DDS - 01.004.003
ENERGIA EÓLICA
GESTÃO INTEGRADA: QUALIDADE – MEIO AMBIENTE E SEGURANÇA OCUPACIONAL
Área de treinamento:
Nº
PARQUES EÓLICOS
DOCUMENTO
DDS - 01.004.003
ÁREA DE TREINAMENTO:
SEGURANÇA E HIGIENE DO TRABALHO NAS USINAS EÓLICAS ASSUNTO:
Riscos de descargas atmosféricas nas torres eólicas. Material de uso exclusivo em treinamentos internos. Proibida a reprodução para uso comercial .
Página: 1
No da Revisão: 00 00
Data: 13.08.2015 13.08.2015
Contato: Roberval Luna da Silva
[email protected] robervalluna@yaho o.com.br /colunaengeharia@g /
[email protected]/www.colunaengenharia.co mail.com/www.colunaengenharia.com.br m.br
ENERGIA EÓLICA
DDS - 01.004.003
Riscos de descargas atmosféricas nos aerogeradores. 1.0 INTRODUÇÃO. Os dados estatísticos sobre acidentes e doenças relacionadas com o trabalho no setor da energia eólica não só são muito escassas como as informações disponíveis são insuficientes. Não restam dúvidas, porém, que os parques eólicos são instalações basicamente automatizadas a que os trabalhadores só acedem para efeitos de manutenção e reparação. Independentemente de a turbina eólica estar instalada em terra ou no mar, as tarefas operacionais e de manutenção que os técnicos executam no seu interior são exatamente as mesmas. Como toda e qualquer atividade, podem ocorrer falhas operacionais a que o pessoal que trabalha no interior ou em redor das turbinas eólicas pode estar exposto contam-se as seguintes: • colapso da torre; • avaria das pás; • colisão com a torre; • incêndio; • descargas atmosféricas.
Não é objetivo desde módulo tratar profundamente dos projetos e do detalhamento dos sistemas de proteção contra descargas atmosféricas, com suas vantagens e deficiências. Procura-se apenas apresentar os detalhes de interesse do treinamento Integrado de Qualidade - Meio ambiente - Segurança ocupacional, voltado para as instalações produtoras de energia elétrica com geração eólica. Ou seja, tratamos especificamente da Segurança do Trabalho, no que diz respeito à proteção contra descargas atmosféricas nos aerogeradores, com o objetivo de: Identificar os pontos críticos, relacionados com os postos de trabalho, existentes durante a construção, manutenção e operação dos parques eólicos; Identificar os riscos gerais de segurança e saúde ocupacional, para cada posto de trabalho identificado; Fazer as avaliações avaliações de riscos dos procedimentos e seus riscos, para cada posto de trabalho; Conhecer os requisitos e normas relacionados com os procedimentos de trabalho; Identificar as formas de controlar ou eliminar os riscos identificados e avaliados. Página: 2
No da Revisão: 00 00
Data: 13.08.2015 13.08.2015
Contato: Roberval Luna da Silva
[email protected] robervalluna@yaho o.com.br /colunaengeharia@g /
[email protected]/www.colunaengenharia.co mail.com/www.colunaengenharia.com.br m.br
DDS - 01.004.003
ENERGIA EÓLICA
Outros riscos e as medidas de proteção que podem ser adotadas serão tratados nos módulos de treinamento subsequentes.
Baixa/média tensão
Subestação
Linha de Alta tensão
Aerogeradores
FIGURA 1 – Simplificação do complexo de produção e transmissão de energia eólica. 2.0 CARACTERIZAÇÃO DOS PARQUES EOLICOS. Geralmente os parques eólicos ocupam grandes áreas geográficas, totalizando alguns quilômetros, compreendendo 4 componentes principais.
Aerogeneradores – Conjunto de equipamentos que converte a energia eólica em energia elétrica. Linha coletora – Rede de conexão interna cuja função é coletar a energia produzida nos aerogeradores e conduzi-la para uma subestação transformadora. Subestação transformadora – Facilidade cuja função é elevar a tensão da rede de conexão interna para permitir o seu transporte em alta tensão; Linha de alta tensão – Sistema responsável pelo transporte da energia produzida para a mesma consiga chegar aos diversos consumidores.
