BALANCE DE LINEAS Balancear una línea en un proceso productivo, es un problema de balance de operaciones (o Estaciones de trabajo existentes en planta) de manera que en función de tiempos iguales se alcance la tasa de producción esperada. Es decir, es decir teniendo una serie de disposiciones necesarias para distribuirlas de tal forma que los tiempos asignados a cada estación de trabajo sean, en lo posible iguales. De esta manera se logra un balance perfecto (tiempo muerto nulo). En la prctica rara ve! se consigue debido a muc"os factor factores es.. En realid realidad ad,, balan balancea cearr una una línea línea prod produc uctiv tiva a es un proble problema ma que que busca busca determinar el n#mero de mquinas, trabajadores, etc, que debe asignarse a cada estación de trabajo. $eneralmente un balance se reali!a de acuerdo a las tasas de producción requeridas. El balance es necesario en todo proceso de fabricación en serie para lograr dos propósitos% & &
'lcan!ar 'lcan!ar el ritmo ritmo dese deseado ado de produ producció cción n con con el mínim mínimo o person personal al posib posible. le. Distri Distribu buir ir el trabajo trabajo entre entre el person personal al necesa necesario rio,, de tal modo modo que todos todos trabaje trabajen, n, en igual proporción.
ara ara satis satisfac facer er el prime primerr propó propósit sito o "an "an sido sido desar desarrol rollad lados os vario varios s mtod mtodos os del del tipo tipo *eurístico, algunos de los cuales anali!aremos ms adelante. El segundo propósito se cump cumple le cuan cuando do se evit evita a que que "a+a "a+a esta estaci cion ones es con con exce excesi sivo vos s tiem tiempo pos s muer muerto tos, s, comparados con el resto de la línea.
1. GENE GENERA RALI LIDA DADE DES S 1.1. LINEAS EAS DE DE PR PRODUCCION En secciones anteriores se "abló sobre el concepto de línea productiva, así como tambi tambin n sobre sobre los divers diversos os proce procesos sos exist existen entes tes.. En base base a lo expu expuest esto o es conveniente agrupar estos procesos productivos en dos tipos% & Línea Línea de Fabric Fabricaci ación ón o Produc Producció ción: n: Este trmino va a ser usado para calificar al grupo de operaciones que cambian o forman las características físicas o químicas finales del producto. Este caso, la materia prima que se va a procesar se traslada de estación en estación. 'dems, las mquinas que se usan usan son pesa pesada das s + perma permane necen cen fijas fijas en sus reas reas asign asignad adas as.. or or &
ejemplo, fabricación de ropa, !apatos, a!#car, obtención de petróleo, etc. Línea de ena!b"a#e: ignifica la llegada de componentes individuales de una determinada pie!a al lugar de trabajo + la salida de estas partes juntas (pie!a armada), en forma de producto terminado o para ser usados en otros ensamblajes ms voluminosos.
En la prctica a veces es difícil distinguir entre las dos categorías porque generalmente se "allan me!clados o interrelacionados. El problema de balancear una línea de fabricación o maquinado es por lo general ms difícil que el referente a balancear una línea de ensamble. -o es fcil dividir las operaciones en elementos tan pequeos como para redistribuirlos en igual magnitud de tiempo. /as restricciones de precedencia son ms rigurosas, mientras que los ensambles pueden ser ajustados fcilmente "asta cierto punto de su secuencia, o por lo menos ms fcil que el proceso de maquinado. or ejemplo, una mquina determinada no puede ser utili!ada continuamente para una variedad de operaciones sin cambios costosos de "erramientas, manipuleo + ajustes. in embargo, una producción efectiva requiere utili!ación eficiente de las mquinas. ara utili!ar eficientemente
los recursos disponibles debemos contrapesar los
costos de manipuleo + de tiempo muerto del operario contra los tiempos muertos de la mquina.
1.$.
CUELLO DE BO%ELLA &c' *ace referencia a la velocidad con que se est cumpliendo la producción por unidad. Est representada por la operación ms lenta + es la que origina los tiempos muertos. /uego el problema de balance se pro+ecta a mejorar la estación cuellos de botella bajo las siguientes alternativas% &0eali!ar una mejora de mtodos de trabajo en dic"a estación, "asta lograr el tiempo deseado (mejora de procedimientos, equipo, etc.). 1ambin puede reali!arse simultneamente
una
redistribución del
trabajo
entre
las
operaciones en toda la línea. &1rabajar con sobretiempos o con un segundo turno para esta mquina2 o en todo caso, se debe subcontratar la operación mencionada. &Efectuar la compra de mquinas similares de acuerdo a necesidades de producción. /a compra puede ser tanto para estación cuello de botella como para todas las otras operaciones menos lentas. En muc"as situaciones reales lo que se usa es una combinación de estas alternativas para lograr un balance perfecto.
