34 30
D
29 34 32 30 33 31
Solución :
Formulación de hipótesis: 1) H0: A = B = C = D y no existen diferencias significativas entre los tipos de llantas H1: algún i j y existen diferencias significativas entre algunos tipos de llantas Calculamos los totales de filas, la media de filas y la media total, como se indica en el siguiente cuadro: total de
media de
fila
fila
A
33 38 36 40 31 35
213
71/2
B
32 40 42 38 30 34
216
36
C
31 37 35 33 34 30
200
100/3
D
29 34 32 30 33 31
189
63/2
total = 818
Media total = 409/12
La variación de las medias de filas respecto de la media global es: VB = 6 (71/2 – 409/12 )2 + ( 36 – 409/12 )2 +( 100/3 – 409/12 )2 +( 63/2 – 409/12 )2 = 155/2 ; VB = 77,5 La variación total es: V = ( 33 – 409/12 )2 +( 38 – 409/12 )2 +( 36 – 409/12 )2 +( 40 – 409/12 )2 +( 31 – 409/12 )2 +( 35 – 409/12 )2 + ( 32 – 409/12 )2 +( 40 – 409/12 )2 +( 42 – 409/12 )2 +( 38 – 409/12 )2 +( 30 – 409/12 )2 +( 34 – 409/12 )2 +( 31 – 409/12 )2 +( 37 – 409/12 )2 +( 35 – 409/12 )2 +( 33 – 409/12 )2 +( 34 – 409/12 )2 +( 30 – 409/12 )2 +( 29 2 2 2 2 2 2 – 409/12 ) +( 34 – 409/12 ) +( 32 – 409/12 ) +( 30 – 409/12 ) +( 33 – 409/12 ) +( 31 – 409/12 ) = 1763/6 V = 293,83
La variación VW es: VW = V – VB = 1763/6 – 155/2 = 649/3 ; VW = 216,33 Con estos datos hacemos el análisis de varianza del siguiente cuadro:
VW = 216,33
Cuadrado F medio ŜB = 77,5/83 = ŜB / ŜW = 2.39 a – 1 = 3 25,17 con 3 y 20 G. L . Ŝ = 216,33/20 = a(b – 1) = 45 = 20 W 10,82
V = 293,83
ab – 1 = 46 – 1 = 23
Variación VB = 75,5
Grados de libertad
de la tabla F para un nivel de significación 0,05; con 3 y 20 G. L.: F.95 = 3,10 de la tabla F para un nivel de significación 0,01; con 3 y 20 G. L.: F.99 = 4,94 RESPUESTAS:
a) como 2,33 < 3,10 , para un nivel de significación 0,05 concluimos que no existe diferencia significativa entre las llantas. b) como 2,33 < 4,94 , para un nivel de significación 0,01 concluimos que no existe diferencia significativa entre las llantas.
Un empresario desea determinar la eficacia de cuatro tipos distintos de máquinas (A, B, C y D) en la producción de tornillos. Para ello anota la cantidad de tornillos defectuosos producidos cada día de una semana en dos turnos de trabajo, con los resultados que se muestra en la siguiente tabla. Determinar si existe diferencia, al nivel de significación 0,05 entre: a) las máquinas b) los turnos Maquina A B C D
Lunes 6 10 7 8
Primer turno Miércoles Jueves 5 5 7 7 6 5 6 5
Martes 4 8 5 4
Viernes 4 9 9 5
Lunes 5 7 9 5
Martes 7 9 7 7
Segundo turno Miércoles Jueves 4 6 12 8 5 4 9 7
Viernes 8 8 6 10
Solución :
Formulación de hipótesis: 1) H0: A = B = C = D y no existen diferencias significativas entre las máquinas H1: algún i j y existen diferencias significativas entre las máquinas 2) H0: I = II y no existe diferencia significativa entre los turnos H1: I II y existe diferencia significativa entre los turnos 3) H0: No existe interacción entre máquinas y turnos H1: Existe interacción entre máquinas y turnos
Cálculo de la variación total (de la tabla dato): 2
2
2
2
2
2
V 6 4 5 5 .... 7 10
2682 40
150,4
Cálculo de la variación subtotal (de la segunda tabla): Máquina Primer Segundo total turno turno A 24 30 54 B 41 44 85 C 32 31 63 D 28 38 66 total 125 143 268
VS
242 5
302 5
412 5
442 5
322 5
Cálculo de la variación entre filas: VF
542 10
852 10
632 10
662 10
2682 40
312 5
282 5
382 5
2682 40
65,6
51,0
Cálculo de la variación entre columnas: VC
1252 20
1432 20
2682 40
8,1
Cálculo de la variación debida a la interacción: VI = VS – VF – VC = 65,6 – 51,0 – 8,1 = 6,5 Cálculo de la variación de error: VE = V – (VI + VF + VC) = 150,4 – (6,5 + 51,0 + 8,1) = 84,8 Tabla ANOVA