O ponto mais crítico desse sistema, sob o ponto de vista dos impactos provocados por descargas atmosféricas é o parque eólico, propriamente dito. Devido aos locais em que estas instalações estão expostas e a sua altura, os aerogeradores são eletricamente atingidos, armazenando descargas produzidas pelos raios. Podemos ter grandes, pequenos e médios aerogeradores. Vamos tratar, basicamente, dos aerogeradores médios e grandes. Página: 3
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
DDS - 01.004.003
ENERGIA EÓLICA
Pequenos aerogeradores
Médios aerogeradores
Grandes aerogeradores
Pequenos (<1,5 MW) Médios (<1,5 a 3,0 MW. Aturas até 80m e pás de até 37 m de comprimento). Pequenos (>3,0 MW. Alturas entre 80ª 100m ou mais e pás entre 37 e 49 m ou mais de comprimento). FIGURA 2 – Classificação dos aerogeradores segundo o porte.
3.0 PROJETOS DE PROTEÇÃO CONTRA DESCARGAS ATMOSFERICAS. Com a finalidade de minimizar os potenciais de risco originados de impactos das sobretensões elétricas, todos os aerogeradores devem ser equipados com um adequado sistema de para-raios e aterramento. Os sistemas de proteção devem ser efetivos, de modo a garantir os critérios de segurança, confiabilidade e continuidade para a produção de energia, e que sejam aceitáveis pela comunidade técnica. Dois objetivos são estabelecidos: Segurança das pessoas e equipamentos; Segurança da operação: Os projetos de proteção contra as descargas atmosféricas nos Parques Eólicos são elaborados dentro de critérios técnicos estabelecidos por normas internacionais de elevada credibilidade, tendo como base as análises de risco por impactos indiretos e impactos diretos. Entretanto, sabemos que alguns projetos, especialmente os mais antigos, são menos confiáveis do que outros. Pequenos e alguns médios aerogeradores, no geral, não possuem sistemas de proteção contra raios. Já os aerogeradores de maior porte são fabricados com de tecnologias de ponta, e são capazes de eliminar possíveis efeitos de raios, com elevada eficiência ou minimizar os danos que seriam produzidos.
Página: 4
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
DDS - 01.004.003
ENERGIA EÓLICA
1
7
6
8
3 1
9 2 1
5
4
1 - PA DO ROTOR 2 - ROTOR 3 - EIXO DO ROTOR 4 - MULTIPLICADOR 5 - GERADOR ELETRICO 6 - NACELLE 7 - SISTEMA ANTI-INCÊNDIO 8 - TORRE 9 - CONTROLE 10 - FUNDAÇÃO FIGURA 3 – Detalhes simplificados de um aerogerador. As normas técnicas tratam do assunto com bastante profundidade, com a explicitação dos termos e definições de forma clara, tratando dos diversos aspectos que interferem nos projetos: Valoração da exposição aos raios (frequência, risco, componentes de proteção, etc.); Proteção dos componentes contra os raios (requisitos, verificações, condições de projeto, métodos de Página: 5
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
ENERGIA EÓLICA
DDS - 01.004.003
ensaio, sistemas elétricos de baixa tensão, medidas de proteção, zonas ZPR de proteção, conexões equipotenciais, DPS, etc.); Aterramento dos aerogeradores e parques eólicos; Segurança de pessoas; Documentos do sistema de proteção; e Condições de inspeção do sistema de Proteção. A maioria dos projetos de proteção contra raios dos aerogeradores instalados no mundo adotam as disposições e orientações contidas em normas europeias, em particular, as normas VDE 0101 e VDE 0185 (IEC61024-1). Para a maioria dos projetos a norma IEC 61400-24 - Protección contra el rayo en aerogeneradores é a base conceitual mais utilizada. Naturalmente, há um conjunto de outras normas também importantes:
IEC 61400-24:2010 Aerogeneradores. Parte 24 - Proteccion contra el rayo IEC 61024-1:1990 Protection of structures against lightning - Part 1 General principles IEC 62305-1:2011 Proteccion contra el rayo. Parte 1- Principios generales IEC 62305-2: 2010 : Parte 2 - Evaluaciones de Riesgo. IEC 62305-3: 2010: Parte 3 - Los daños físicos a las estructuras y peligro de muerte. IEC 62305-4: 2010 : Sistemas eléctricos y electrónico dentro de las estructuras - Parte 4 IEC 62.561/1:2012: Componentes de protección contra el rayo (CPCR). Parte 1 - Requisitos para los componentes de conexión.