$. BALANCE DE UN PROCESO DE FABRICACI(N 3uando un producto tiene que pasar por una secuencia de operaciones a travs de varias mquinas o estaciones de trabajo, cada una de ellas requiere un tiempo total de ocupación o rendimiento (t i). Este tiempo ser igual a la suma de un tiempo de carga +
descarga (/i) + un tiempo de mquina (m i). Este tiempo (/ i 4 mi) es diferente en cada estación de trabajo, debido a que algunas mquinas son veloces que otras. En una red productiva, si la maquina 56 es ms lenta que la maquina 57 entonces es obvio que una serie de partes procesadas se van a acumular delante de la maquina 56 + formaran una cola, la cual ira aumentando a medida que 57 contin#a produciendo. i por otro lado 56 es ms rpida que 57 "abr tiempos muertos delante de 56 + un trabajo intermitente cada ve! que una pie!a se encuentra lista para ser alimentada en 56. or lo tanto, 56 debe ajustarse a 57 + lo que puede "acerse es formar un inventario a la descarga de 57 antes de arrancar 56. i por otra parte no es posible establecer este inventario, entonces los tiempos se ajustarn de acuerdo a la maquina ms lenta. El problema de balancear un proceso de maquinado es igualar los tiempos muertos para las diferentes estaciones en la línea + "acer coincidir los tiempos totales (1 i) en cada estación de trabajo con (n i), maquinas o estaciones cada una% 1 i 8 ni 9 ti. /os tiempos muertos ( δ) representa la espera del producto porque la mquina est ocupada en la siguiente estación.
E#e!)"o 1: 3onsideremos la siguiente situación productiva de una empresa E* : :peración ! : 1iempo de mquina en la estación i L : 1iempo de preparación2 carga (/ ;) + descarga (/ 7) / 8 /; 4 /7 % : 1iempo total por estación (1 8 / 4 m) n : -umero de mquinas en cada estación
E*ación
!
L
%
n
; 7 6 A > @ < 1otal
7.<= ;.?= =.?= .7= .>= <.>= =.>= =.<= 7<.;=
=.7= =.6= =.;= =.A= =.>= =.>= =.;= =.7= 7.6=
6.== 7.7= ;.== .= @.== ?.== =.= ;.== 6=.A=
;>.== @.6= ;=.== ;.>= ;A.== ;<.== .== >.== ?;.==
Esta situación se representa con la siguiente red%
M.P
1
2
3
4
5
6
7
8
P. T.
*
3
$.$
1
0.0
2
/.0
1
El producto pasa por n 8 < estaciones en la secuencia productiva. En cada estación, se reali!a una operación de maquinado + se tiene un tiempo total de operación 1 8 nt 8 n (/4m), donde / es el tiempo de preparación (carga + descarga) + m es el tiempo de mquina. /os tiempos totales (1) son diferentes para las diversas estaciones + varían desde =. "asta ? min. /a mquina en la estación requiere de ? minCund + est ocupada totalmente, pero existe tiempos muertos en todas las otras estaciones. or lo tanto, la estación constitu+e el cuello de botella + su tiempo constitu+e el ciclo c 8 ? minCund
$.1.
INDICADORES DE CADA RED PRODUC%I+A on parmetros que nos indican si es posible llevar a cabo determinado arreglo
A. PRODUCCI(N P=
tb c
en nuestro ejemplo veremos que% 60 min / h und P = =6.67 ≈ 6 und / h h 9 min / und
No*a: 3onsideramos la producción de undC" +a que no se puede producir una fracción de unidad.