Valores de F de tabla: para las filas: F(3; 32; 5%) = 2,90 Entre filas 17,0 para las columnas: F(1; 32; 5%) = 4,15 6,42 (máquinas) 3 S2F 17,0 para la interacción: F(3; 32; 5%) = 2,90 2,65 51,0 CONCLUSIONES: Entre columnas 8,1 2 3,06 (turnos) 1 Como Finteracción < F(3; 32; 5%) = 2,90, cae en Sc 8,1 2 , 65 8,1 zona de aceptación, por lo que concluimos 2,167 que no existe interacción entre las máquinas y Interacción S2I 2,167 0,817 3 6,5 los turnos. 2,65 Como Ffilas > F(3; 32; 5%) = 2,90, cae en Residual o aleatoria 2 32 S 2 , 65 E 84,8 zona de rechazo, por lo que concluimos que Total existe diferencia significativa entre las 39 150,4 máquinas. Como Fcolumnas < F(1; 32; 5%) = 4,15, cae en zona de aceptación, por lo que concluimos que no existe diferencia significativa entre los turnos. Variación
Grados de libertad
Cuadrado medio
ˆ
ˆ
ˆ
ˆ
Cri teri o de corr ección :
Formulación de hipótesis: Cálculo de variaciones y de F: Cálculo de F de tabla: Conclusión:
3 puntos 3 puntos 1 punto 3 puntos
F
Total:
10 puntos
En un experimento llevado a cabo para determinar cual de tres sistemas de misiles es preferible, se midió el promedio de consumo de los propulsores para 24 encendidos estáticos. Se utilizaron cuatro tipos diferentes de propulsores. En el experimento se obtuvieron observaciones duplicadas de promedios de consumo en cada combinación de tratamientos, según se muestra en la siguiente tabla. A un nivel de significación 0,05, probar las hipótesis: a) no existe diferencia en las tasas medias de consumo cuando se utilizan diferentes tipos de misiles; b) no existe diferencia en las tasas medias de consumo de los cuatro tipos de propulsor; c) no existe interacción entre los diferentes tipos de misiles y los diferentes tipos de propulsor. Solución : Formulación de hipótesis: 1) H0: a1 = a2 = a3 = a4 y no existen diferencias significativas entre sistemas de misiles H1: a1 a2 a3 a4 y existen diferencias significativas entre sistemas de misiles 2) H0: b1 = b2 = b3 = b4 y no existe diferencia significativa entre los turnos H1: b1 b2 b3 b4 y existe diferencia significativa entre los turnos 3) H0: No existe interacción entre sistemas de misiles y propulsores H1: Existe interacción entre sistemas de misiles y propulsores Tipo de propulsor Sistema de misiles
b1
b2
b3
b4
a3
34,0 32,7 32,0 33,2 28,4 29,3
30,1 32,8 30,2 29,8 27,3 28,9
29,8 26,7 28,7 28,1 29,7 27,3
29,0 28,9 27,6 27,8 28,8 29,1
a1 a2 a3 Total
b1 66,7 65,2 27,7 189,6
b2 62,9 60,0 56,2 179,1
b3 56,5 56,8 57,.0 170,3
b4 57,9 55,4 57,9 171,2
a1 a2
Solución :
Cálculo de totales en la tabla
2
2
2
SST = 34,0 + 32,7 + ... + 29,1 – SSA = SSB =
244,02 237,42 228,82 8
7102 24
7102 24
189,62 179,12 170,32 171,22
SS(AB) =
6
Total 244,0 237,4 228,8 710,2
=91,68
14,52
7102 24
40,08
2 2 2 66,7 65,2 ... 57,9
21030,52 21056,08 21016,00 22,17 2 SSE = 91,68 – 14,52 – 40,08 – 22,17 = 14,91
Con estos valores tenemos la siguiente tabla: Fuente de Suma de Grados de variación cuadrados libertad Sistema de misiles 14,52 2 Tipo de propulsor 40,08 3 Interacción 22,17 6 Error 14,91 12 Total 91,68 23
Cuadrado medio 7,26 16,36 3,70 1,24
f calculada 5,85 10,77 2,98
Regiones críticas: f 1 > 3,89 ; f 2 > 3,49 ; f 3 < 3,00 Con estos valores, se concluye que: a) la interacción es insignificante al nivel 0,05. b) sistemas diferentes de misiles implican diferentes tasas de promedio de consumo del propulsor c) las tasas de promedio de consumo del propulsor no son las mismas para los cuatro tipos de propulsor.