IEC 62.561/6:2011: Componentes de protección contra el rayo (CPCR). Parte 6 - Requisitos para los contadores de rayos.
Dentre outras.
A norma IEC 61400-24:2010 – Aerogeneradores Parte 24 - Protección contra el rayo" e complementares, avaliam o risco de impacto sobre os aerogeradores e seus sistemas de potencia. Discorrem sobre a metodologia de calculo para a estimativa dos impactos e medidas de proteção. Definem os requisitos de proteção contra os impactos diretos e indiretos dos raios sobre as pás e demais elementos estruturais, além dos sistemas elétricos de controle. São estabelecidas as classes de proteção (I, II, III e IV) para os dispositivos de proteção, descarregadores de correntes de raio, descarregadores de sobretensões, etc. Outras normas definem também os sistemas de avisos e como implementar os dispositivos de alarme. A problemática de afetação dos aerogeradores envolve o estudo das áreas de locação. A norma IEC 61400-24 recomenda ainda métodos de calculo, adotando o principio de áreas Página: 6
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
ENERGIA EÓLICA
DDS - 01.004.003
equivalentes e áreas superpostas, densidade de impactos, e valoração desses impactos sob o ponto de vista dos riscos.
Posição do aerogerador
Raio = 3 x altura do aerogerador
Superficie de Captação
FIGURA 4 – Considerações sobre as superfícies de captação.
Z2 2
Z4 Z1
1 Z7 Z5
Z6
SUPERPOSIÇÃO DE ÁREAS
3
Z3 FIGURA 5 – Considerações sobre a superposição de áreas protegidas.
Página: 7
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
DDS - 01.004.003
ENERGIA EÓLICA
São estabelecidas zonas ZPR de proteção nas turbinas eólicas conforme a criticidade das perturbações eletromagnéticas: LPZ AO – Zona exposta ao risco de impactos diretos, corrente plena e campos eletromagnéticos não atenuados. Os sistemas internos poder estar expostos à corrente completa do raio. LPZ OB – Zona protegida sem impactos diretos provenientes de raios, corrente plena e campos eletromagnéticos não atenuados. Os sistemas internos poder estar expostos à corrente parciais do raio. LPZ 1 – Zona sem impactos diretos das descargas, corrente reduzida e campos eletromagnéticos atenuados. As correntes transitórias são limitadas mediante dispositivos de proteção contra sobretensões - DPS (Surge Protection Devices) nos limites de zonas. LPZ 2 – Zonas com maior redução das correntes, maior atenuação dos campos eletromagnéticos. As correntes transitórias são limitadas mediante dispositivos de proteção contra sobretensões - DPS (Surge Protection Devices), os quais assegurem que os componentes elétricos e eletrônicos situados no interior do aerogerador trabalhem sem interferências.
4.0 DISPOSITIVOS E EQUIPAMENTOS DE PROTEÇÃO Um aerogerador como qualquer outro sistema elétrico está exposto à influências internas e externas. Por essa razão devem ser protegidos contra os impactos dos raios, instalando-se dispositivos internos e externos. Influências internas – Conjunto de influências do tipo curtos-circuitos ou contatos acidentais à terra por componentes elétricos. Influências externas – Conjunto de influências, por exemplo, originadas por descargas atmosféricas ou por operações de conexão/interconexão de linhas. Estas influências podem resultar na destruição das instalações, e no pior dos casos, colocar em perigo a vida de pessoas. O sistema externo de proteção dos aerogeradores engloba as pás, nacelle, torres, fundações, etc., evitando que a passagem dos raios atinja componentes internos e externos, sensíveis aos campos eletromagnéticos ou correntes parasitas provenientes do exterior. A finalidade é obter uma proteção máxima possível, para a integridade do próprio aerogerador e para as pessoas que se encontram nas suas dependências. Página: 8
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
ENERGIA EÓLICA
DDS - 01.004.003
Já o sistema interno, pretende suprir com um nível de proteção mais elevado, de 100% de eficácia, o funcionamento dos componentes internos elétricos e eletrônicos, manutenção da continuidade de geração, proteção de sinais, proteção de dados, etc., conservando todas as suas propriedades técnicas iniciais, mesmo depois de cada atuação, na presença de descargas indesejáveis. Os componentes eletrônicos são separados galvanicamente e situados em carcaças metálicas. De modo que as proteções internas em zonas LPZ1 e LPZ2 são constituídas de conexões equipotenciais e a proteção contra os impulsos transitórios dos circuitos elétricos e de controle que passam por outras zonas ZPR. Todo o sistema é adequadamente interconectado para combater eventuais faíscas entre as partes condutoras do aerogerador. Todos os dispositivos de proteção são projetados para o nível máximo de classe I de acordo com as normas IEC 62305, IEC 61400 e IEC61024, ou similares. Na prática o sistema de Proteção Contra Descargas atmosféricas engloba uma gama de equipamentos e componentes de proteção contra as sobretensões momentâneas; isolamento de sinais de controle; proteção contra descargas atmosféricas e raios de incidência direta; e trajetos seguros para o aterramento. Os principais dispositivos ou equipamentos de proteção são os seguintes:
Ponto de ca ta ão
FIGURA 6 – Principais dispositivos de proteção contra descargas atmosféricas.