B. %IE,PO ,UER%O iene a ser la suma de los tiempos ociosos de cada estación de trabajo
¿ ∑ ( c −t i )
¿ kc −∑ t i
- : n#mero de estaciones de trabajo c : ciclo o cuello de botella *i : tiempo de operación en cada estación de trabajo ara la red anterior se tiene% ¿ 8 estaciones
c =9 min / und
¿ kc −∑ t i=8 ( 9 )−( 3 + 2.2 + 1 +6.67 + 9 + 0.61 )= 41.6 min / und C. EFICIENCIA DE LA LNEA /a eficiencia de una línea se mide por el cociente entre el tiempo que tarda en fabricarse el producto sin división de trabajo (el cual est representado por la
suma de los tiempos asignados para cada mquina por estación de trabajo, este tiempo es el mismo para cualquier situación de balance que se presente) + el tiempo que tarda en fabricarse el producto con división de trabajo (que est dado por el n#mero de mquinas multiplicado por el ciclo). 5atemticamente se traduce en%
n∗t i
∑ n∗c ∗100
E=−
T i
∑ n∗c ∗100
E=−
n : n#mero total de mquinas en la red determinada c : ciclo para la misma red %i : suma de los tiempos de cada estación de trabajo, considerando el n#mero de mquinas o estaciones en cada una Esta expresión es la misma para cualquier red balanceada, + se obtiene de la situación inicial. En nuestro ejemplo se tiene Σ1i 8 6=.A min E=
30.4 8 (9 )
∗100= 42.2
'quí, Σ1i coincidió con Σti, no siempre es así como veremos ms adelante. amos a presentar a continuación diferentes casos en los cuales se "ace necesario un balance de línea, para observar el n#mero de mquinas a asignar.
$.$.
CASOS DE PRESEN%ACI(N DE LA DE,ANDA CASO A: uponer que la producción ajustada (demanda) para la red dada en el ejemplo anterior aumenta de undC" a ;@ undC", entonces%
c=
tb 60 min / h min = =3.53 P und und 17 h Este ciclo representa la velocidad de producción, o en sí, el tiempo mximo que debe existir en el cuello de botella. /uego, en las estaciones (;), (7), (6), (@) + (<) no ser necesario aumentar maquinas, pues el rango de tiempo de operaciones (=,.6) cae dentro del mximo que es el ciclo (6.>)
En la estación (A) sern necesarias
6.6 / 3.5 =1.88
mquinas, entonces se
dispondr de una maquina ms + el tiempo que se deber considerar es de% 6.6 / 2= 3.3
min.
/
7 3.5
En la estación (>) ser necesario asignar
=2
mquinas, entonces se 7 / 2=3.5 min
adicionar una mquina + el tiempo para dic"a estación ser% En la estación () sern necesarias
/
9 3.5
=2.57
mquinas, luego, se
adicionarn dos mquinas. El tiempo para esta estación ser de
9 / 3 =3 min
/a red despus del balance ser%
1 M.P
*
1
3
1 2
$.$
$
$
3
4
5
6
1 3
1
6
4
5
3.3
3.4
1
1
7
8
6
3
/.0
3alculamos los indicadores para esta nueva red P=17 und / h
¿ kc −t i =8 (3.5 ) – ( 3 + 2.2+ 1+ 3.3+ 3.5 + 3 + 0.6 + 1 )=10.4 min / und
1
P. T.
n i∗t i =1∗3 + 1∗ 2+ 1∗1 + 2∗3.3 + 2∗3.5 + 3∗3 + 1∗0.6 + 1∗1 =30.4 min
¿
es el mismo valor obtenido para la situación inicial, adems% n 8 ;7 + c 8 6.> E=
30.4 12 ( 3.5 )
∗100=72.38
Cao B: 3onsideremos a"ora que por exigencia del mercado, es necesario producir 7A unidC". Entonces se tiene% c=
tb P
=
60 min / h 24
und
=2.5
min und
h
rocediendo como en el caso ', la red actual variaría como sigue% 3 / 2.5=1,2 =2
En "a e*ación &1' sern necesarias considerar ser%
/ =1.5
3 2
En "a e*ación &5'
mquinas + el tiempo a
min
6.6 / 2.5 = 2.64 =3
mquinas + el tiempo%
6.6 / 3 = 2.2
min
En "a e*ación &4'
7 / 2.5 =2.8= 3
mquinas + el tiempo ser
7 / 3 =2.33
min
En "a e*ación &0'
9 / 2.5 =3.6= 4
mquinas + el tiempo ser
9 / 4= 2.25
min
$
3
3
5
1
4
5
6
1 M.P
2
1 3
1
*
$.$
1
4
5
4
5
$.$
$.3
1
1
7
8
6
/.0
1
P. T.
1.4
$.$4
Debido a la asignación de mquinas, el ciclo requerido (7.> min) se ve reducido a 7.6 min. /uego, la producción real que se obtiene si se trabaja tiempo base completo es%
P=
60 min 2.3 min
/h
/ und
=26 und /h
ara cumplir con la producción ajustada real (demanda) del mercado + para no acumular inventario, se trabaja solo parte del tiempo base, es decir%
tb= P∗c =24
und min min ∗2.3 =55.2 hr und hr
δ =kc −
E=
$.3.