Se desea determinar si el rendimiento académico de un alumno de la FIUNA está condicionado al tipo de carrera que cursa. Para ello se ha encuestado a 30 alumnos de las 6 carreras con que cuenta ésta casa de estudios. Se trabajará con un nivel de significación del 5% y el rendimiento será medido a través de las notas obtenidas en un examen general. carreras Ing. Civil Ing. Industrial Ing. Electromecánica Ing. C. Geográficas Ing. Electrónica Ing. Mecánica
2 2 1 4 1 3
4 3 2 3 2 3
5 4 3 3 4 2
2 5 3 5 4 1
3 5 5 2 5 3
Solución :
Se formula las hipótesis H0: 1 = 2 = 3 = 4 = 5 = 6 y no existe diferencia entre los diferentes niveles del factor CARRERA con relación a la variable de respuesta RENDIMIENTO ACADEMICO HA: 1 2 3 4 5 6 y existe diferencia entre los diferentes niveles del factor CARRERA con relación a la variable de respuesta RENDIMIENTO ACADEMICO réplicas
carreras
1 2 3 4 5 6
SC carreras
1 5
2 2 1 4 1 3
16
2
4 3 2 3 2 3
2
5 4 3 3 4 2
2
X i
2 5 3 5 4 1
3 5 5 2 5 3
16 19 14 17 16 12 94
2
2
2
SC total 22 42 52 ... 22 12 32
Formulación de la tabla ANOVA Fuente de variación
19 14 17 16 12
942 30
942 30
5,87
342
8836 30
Grados de Suma de Cuadrado Fcalc libertad cuadrados medio
carrera
5
5,87
1,17
error
24
41,6
1,73
Total
29
47,47
47,47
Valores de F de tabla: 2,62
0,68
Como Fcal = 0,68 < 2,62 = Ftabla, no se rechaza H0 y se concluye que no existe suficiente evidencia para admitir que el factor CARRERA determina diferencias en el RENDIMIENTO ACADEMICO.
Una empresa quiere comparar cuatro tipos de llantas: A, B, C y D. Sus vidas medias en rodaje (en miles de millas) se dan en siguiente tabla, donde cada tipo ha sido probado en seis coches similares asignados al azar a las llantas. Formular el modelo ANOVA apropiado y determinar si existe diferencia significativa al nivel de significación (a) 0.05 y (b) 0.01 entre las llantas. A
33 38 36 40 31 35
B
32 40 42 38 30 34
C
31 37 35 33 34 30
D
29 34 32 30 33 31
Solución :
Calculamos los totales de filas, la media de filas y la media total, como se indica en el siguiente cuadro: X i A
33 38 36 40 31 35
213
B
32 40 42 38 30 34
216
C
31 37 35 33 34 30
200
D
29 34 32 30 33 31
189
Se formula las hipótesis H0: A = B = C = D y no existe diferencia entre los diferentes niveles del factor TIPO DE LLANTA con relación a la variable de respuesta VIDA EN RODAJE HA: A B C D y existe diferencia entre los diferentes niveles del factor TIPO DE LLANTA con relación a la variable de respuesta VIDA EN RODAJE
total = 818
SC llantas SC total 2
1
6 1
24
213
2
2
2
2
216 200 189
8182 24
77,5
(332 382 362 402 312 352 322 402 422 382 302 342 312 372 352
2
2
2
2
2
2
2
2
33 34 30 29 34 32 40 33 31 )
8182 24
28174
669124 24
293,83
Con estos datos hacemos el análisis de varianza del siguiente cuadro: Fuente de variación
Grados de libertad
Suma de Cuadrado Fcalc cuadrados medio
llanta
a – 1 = 3
77,5
25,83
error
a(b – 1) = 45 = 20
216,33
10,82
Total
ab – 1 = 46 – 1 = 23
293,83
2,39
Valores de tabla: de la tabla F para un nivel de significación 0,05; con 3 y 20 G. L.: F.95 = 3,10 de la tabla F para un nivel de significación 0,01; con 3 y 20 G. L.: F.99 = 4,94 RESPUESTAS:
a) como 2,39 < 3,10 , para un nivel de significación 0,05 concluimos que no existe evidencia para admitir que el factor tipo de llantas determine diferencia significativa en la vida en rodaje de las llantas. b) como 2,39 < 4,94 , para un nivel de significación 0,01 concluimos que no existe evidencia para admitir que el factor tipo de llantas determine diferencia significativa en la vida en rodaje de las llantas.