Página: 9
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
ENERGIA EÓLICA
DDS - 01.004.003
Detectores de tempestades (EN 50536-1:2011) – Dispositivo capaz de detectar antecipadamente a formação de nuvens carregadas, em tempo real.
Contadores de raios – Componentes de alta sensibilidade projetados para detectar a corrente elétrica que é desviada para a terra quando uma descarga de raio impacta o sistema.
Terminal aéreo de captação – Do tipo para-raios convencional, instalado na parte posterior da nacelle, que funciona pelo critério de Franklin.
Sistema de aterramento – Instalações de aterramento, com o objetivo de promover a segurança das pessoas, limitando as tensões de passo e de contato para as pessoas que estejam nas imediações das fundações durante uma descarga atmosférica. Além de garantir a segurança operacional por meio de uma baixa resistência aterramento para todo o sistema. Os projetistas adotam geometrias diferentes para as malhas de terra que distribuem os potenciais no terreno em torno das fundações.
MALHAS DE ATERRAMENTO
TIPO – A
TIPO – B
TIPO – C
FIGURA 7 – Esquema simplificado das malhas de aterramento.
Página: 10
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
ENERGIA EÓLICA
DDS - 01.004.003
Pás com equalizadores - Os aerogeradores com tecnologia de ponta possuem pás, cuja ponta é munida por um captador (tip) composto de alumínio fundido, tendo também as bordas de junção equipadas com perfis de alumínio, conectados mediante anéis de mesmo material, instalados desde a ponta ate a base da mesma. As pontas funcionariam como captores e os perfis visam absorver os impactos dos raios e desviá-los para a terra por meio de cabos-terra. Pela filosofia híbrida de proteção, podem existir para-raios convencionais na parte posterior da nacelle. A eficiência das palas desse tipo tem sido aferida em laboratório por meio de ensaios reconhecidos e padronizados.
FIGURA 8 – Papel das pás no sistema de proteção contra descargas atmosféricas. Há várias alternativas, para captação e distribuição dos efeitos provocados pelos raios incidentes nas pás: A proteção contra raios pode contar também com outros dispositivos de proteção e controle, tais como: Sistema interno de proteção contra incêndios (Gás/agua nebulizada); Dispositivos de Monitoramento de vibrações; Sistemas automáticos de frenagem; Sensores de parâmetros ambientais; etc. O acompanhamento é feito eletronicamente, utilizando sistemas lógicos de supervisão, munidos com sensores adequados para cada tipo de parâmetro importante: velocidade do rotor, direção do vento, temperatura ambiente e de pontos críticos, cargas e oscilações, etc. Como sistema de alerta, os equipamentos mais modernos podem dispor de Estações Meteorológicas e redes globais de informações das como elemento de vigilância terrestres una plataforma satelital fenômenos atmosféricos mais severos Página: 11
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
ENERGIA EÓLICA
DDS - 01.004.003
FIGURA 9 – Tipos de captação e distribuição dos efeitos de raios nas pás. Admite-se que nacelles e torres tubulares fabricadas com placas de aço funcionem pelo principio da jaula de Faraday, protegendo o volume interior que uma vez sendo herméticamente fechado pode garantir uma certa atenuação do campo eletromagnético. 5.0 MECANISMO DE PROTEÇÃO. A corrente das descargas, originadas por impactos de raios diretos e indiretos, percorrem um caminho preferencial conforme projetado. Nos projetos em que todo o conjunto do aerogerador está interligado com um sistema de para-raios permanente, desde a ponta de cada pá e até as fundações. O raio quando captado na extremidade da hélice como o ponto mais alto do conjunto, sendo distribuído ao longo do seu corpo até serem dissipadas no solo. Vale salientar que este sistema não atrai os raios para si, pelo poder das pontas, apenas atua se for atingido. O ponto crítico é a passagem da corrente de raio pela parte giratória para atingir integralmente a parte fixa do aerogerador, por meio de dispositivos dotados de anéis, especialmente projetados com esta finalidade. A eficiência desse mecanismo de proteção tem sido comprovada, sob condições controladas, em oficinas e laboratórios de pesquisa, garantindo que sob uma Página: 12
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
ENERGIA EÓLICA
DDS - 01.004.003
descarga eléctrica acidental, as consequências de um raio serão minimizadas, uma vez que as correntes sejam corretamente direcionadas para a terra. O sistema externo de proteção das turbinas eólicas combinam o mecanismo das pontas captoras, engaiolamento e aterramento.
