80
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
1
ECUACIONES DIFERENCIALES PARCIALES 1. NOCIONES BÁSICAS 1.1. FUNCIÓN PERIÓDICA f : → se llama función periódica si existe un número p ∈, tal que f ( x + p) = f ( x ), ∀ x ∈ . Al menor valor positivo p se le llama periodo. Ejemplos
f(x) = sen(x) es periódica, pues f(x+2n π) = f(x), n∈ ¡probarlo! Además su periodo es 2π. 2) f(x) = cos(x) es periódica, pues f(x+2n π) = f(x), n∈ ¡probarlo! Además su periodo es 2π. 3) f(x) = tan(x) es periódica, pues f(x+n π) = f(x), n∈ ¡probarlo! Además su periodo es π. 1)
1.2. LÍMITES LATERALES f ( x + ) = lim f (u ) u→x+
f ( x − ) = lim f ( u ) u→x−
1.3. FUNCIÓN SECCIONALMENTE CONTINUA . f : I ⊂ → es seccionalmente continua en el intervalo I si es continua en I, salvo en un número finito de puntos en los cuales existen sus límites laterales. Ejemplo. f ( x ) = x ,
x ∈ [ −2; 2]
Ejemplo de función no seccionalmente continua. continua.
f ( x) =
1 , x ∈ −3; 2 , no existen sus límites laterales en x=0. x
1.4. DERIVADAS LATERALES Derivada lateral por la derecha derecha
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
2
Mag. Jube Portalatino Zevallos
f ′(a ( a + ) = lim
h →0 h >0
Ecuaciones Dif. Parciales
f (a + h ) − f (a ) h
⇔ u(x, t ) = L
Derivada lateral por la izquierda
f ′((aa − ) = lim
h →0 h <0
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
⎧
−1 ⎪ ⎨L {f } e
− b − b2 − 4k (c −s) 2k
⎩⎪
Según propiedad
f (a + h ) − f (a ) h
u(x, t ) =
∫
t
h ( t − τ) f (τ) dτ
0
a] ⊂ → es par si 1.5. DEFINICIÓN DE FUNCIÓN PAR . f : [−a; a] f (− x ) = f ( x ), ∀x ∈ [−a; a ]
donde
a] ⊂ → es impar si 1.6. DEFINICIÓN DE FUNCIÓN IMPAR . f : [−a; a] f (− x ) = −f ( x ), ∀x ∈ [−a; a ]
h (s) = L −1 ⎨e
1.7. PROPIEDADES a
∫ − f ( x) dx = 2∫
1)
Si f : [−a; a] a] ⊂ → es par, entonces
2)
Si f : [−a; a] a] ⊂ → es impar, entonces
3)
Si f es impar y g es par o viceversa, fg es impar
4)
Si f y g son pares o impares, fg es par.
a
a
a 0
∫ − f ( x ) dx = 0 a
f ( x ) dx
⎧ ⎪ ⎪ ⎩
− b − b2 − 4k (c −s) 2k
⎫ ⎬ ⎪ ⎭
x⎪
⎫ ⎬ ⎭⎪
x⎪
79
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
78
Mag. Jube Portalatino Zevallos
2.
Resolver ∂u ∂ 2u ∂u = k 2 + b + cu ∂t ∂x ∂x u (0, t ) = f ( t )
Ecuaciones Dif. Parciales
x > 0, t > 0
x≥0
cos kx + b k sen kx
o
∑a
k
cos kx + b k se s en kx
(1)
k =1
Primero integremos (1):
⎧⎪ ∂ 2 u ⎫⎪ ⎧∂ u ⎫ ∂u L ⎨ ⎬ = L ⎨k 2 + b + cu ⎬ ∂x ⎪⎩ ∂ x ⎪⎭ ⎩∂t ⎭ 2 ∂ ∂ s L {u} − u( u ( x , 0) = k 2 L {u} + b L {u} + c L { u} ∂x ∂x =0 d2 dx
k
∞
f ( x) = a0 +
∫
Apliquemos la transformada de Laplace respecto a t,
k
∑a k =0
Solución
⇔
3
∞
f ( x) =
t>0
u ( x , 0) = 0
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
2
L
{u} + b
d L dx
{u} + (c − s) L {u} = 0
2
kr + br + c − s = 0 ⇔ r =
4k(cc − s) − b ± b 2 − 4k( 2k
−π
f ( x ) dx =
∫
π −π
∞
a 0 dx +
∑a ∫ k
k =1
π
cos kx dx + b k
π − 0
(1)
a0 =
∫
π
sen kx dx
π − 0
1 π f ( x ) dx 2π −π
∫
(2)
De (1), multiplicando por cos(nx) e integrando, se obtiene:
∫
La ecuación característica es
π
π −π
f ( x ) cos nx dx = a 0
∫
π −π
cos nx dx +
0
∞
∑a ∫ k
k =1
π −π
∫
cos kx cos nx dx + b k
π −π
sen kx cos nx dx
Luego, la solución general de la ecuación (1) es − b − b2 − 4k (c −s)
L {u} = c1e
2k
x
− b + b 2 − 4k (c −s)
+ c2 e
2k
x
∫
π
∞
f ( x ) cos nx dx =
∑a ∫ k
π
[cos(n + k ) x + cos(n − k ) x ] dx
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
4
⇔
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
∫
⇔
π −π
f ( x ) cos kx dx =
a k =
1
π
∫
a k π dx = π a k 2 −π
∫
−π
s
Reemplazando σ =
π
f ( x ) cos kx dx
k=1, 2, 3,...