Una corporación muy grande tiene un grupo de individuos encargados de la mayoría de los trabajos relacionado con el procesamiento de textos. A fin de proporcionar una atmósfera placentera y productiva, la compañía pone música grabada durante la jornada laboral. Algunos individuos se quejan de que la música se convierte en ocasiones en un factor de distracción. Como experimento, se permite grupos de muestra de 16 operadores tengan un grado de control variable sobre el volumen de la música (este va de 1 = ningún control a 4 = control absoluto). Para cada individuo se obtiene una calificación de eficiencia Grado de Control
EFICIENCIA
1
42 57 52 37 58 58 56 57 41 49 53 55 53 42 48 48
2
55 50 65 22 65 56 63 58 65 57 52 61 64 57 65 66
3
63 57 55 24 64 56 61 60 63 64 67 66 66 52 47 65
4
66 63 64 49 64 60 62 62 58 54 65 60 63 64 57 61
Asegúrese de identificar el o los factor(es); escribir el modelo matemático y establézcase la(s) hipótesis por probar. Utilizando las informaciones precedentes probar si existe o no diferencias respecto a las hipótesis formuladas Solución : HIPOTESIS : H0: 1 = 2 = 3 = 4 y no existe diferencia entre los diferentes niveles del grado de control con relación a la variable de respuesta H1: 1 2 3 4 y existe diferencia entre los diferentes niveles del grado de control con relación a la variable de respuesta x G. de Control EFICIENCIA xi i
1
42 57 52 37 58 58 56 57 41 49 53 55 53 42 48 48 806
2
55 50 65 22 65 56 63 58 65 57 52 61 64 57 65 66 921 57,5625
3
63 57 55 24 64 56 61 60 63 64 67 66 66 52 47 65 930
58,125
4
66 63 64 49 64 60 62 62 58 54 65 60 63 64 57 61 972
60,75
A SC (fila )
1
b
x
2 i
1
2
2
2
2
806 921 930 972 a b 16 x 2 36292 2 211171 5395,359 C SC (total) x i j N 64 i 1 j 1 bi
x 2
i 1 a b
Fuente de variación
Grados de libertad
Grado de control
a – 1 = 3
Suma de Cuadrado Fcalc cuadrados medio
946,92
error
a(b – 1) = 415 = 60 4448,437
Total
ab – 1 = 416 – 1 = 63 5396,359
315,64
36292 64
Total
3629
50,375
56,703
946,922
F de tabla
4,26
74,14
Como el valor de Fcalculada (4,26) cae en zona de rechazo, rechazamos H0 y aceptamos HA y concluimos que existe diferencia entre los diferentes niveles del factor grado de control con relación a la variable de respuesta
Los artículos manufacturados por una compañía se producen en 3 máquinas distintas manejadas por tres operarios diferentes. El dueño desea saber si hay diferencia (a) entre los operarios y (b) entre las máquinas. Se realiza un experimento para conocer el número de artículos producidos al día, con los resultados que recoge la siguiente tabla. Formular el modelo ANOVA adecuado y establecer si existe diferencias significativa entre a) los operarios y b) entre las máquinas, al nivel de significación 0.05. Operador 1 2 3 Máquina A
23 27 24
Máquina B
34 30 28
Máquina C
28 25 27
Solución: Modelo : dos factores sin réplicas, donde los factores respuesta la cantidad de artículos producidos.