FIGURA 9 – Mecanismo de dissipação dos efeitos provocados por descargas atmosféricas nos aerogeradores. 6.0 DESEMPENHOS DO SISTEMA DE PROTAÇÃO CONTRA DESCARGAS ATMOSFERICAS. Afinal, as torres eólicas são seguras aos raios ou não estão protegidas contra as descargas atmosféricas? Esta é uma pergunta frequente que aparece no seio da população leiga. A resposta para o público em geral é sempre a mesma. Não poderia ser diferente: “ Sim, as torres e fundações são projetadas de acordo com os requisitos de segurança estabelecidos pelas normas técnicas”. Entretanto, é desnecessário dizer que o conhecimento humano tem limites e as descargas atmosféricas não são suficientemente conhecidas. Estima-se que os sistemas de proteção tenham uma eficiência estimada em 95% na proteção das ocorrências de raios. Em muitos parques eólicos modernos, tem-se registrado que os aerogeradores resistem aos eventos anuais que habitualmente, gerariam danos por raios que atingem as pás do equipamento. Em contrapartida, também se tem registrado, acidentes de Página: 13
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
ENERGIA EÓLICA
DDS - 01.004.003
grandes proporções, sob determinadas circunstâncias que fogem ao controle do sistema de proteção. Para explicar eventuais falhas passíveis de ocorrer em função das descargas atmosféricas, apesar da existência dos sistemas de proteção, podemos dizer que o raio impactante cria um arco elétrico que se extende a outras áreas condutoras do equipamento, desde o ponto de captação ou contato, alcançando temperaturas que podem ser da ordem de 30.000º C. Nem sempre o sistema de derivação das cargas desde a pá ate o solo ocorre sob condições controladas. Quando ocorrem deficiências, os efeitos eletromagnéticos dos impactos de um raio e da corrente produzida podem criar acoplamentos e induções nos dispositivos eletrônicos sensíveis de navegação e orientação de ventos. Há o risco de avarias nos componentes eletrônicos de regulação da frenagem, descontrolando o rotor que pode aumentar perigosamente a sua velocidade, sob os ventos fortes das tormentas produtoras de raios. Em outras situações, a corrente elétrica do raio, em seu percurso através dos elementos condutores de resistência mais baixa pode elevar a temperatura ou provocar faíscas que podem ocasionar outros riscos, como incêndios. As temperaturas mais altas podem produzir a alteração molecular de componentes importantes, como as pás, fragilizando-os para efeito de fadiga, e até mesmo a fusão completa de materiais. Estas podem soltar partes danificadas ou se desprender, levando à queda da turbina. As descargas que ocorrem de forma descontrolada, sob elevadas temperaturas, podem, em ultima instância, criar forças expansivas. No seu mecanismo de dano, quando a corrente do raio forma um arco elétrico no ar, contido no interior das pás, e a onda da pressão do choque, causada pelo arco pode explodir a hélice ou romper a estrutura da mesma. O resultado da explosão seja por quebra ou derretimento, levam a uma destruição total do aerogerador. Mesmo que não ocorram explosões, no mínimo, pode provocar incêndios no óleo usado na lubrificação, da mesma forma que ocorre com o sobreaquecimento derivado de sobrecargas ou defeitos mecânicos, lubrificação defeituosa, curtos-circuitos, arcos elétricos ou faíscas geradas nos freios mecânicos, etc. Una vez iniciado um incêndio do grupo gerador há o risco das chamas atingirem todo o conjunto da turbina eólica. Tradicionalmente, a proteção das estruturas mais comuns tira proveito de duas teorias, ambas permitidas pela norma técnica NBR-5419 da ABNT: Pararaios de Franklin – Hastes captadoras de maior porte que visam neutralizar as descargas atmosféricas e dirigir as correntes para o solo por meio de um caminho preferencial. Página: 14
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
ENERGIA EÓLICA
DDS - 01.004.003
Gaiola de Farady – Conjunto de malhas ligadas de escoamento de correntes para o solo, na forma de gaiola, distribuídas ao longo da estrutura, promovendo uma equalização dos potenciais produzidos pelas descargas atmosféricas. A captação neste sistema é feita por um conjunto de pequenas hastes captoras.