∑ t 1 nc
∗100=
min
∑ t 1= 8 (2.3 )−( 1.5 +2.2 +1 +2.2 +2.3 +2.25 +0.6 +1 )=5.35 und 30 . 4
16 ( 2 . 3 )
∗100 =82 . 61
PUN%O (P%I,O DE UNA LNEA PRODUC%I+A -otar el lector que la eficiencia est en función del tiempo de ciclo E8f(c). /uego "acemos% Eficiencia 8 +
1iempo de ciclo 8 F
tenemos la recta% 8 b 4 mF
e aplica el mtodo de los mínimos cuadrados para ajustar la recta a partir de observaciones, es decir - valores de eficiencia a consecuencia de - tiempos de ciclo. /os resultados se expresan así% XY X Y
∑¿ ¿ ¿ ¿ 2
X
2
Y
∑¿ ¿ ∑ ¿−¿
∑¿¿ ∑ ¿−¿ N ¿ m=¿
( ∑ X ) (∑ Y ) −(∑ X ) (∑ XY ) b= N ( ∑ X ) −( ∑ X ) 2
2
2
De igual manera, el n#mero de mquinas est en función del tiempo del ciclo% 1iempo de ciclo 8 F +
-G de mquinas 8
e logra la "iprbola equiltera% F 8 H 5ediante el ajuste estadístico se obtiene la siguiente expresión para calcular el valor de H% 1
K = antilog ( N
$.5.
∑ logX −∑ logX −∑ logY )
PUN%O (P%I,O
i graficamos estas dos curvas tomando los mismos valores del tiempo de ciclo para ambas, se logra el punto óptimo. /a interseccion de ambas curvas es el punto mximo de rendimiento sobre el cual toda inversión es justificada. 'sí, el punto óptimo es el punto teórico de la planta de mximo rendimiento, que es numericamente igual al mximo com#n divisor de los tiempos elementales de todas las estacionaes de trabajo. $raficamente%
Punto Óptimo dT = 0 E = 100% Y = b -
XY = K Tiempo de Ciclo
$.4.
BALANCE PARA A%ENDER A UNA PRODUCCI(N A6US%ADA Ino de los factores que limitan el balance de un proceso es la demanda (producción ajustada) del producto, + esta cifra es la que ma+ormente determina el tiempo del ciclo escogido. upongamos que el producto del ejemplo dado se necesita en cantidad de <= pie!as por semana. 'sumimos que se trata de A= "oras, la produccion por a"ora sera%
P=
680 pzas 40 hr
/ sem
/ sem
=17 und / hr
luego, el tiempo de ciclo ser%
c=
tb 60 min / hr = =3.5 min / und P 17 und / hr
/a ubicación de las mquinas ser, entonces, la mostrada en el caso ' + la eficiencia ser de @7.6
por supuesto aumentar dic"a eficiencia
escogiendo un tiempo de ciclo menor, pero entonces estaríamos produciendo ms unidades que las requeridas + tendríamos que abandonar el sistema de producción en serie continuo + llegar a una producción por lotes (en la parte KKK veremos los tipos de sistemas de producción). 1ambin podríamos ajustarnos a la demanda requerida por medio de sobre tiempos. uponiendo que esta aumenta de == a <== p!asCsem podríamos, en lugar de reducir el tiempo de ciclo agregando mquinas, lograr esta producción usando tiempos extras. 0esumiendo, para resolver el problema de balancear un proceso de producción debemos tener en mente las siguientes consideraciones% &
/a velocidad de producción es determinada por la operación ms lenta de la
&
secuencia. El tiempo muerto total de mquina aumenta al aumentar el tiempo de ciclo, + puede eliminarse teóricamente, si el tiempo de ciclo es com#n divisor de todos los tiempos individuales de operación. ' medida que el tiempo se reduce, se presentan mejores perspectivas de ubicar mquinas idnticas
&
bajo la supervisión de un solo operario. El cuello de botella debería tener la mquina ms costosa, de tal manera de
&
mantener reducido a un mínimo el tiempo muerto de los equipos costosos. El tiempo efectivo del ciclo debe seleccionarse de acuerdo con la producción ajustada + "acer algunos ajustes utili!ando sobre tiempos, dobles turnos, etc.
/as restricciones ms visibles a que est sujeta un balance de líneas son% & &
/imitación de espacio tanto para el equipo como para el inventario. 3osto o limitación de dinero para invertir. /o #ltimo que se debe "acer es
&
comprar maquinaria + equipo. roducción ajustada del producto.