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
U( x, s) = F1 (s)
(3)
β
sen h
x
sen h
L
β β
, se tiene s s
+ F0 (s)
sen h L − x s β
L
sen h
β
s
= G (s )
= H (s)
Por otro lado, de (1), multiplicando por sen(nx) e integrando, se obtiene s) = F1 (s) G( G(s) + F0 (s) H( H(s) ⇔ U( x, s) b k =
1
π
∫
π −π
f (x (x)) sen(kx ) dx
k=1, 2, 3,...
Luego, de aplicar la trasformada inversa de Laplace, se tiene u ( x , t ) = L −1{U( x, s)} = L −1{F1 (s) G (s)} + L −1{F0 (s (s) H(s)}
EN RESUMEN f (x ) =
(4)
a0 + 2
∞
∑a
k
cos kx + b k se sen kx
Por la propiedad de convolución, se tiene
k =1
u(x, t ) =
donde
t
∫ g(t − τ) f (τ)d) dτ + ∫ 0
a k =
bk =
1
π 1
π
∫ ∫
1
t 0
h ( t − τ) f0 ( τ) dτ
π −π
f ( x ) cos(kx ) dx
k = 0, 1, 2, 3, ...
π −π
f (x (x)) sen(kx ) dx
k = 1, 2, 3, ...
donde
⎧ sen h
x
⎪ sen h
L
⎪ g( t ) = L −1{G (s)} = L −1 ⎨
β
β ⎩ ⎧ sen h L − x
s⎫
⎪ ⎬ ⎭ s⎫
s⎪
77
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
76
⇔
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
∂ 2U s ( x, s) − σ2 U( x, s) = 0 , donde σ2 = β ∂ x2
Si f es continua en x, entonces
Además U(0, s) = L {u (0, t )} = L {f0 ( t )} = F0 (s ( s)
f (x ) =
a0 + 2
U(L, s) = L {u (L, t )} = L {f1 ( t )} = F1 (s (s)
∞
∑a
k
cos
k =1
kπx kπx + b k sen L L
Si f es discontinua en x, entones Luego, resolvemos el subproblema: ∂ 2U 2 −σ U = 0 ∂ x2 U(0, s) = F0 (s)
f (x + ) + f (x− ) a 0 = + 2 2
k
k =1
cos
kπx kπx + b k sen L L
donde
U(L, s) s) = F1 (s)
k 2 − σ 2 = 0 ⇔ k = ±σ
bk σx
, e
−σ x
1 L kπu f (u ) cos du L −L L
∫ 1 = L∫
a k =
con respecto a x. Cuya ecuación característica es
Dos soluciones linealmente independientes son: e
∞
∑a
L
−L
f (u (u)sen )sen
kπu du L
k = 0,1, 2,… k = 1, 2,…
Como también lo son: sen h σ x, cos h σ x
A esta serie se le llama serie de Fourier de f y a k y bk coeficientes de Fourier.
Asimismo son: sen h σ x, sen h σ (L − x )
Ejemplo. Hallar la serie de Fourier de la función
Luego, la solución general del subproblema es
f ( x ) = x, − 1 < x < 1
5
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
6
Mag. Jube Portalatino Zevallos
x=
a0 + 2
a0 =
∫
1
−1
Ecuaciones Dif. Parciales
∞
∑
1 u ( x , t ) = [g ∗ ( πa Ia t )]( x ) + [f ( x + at ) + f ( x − at )] 2 1 at 1 u(x, t ) = g( x − u ) du + [f ( x + at ) + f ( x − at )] 2a − a t 2
a k co cos kπx + b k senk πx
k =1
∫
x dx = 0 u ( x, t ) =
Se prueba que a k =
b k =
∫ ∫
1
−1 1
−1
x cos kπx dx = 0
x senkπx dx = 2
∫
1
x senkπx dx
0
1 ⎡ x x b k = 2 ⎢ − cos kπx + 2 2 senkπx ⎢⎣ k π 0 k π
⎤ ⎥ 0⎥ ⎦
1
2 2(−1)k cos k π = − kπ k π
Luego, la serie de fourier de f, en los puntos de continuidad, es ∞
∑
−2(−1)k
1 2a
∫
x +a t x −a t
1 g(τ) dτ + [f ( x + at ) + f ( x − at )] 2
para k=1, 2, ....