FIGURA 10 – Esquemas de proteção contra descargas atmosféricas nas estruturas mais comuns. Mais recentemente, as normas brasileiras incorporaram os métodos das esferas rolantes, nada mais que uma evolução das teorias anteriores. A escolha do sistema de proteção depende do tipo de estrutura a ser protegida. Por essa razão, em determinadas circunstâncias, os projetistas optam por utilizar sistemas híbridos de projeto: Para-raios tipo Franklin + Gaiola de Faraday com hastes captoras ou não. Alguns projetistas dizem que é melhor não ter para-raios do que ter um para-raios mal instalado ou mal dimensionado. Quando há polaridade é positiva, a trajetória do raio será descendente desde a ponta da pá até a sua distribuição no solo. O mesmo não ocorre quando a polaridade é positiva. Por essa razão os raios com polaridade positiva são mais perigosos. Tendem a provocar grande destruição física dos materiais e pequenos danos aos equipamentos elétricos. A hélice pode soltar devido aos efeitos do impacto, provocando a desestabilização do rotor, com o consequente tombamento lateral da torre de sustentação.
Página: 15
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
DDS - 01.004.003
ENERGIA EÓLICA
TIPO NUVEM-SOLO
TIPO SOLO-NUVEM
COM DISSIPAÇÃO NO SOLO
SEM DISSIPAÇÃO NO SOLO
FIGURA 10 – Polaridade das descargas atmosféricas x dissipação no solo. Voltando ao caso das turbinas eólicas, devemos considerar as situações e limitações específicas do Setor Eólico, que tem sido um problema crescente, devido a quantidade de aerogeradores instalados a cada ano e o constante aumento nas alturas dos mesmos. Ou seja, o sistema externo de proteção das turbinas eólicas protegem os aerogeradores contra os efeitos mecânicos destrutivos e contra o fogo, dentro de certas limitações aceitáveis, em que pese os avanços tecnológicos alcançados nos últimos anos, e os conhecimentos adquiridos em relação aos fenômenos atmosféricos. Os detectores de tempestades Classes I, II, II e IV funcionam com eficiência, apenas para descargas nuvem-terra. Não são apropriados para as descargas terra-nuvem. As experiências de campo tem demonstrado que o uso de receptores ou terminais captores na ponta das pás, funcionam efetivamente no caso de hélices com até 20 metros de comprimento. É bom lembrar também que as hastes nem sempre estão paradas com a extremidade na maior altura. São elementos giratórios. O risco de que um aerogerador receba um impacto de raio aumenta em função da altura. As normas não cobrem situações perigosas derivadas de grandes tormentas e raios, com suas variações dinâmicas. Os procedimentos atuais não garantem uma proteção de 100% para o controle das descargas atmosféricas. Há fatores determinantes que não podem ser controlados como a intensidade Página: 16
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
ENERGIA EÓLICA
DDS - 01.004.003
da energia gerada pelas descargas e a polaridade dos raios, que podem produzir diferentes efeitos eletrodinâmicos, térmicos, elétricos, magnéticos e eletromagnéticos. A aplicação da metodologia tradicional, neste caso, encontra dificuldades, pelo tipo de estrutura a ser protegida. Ainda que dimensionadas com base em estudos e documentos criteriosos, aceitos internacionalmente, estes mesmos estudos admitem a existência de áreas susceptíveis ou insuficientemente protegidas quando tratamos dos efeitos diretos. Estudos realizados por especialistas, contando com o patrocínio das empresas seguradoras admitem tais deficiências, quando se analisa as zonas de proteção estabelecidas pelas normas técnicas de projeto. Ainda há, certo desconhecimento, quanto ao mecanismo de atuação dos raios. Sabemos que os mesmos são originados pela transferência súbita de cargas elétricas acumuladas, provocando descargas nuvem-terra e terra-nuvem. No que diz respeito aos raios há quatro topologias conhecidas: Descarga nuvemterra negativa (descendente), que é a mais habitual; Descarga terra-nuvem (ascendente) positiva; Descarga nuvem-terra (descendente) positiva; Descarga terra-nuvem (ascendente) negativa. Apenas, recentemente a comunidade científica comprovou e passou a estudar a física e as características dos raios ascendentes que tem trazido grandes prejuízos quando atingem turbinas de geração eólica. É importante salientar que segundo as estatísticas internacionais, 15 % dos raios que ocorrem no mundo são do tipo terra-nuvem, chamados de raios positivos. Raios ascendentes são registrados no Brasil. Devemos