son las máquinas y los operadores; y la variable de
Calculamos los totales de filas, de columnas, la media de columnas, la media de filas y la media total, como se indica en el siguiente cuadro: Operador
SC maquinas
1
74
3 1
SC operadores
3
2
2
2
3
Máquina A
23
27
24
74
Máquina B
34
30
28
92
Máquina C
28
25
27
80
X j
85
82
79
Total: 246
2
92 80
85
2
2
X i
1
2
82 79
2462 9 2462 9
20340 3 20190 3
60516 9 60516 9
56 6
SC total 23 27 24 34 30 28 28 25 27 2
2
2
2
2
2
2
2
2
2462 9
6812
Con estos datos hacemos el análisis de varianza del siguiente cuadro: Fuente de variación
Grados de libertad
máquinas operadores
a – 1 = 2 b – 1 = 2
56 6
28 3
error
(a – 1)(b – 1) = 22 = 4
26
6,5
60516 9
88
Suma de Cuadrado Fcalc cuadrados medio
4,31 0,46
Total 88 ab – 1 = 33 – 1 = 8 de la tabla F para un nivel de significación 0,05 y con 2 y 4 G. L.: F.95 = 6,94 RESPUESTAS:
a) como 0,46 < 6,94 , para un nivel de significación 0,05 concluimos que no existe evidencia para admitir que el factor operarios determine diferencia significativa en la cantidad de artículos producidos. b) como 4,31 < 6,94 , para un nivel de significación 0,05 concluimos que no existe evidencia para admitir que el factor máquinas determine diferencia significativa en la cantidad de artículos producidos.
La siguiente tabla muestra el número de artículos producidos por 4 trabajadores en dos máquinas distintas, I y II, en diferentes días de la semana. Determinar si existe diferencia, al nivel de significación 0,05 entre: a) los operadores b) las máquinas. Operador
Lunes 15 12 14 19
A B C D
Martes 18 16 17 16
Máquina I Miércoles 17 14 18 21
Jueves 20 18 16 23
Viernes 12 11 13 18
Lunes 14 11 12 17
Máquina II Miércoles Jueves 18 17 12 16 16 14 18 20
Martes 16 15 14 15
Viernes 15 12 11 17
Solución :
Formulación de hipótesis: 1) H0: A = B = C = D y no existen diferencias significativas entre los operadores H1: A B C D y existen diferencias significativas entre los operadores 2) H0: I = II y no existe diferencia significativa entre las máquinas. H1: I II y existe diferencia significativa entre las máquinas. 3) H0: No existe interacción entre operadores y máquinas H1: Existe interacción entre operadores y máquinas Cálculo de la variación total (de la tabla dato): 2
2
2
2
2
2
V 15 18 17 20 .... 20 17
6282 40
328,4
Cálculo de la variación subtotal (de la segunda tabla): Operador Máquina Máquina total I II A 82 80 162 B 71 66 137 C 78 67 145 D 97 87 184 total 328 300 628
VS
822 5
802 5
712 5
662 5
782 5
Cálculo de la variación entre filas: VF
1622 10
1372 10
1452 10
1842 10
672 5
6282 40
972 5
872 5
6282 40
154,8
129,8
Cálculo de la variación entre columnas: VC
3282 20
3002 20
6282 40
19,6
Cálculo de la variación debida a la interacción: VI = VS – VF – VC = 154,8 – 129,8 – 19,6 = 5,4 Cálculo de la variación de error: VE = V – (VI + VF + VC) = 328,4 – (5,4 + 129,8 + 19,6) = 173,6 Tabla ANOVA Valores de F de tabla: para las filas: F(3; 32; 5%) = 2,90 Entre filas 2 43 , 27 para las columnas: F(1; 32; 5%) = 4,15 SF 43,27 7,97 (operarios) 3 para la interacción: F(3; 32; 5%) = 2,90 5,43 129,8 CONCLUSIONES: Entre columnas 19,6 2 3 , 61 (máquinas) 1 Como Finteracción < F(3; 32; 5%) = 2,90, cae en Sc 19,6 5,43 19,6 zona de aceptación, por lo que concluimos 1,8 que no existe interacción entre los operarios y Interacción 2 0,33 3 S 1 , 8 I 5,4 las máquinas. 5,43 Como Ffilas = 7,97 > F(3; 32; 5%) = 2,90, cae Residual o aleatoria 2 32 S 5 , 43 E 173,6 en zona de rechazo, por lo que concluimos Total que existe diferencia significativa entre los 39 328,4 operarios. Como Fcolumnas = 3,61 < F(1; 32; 5%) = 4,15, cae en zona de aceptación, por lo que concluimos que no existe diferencia significativa entre las máquinas. Variación