considerar que os raios e tormentas são fenômenos naturais que estão submetidos a uma incerteza de natureza estatística. Isto significa dizer que não é possível obter uma informação 100% precisa, ficando difícil prever quando e como um raio vai impactar uma turbina eólica. Os canais descendentes que se originam em estruturas muito altas decorre da elevada magnitude do gradiente de potencial pelo efeito de pontas. Estes raios que partem do aerogerador de grande altura e se propagam em direção as nuvens produzem picos máximos de corrente com valores baixos (aproximadamente 15 kA) e a carga transferida pode ser muito alta, significando potenciais significativos, os quais podem causar grandes danos, tendo em vista que o sistema de dissipação não foi projetado para essas condições. A energia média liberada na descarga é da ordem de 55 Kwh. O perigo de descarga está relacionado com o fator tempo, considerando que toda essa energia se propaga entre 100 e 300 microsegundos e a corre nte de pico alcança 1 a 2 μs.
Página: 17
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
ENERGIA EÓLICA
DDS - 01.004.003
LPZA – Zona exposta ao perigo de descargas de raios diretos e ao campo eletromagnético dos raios. LPZB – Zona protegida ao perigo de descargas de raios diretos, porém exposta ao campo eletromagnético dos raios.
FIGURA 11 – Zonas vulneráveis aos efeitos das descargas atmosféricas nos aerogeradores.
7.0 APOLICES DE SEGUROS. A cobertura de danos por impacto dos raios é uma parcela básica dentro da política de seguros por incêndios. A apólice de riscos de engenharia tem a duração da obra, vai do início ao término, enquanto a operacional é tradicionalmente anual, podendo eventualmente ser bianual. Atualmente a energia eólica constitui para o setor de seguro um negócio arriscado. Este é um tema que sempre foi motivo de apreensão para os agentes do agentes do setor elétrico e que muito preocupa também o mercado de seguros das empresas de energia eólica, em função das mudanças climáticas. Estudos realizados na Dinamarca indicam que os danos provocados por raios e tormentas representam cerca 24% dos sinistros aos quais os aerogeradores estão submetidos, correspondendo a um custo da ordem de 27%. As causas dos principais sinistros são tento de origem interna (avarias mecânicas, elétricas, eletrônicas e hidráulicas) quanto externa (impacto de raios, ventos, etc.). As coberturas de avarias mecânicas e a perda de benefícios por Página: 18
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
ENERGIA EÓLICA
DDS - 01.004.003
descargas atmosféricas são as mais preocupantes. No Brasil as áreas mais sujeitas à ação do clima têm sofrido restrições de cobertura e as seguradoras têm mapeado essas regiões, resultando em seguros mais caros ou na exigência de determinados procedimentos de segurança, que podem implicar em seguros mais caros, e com certeza podem encarecer os investimentos. Essa preocupação decorre de vários motivos: As turbinas eólicas constituem um banco natural para atração de raios; A recuperações e perdas de produção por paralização costuma ser muito elevada; Os sistemas atuais de proteção contra raios não proporcionam uma eficácia de proteção de 100%; Quanto mais potentes e mais altas são as instalações, também são mais vulneráveis; O valor do seguro depende de múltiplos fatores, impossibilitando uma padronização: área de cobertura, localização geográfica, número de aerogeradores, Tecnologia e altura dos aerogeradores, potencia de operação, antiguidade das instalações, tipo de controle da manutenção adotada, sistema de proteção existente, etc. O tempo de vida útil dos aerogeradores é relativamente pequeno, estimado pelos especialistas é entre 20 e 25 anos. Outros motivos podem implicar num valor mais elevado para as apólices de seguros, com a seguradora exigindo investimentos em termos de proteção ou monitoração de pontos críticos. O próprio fornecedor do equipamento pode influenciar em aumento ou diminuição do valor da apólice. Pode ser importante para a economia que o parque gerador conte com um estoque de pás e outros acessórios sobressalentes para as eventuais reposições. O produtor da energia deve buscar alternativas para reduzir as despesas com as apólices de seguro. Mediante um planejamento e aplicação de um amplo programa de proteção contra sobretensões, consequentemente, é possível evitar muitas falhas e horas-paradas causadas por danos originados de descargas atmosféricas e sobretensões.
Pontos d de p perigo: Multiplicador (freio + lubrificante) Freio ( atrito + emissão de faíscas) Rolamentos (Atrito + lubrificante) Grupo Hidráulico ( lubrificante) Gerador 9 Arco elétrico) Página: 19
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
ENERGIA EÓLICA
Página: 20
No da Revisão: 00
Data: 13.08.2015
DDS - 01.004.003
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
DDS - 01.004.003
ENERGIA EÓLICA
MÓDULOS DO TREINAMENTO MÓDULO I – Intr odução ao tema do tr einamento: Princípios básicos da geração de Energia Eólica; Tecnologias de geração eólica; Caracterização dos empreendimentos; Principais componentes do sistema de geração; Fases de implantação, manutenção e operação; Atividades básicas de risco; Protocolos para intervenção no Sistema de Potência; e Qualificação profissional dos trabalhadores do setor de construção e manutenção de parques Eólicos; etc.
Página: 21
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
ENERGIA EÓLICA
DDS - 01.004.003
MÓDULO II – Riscos pr of issionais de montagem, manutenção e oper ação: Tipologia, origens e consequências dos principais riscos específicos do setor de energia elétrica de alta tensão, de Parques Eólicos, nas fases de montagem, manutenção e operação. Módulo IIII – A Análise e e a avaliação d dos r r iscos d de m montagem, m manutenção e oper ação: Metodologias de inventário das instalações; Pontos críticos; Conhecimento das distâncias elétricas de isolamento; Levantamento dos riscos de montagem, manutenção e operação; Análise e avaliação dos riscos; Elaboração dos mapas de risco específicos, etc. Módulo IV – Plane jamento da gestão da segur ança do tr abalho nas linhas de tr ansmissão: Normativos de segurança do trabalho; NR-10 e NR-35; Exigências legais dos órgãos de controle; Obrigações e responsabilidades; Ações e medidas de prevenção; Programas de gestão, reconhecimento, controle dos riscos; Registro e prontuário das informações; Procedimentos operacionais; etc. Módulo V – Elabor ação e Oper acionalização das ações e medidas de Pr evenção específ icos do setor: r Atendimento das exigências legais; Aplicação dos programas gerais de gestão (RIMA, PPRA, PPP, SINPAT, etc.); Acidentes de proporção: Descargas atmosféricas e explosões. Programas especiais de emergência, evacuação, atendimento e resgate de acidentados; Atendimento de primeiros socorros. Módulo VI – Par te pr ática: Elaboração de um plano de gestão incluindo o Plano de Emergência e Evacuação.
Página: 22
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br
DDS - 01.004.003
ENERGIA EÓLICA
CONTROLE DE REVISÕES PÁGINA
VERSÃO
DATA DE APLICAÇÃO
MODIFICAÇÃO
CONSULTORIA – DESENVOLVIMENTO E TREINAMENTO A sobrevivência das empresas depende do aperfeiçoamento de seus profi ssionais. CURSOS SETORIAIS DE TREINAMENTO E APERFEIÇOAMENTO MEIO AMBIENTE – SEGURANÇA DO TRABALHO - ENGENHARIA CIVIL CONSTRUÇÃO DE LINHAS AÉREAS DE ENERGIA – MANUTENÇÃO DE LINHAS DE TRANSMISSÃO.
Home Page: www.colunaengehharia.com.br
Página: 23
No da Revisão: 00
Data: 13.08.2015
Contato: Roberval Luna da Silva
[email protected] /
[email protected]/www.colunaengenharia.com.br