Grados de libertad
Cuadrado medio
ˆ
ˆ
ˆ
ˆ
Cri teri o de corr ección :
Formulación de hipótesis: Cálculo de variaciones y de F: Cálculo de F de tabla: Conclusión: Total:
3 puntos 3 puntos 1 punto 3 puntos 10 puntos
F
Un empresario desea determinar la eficacia de cuatro tipos distintos de máquinas (A, B, C y D) en la producción de tornillos. Para ello anota la cantidad de tornillos defectuosos producidos cada día de una semana en dos turnos de trabajo, con los resultados que se muestra en la siguiente tabla. Determinar si existe diferencia, al nivel de significación 0,05 entre: a) las máquinas b) los días Maquina
Lunes 6 10 7 8
A B C D
Primer turno Miércoles Jueves 5 5 7 7 6 5 6 5
Martes 4 8 5 4
Viernes 4 9 9 5
Lunes 5 7 9 5
Martes 7 9 7 7
Segundo turno Miércoles Jueves 4 6 12 8 5 4 9 7
Viernes 8 8 6 10
Solución :
Formulación de hipótesis: 1) H0: A = B = C = D y no existen diferencias significativas entre las máquinas H1: A B C D y existen diferencias significativas entre las máquinas 2) H0: I = II y no existe diferencia significativa entre los días H1: I II y existe diferencia significativa entre los días 3) H0: No existe interacción entre máquinas y días H1: Existe interacción entre máquinas y días Cálculo de la variación total (de la tabla dato): V 6
2
2
2
2
2
4 5 5 .... 7 10
Cálculo de la variación subtotal (de la segunda tabla): Máquina A B C D total VS
112 2 162 2
Lunes
Martes
11 17 16 13 57
11 17 12 11 51
112 2 122 2
92
2
112 2
112
2 92 2
2682 40
150,4
Miércoles Jueves Viernes total
9 19 11 15 54
2
122 2 152 2
172
2
132 2
11 15 9 12 47
172 2 112
Cálculo de la variación entre filas: VF
2
542 10
12 17 15 15 59 192 2 152 2
Cálculo de la variación entre columnas: VC
152
54 85 63 66 268 2
122 2
852
172 2 152 2
632
2682
40
662
80,4
2682
51,0 10 10 10 40 572 512 542 472 592 2682
11,4 8 8 8 40 Cálculo de la variación debida a la interacción: VI = VS – VF – VC = 80,4 – 51,0 – 11,4 = 18 Cálculo de la variación de error: VE = V – (VI + VF + VC) = 150,4 – (18 + 51,0 + 11,4) = 70
8
8
Tabla ANOVA Variación
Entre filas (máquinas) 51,0 Entre columnas (días) 11,4 Interacción 18 Residual o aleatoria 70 Total 150,4
Grados de libertad
Cuadrado medio
3
S2F 17,0
4
Sc2 2,85
12
S2I 1,5
20
S2E 3,5
39
F 17,0
4,86
ˆ
3,5
2,85
ˆ
3,5 1,5
ˆ
ˆ
3,5
0,81
0,43
Valores de F de tabla: para las filas: F(3; 20; 5%) = 3,10 para las columnas: F(4; 20; 5%) = 2,87 para la interacción: F(12; 20; 5%) = 2,28 CONCLUSIONES: Como Finteracción < F(12; 20; 5%) = 2,90, cae en zona de aceptación, por lo que concluimos que no existe interacción entre las máquinas y los días. Como Ffilas > F(3; 20; 5%) = 3,10, cae en zona de rechazo, por lo que concluimos que existe diferencia significativa entre las
máquinas. Como Fcolumnas < F(4; 20; 5%) = 2,87, cae en zona de aceptación, por lo que concluimos que no existe diferencia significativa entre los días. Cri teri o de corr ección : Formulación de hipótesis: 2 puntos (1 por los factores y 1 por la interacción) Cálculo de variaciones y de F: 4 puntos Cálculo de F de tabla: 2 puntos (1 por los factores y 1 por la interacción) Conclusión: 2 puntos (1 por los factores y 1 por la interacción) Total: 10 puntos
Resolución con excel
Lunes 6 5 10 7 7 9 8 5
A B C D
Martes 4 7 8 9 5 7 4 7
Miércoles 5 4 7 12 6 5 6 9
Jueves 5 6 7 8 5 4 5 7
Viernes 4 8 9 8 9 6 5 10
Análisis de varianza de dos factores con varias muestras por grupo RESUMEN
Lunes
Martes
Miércoles
Jueves
Viernes
Total
2 11 5,5 0,5
2 11 5,5 4,5
2 9 4,5 0,5
2 11 5,5 0,5
2 12 6 8
10 54 5,4 1,822222222
2 17 8,5 4,5
2 17 8,5 0,5
2 19 9,5 12,5
2 15 7,5 0,5
2 17 8,5 0,5
10 85 8,5 2,5
2 16 8 2
2 12 6 2
2 11 5,5 0,5
2 9 4,5 0,5
2 15 7,5 4,5
10 63 6,3 2,9
2 13 6,5 4,5
2 11 5,5 4,5
2 15 7,5 4,5
2 12 6 2
2 15 7,5 12,5
10 66 6,6 3,822222222
A
Cuenta Suma Promedio Varianza B
Cuenta Suma Promedio Varianza C
Cuenta Suma Promedio Varianza D
Cuenta Suma Promedio Varianza Total
Cuenta Suma Promedio Varianza
8 8 8 8 8 57 51 54 47 59 7,125 6,375 6,75 5,875 7,375 3,267857143 3,410714286 6,785714286 1,839285714 4,553571429
ANÁLISIS DE VARIANZA Origen de las variaciones
Suma de cuadrados
Promedio de Grados de los libertad cuadrados
Muestra Columnas Interacción Dentro del grupo
51 11,4 18
3 4 12
17 2,85 1,5
70
20
3,5
Total
150,4
39
F
Valor crítico Probabilidad para F
4,857142857 0,010684338 3,098391224 0,814285714 0,53092907 2,866081402 0,428571429 0,932901768 2,277580574
La siguiente tabla muestra las vidas medias, en miles de horas, de muestras de tres tipos distintos de tubos de televisión producidos por cierta empresa. Se desea determinar si hay diferencias entre ellos empleando un nivel de significación del 5%. Muestra 1
407
411
409
Muestra 2
404
406
408
405
Muestra 3
410
408
406
408
402
Solución :
Formulación de hipótesis: 1) H0: 1 = 2 = 3 y no existen diferencias significativas entre las vidas medias de los tipos de tubos H1: 1 2 3 y existen diferencias significativas entre las vidas medias de los tipos de tubos Calculamos los totales de filas, la media de filas y la media total, como se indica en el siguiente cuadro: total de
media de
fila
fila
A
407
411 409
1227
409
B
404
406 408 405 402
2025
405
C
410
408 406 408
1632
408
total = 4884 Media total = 407 La variación de las medias de filas respecto de la media global es: VB = 3(409 – 407)2 + 5(405 – 407)2 + 4(408 – 407)2 = 36 ; VB = 36 La variación total es: V = (407 – 407 )2 + (411 – 407 )2 + (409 – 407 )2 + (404 – 407 )2 + (406 – 407 )2 + (408 – 407 )2 + (405 – 407 )2 + (402 – 407 )2 + (410 – 407 )2 + (408 – 407 )2 + (406 – 407 )2 + (408 – 407 )2 = 1763/6 V = 72 La variación VW es: VW = V – VB = 72 – 36 = 37 ; VW = 36 Con estos datos hacemos el análisis de varianza del siguiente cuadro: Variación
Grados de libertad
Cuadrado medio
VB = 36
a – 1 = 2
2 ŜB = 36/2 = 18
VW = 36
n – a = 12 – 3 = 9
ŜW = 36/9 = 4
V = 72
n – 1 = 12 – 1 = 11
F B
/ W = 4.5
con 2 y 9 G. L .
de la tabla F para un nivel de significación 0,05; con 2 y 9 G. L.: F.95 = 4,26 Conclusión: como 4,5 > 4,26, para un nivel de significación 0,05 concluimos que existe diferencia significativa entre las llantas. Asign ación de puntos
Formulación de hipótesis: Cálculo de variaciones: Valores en tabla Anova: F de tabla: Conclusión: Total:
2 puntos 3 puntos 2 puntos 1 punto 2 puntos 10 puntos