Aplicando integración por partes, se obtiene
b k = −
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
32. SOLUCIÓN DE ECUACIONES DIFERENCIALES PARCIALES MEDIANTE LA TRANSFORMADA DE LAPLACE 1.
Resolver ∂u ∂ 2u =β 2 ∂t ∂x
0 < x < L, t > 0
u (0, t ) = f0 ( t )
t>0
u (L, t ) = f1 ( t )
t>0
u ( x, 0) = f ( x )
0≤x≤L
Solución
Sea U( x, s) = L {u ( x , t )} ⇔ u ( x , t ) = L −1{U( x, s)}
75
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
74
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
Aplicando la transformada de Fourier, con respecto a x, a la ecuación diferencial parcial, se tiene F
⎧⎪ ∂ 2 u ⎫⎪ 2 ⎧⎪ ∂ 2 u ⎫⎪ ⎨ 2 ⎬ = a F ⎨ 2 ⎬ ⎩⎪ ∂ t ⎭⎪ ⎩⎪ ∂ x ⎭⎪
⇔
∂2 2 2 F {u} = − a α F {u} ∂ t2
⇔
d 2U d t2
(α, t ) = −a 2 α 2 U(α, t )
Luego, se tiene el siguiente problema que involucra una ecuación diferencial
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
En el siguiente cuadro se muestra la gráfica para la suma de 30 términos.
7
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
8
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
b k =
∫ ∫
b k = 2
1
−1 1
−1
∫
x cos kπx dx = 0
f (x (x)) senkπx dx = 2
1 0
para k = 1, 2, .... 1
∫ f (x(x)) senkπx dx 0
senkπx dx = −
Ecuaciones Dif. Parciales
73
∂ U(α, t ) = −β α 2 U(α, t ) ∂t
Se prueba que a k =
Mag. Jube Portalatino Zevallos
2 2 2 − 2(−1)k cos k π + = kπ kπ k π
Luego, se tiene el siguiente problema que involucra una ecuación diferencial ordinaria, con respecto a la variable t
⎧ ∂ 2 ⎪ ∂ t U(α, t ) = −β α U(α, t ) ⎨ ⎪ U(α, 0) = F(α) ⎩ Cuya solución es
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
72
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
⎧ ∂ 2 u ∂ u ∂ 2u ⎪ 2 + + u = α 2 2 0 < x < L, t > 0 ∂t ∂x ⎪ ∂t ⎪ u (0, t ) = 0 t>0 ⎪ ⎪ ∂u t>0 ⎨ ( L, t ) = 0 ⎪ ∂x ⎪ u ( x, 0) = f ( x ) 0≤ x≤L ⎪ u ∂ ⎪ ( x , 0) = 0 0≤x≤L ⎪ ∂t ⎩⎪
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
9
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
10
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
= c0 +
k = ∞
+ c−) cos kx + i (c − c − ) senkx ) ∑= ((c k
k 1
k
ak
k
k
bk
Como los ck son números complejos, entonces los a k anteriormente son números reales.
π
i kx
y bk definidos
Ecuaciones Dif. Parciales
⎧ ∂u ∂ 2u = β 2 + P ( x ) 0 < x < L, t > 0 ⎪ ∂x ⎪ ∂t ⎪ t>0 ⎨ u (0, t ) = u1 ⎪ u ( L, t ) = u t>0 2 ⎪ 0≤ x≤ L ⎩⎪ u ( x, 0) = f ( x ) donde u1 y u2 son constantes.
Además
∫ −π e
Mag. Jube Portalatino Zevallos
⎧0, k ≠ n ⎩2π, k = n
e−i n x dx = ⎨
Sugerencia. La misma sugerencia del problema anterior. 20) Resolver
⎧ ∂ 2
∂2
71
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
70
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
⎧ ⎪ ∂ 2u 2 ⎛ ∂ 2 u 1 ∂ u 1 ∂ 2 u ⎞ + 2 2 ⎟⎟ , 0 ≤ r < R , − π ≤ θ ≤ π, t > 0 ⎪ 2 = c ⎜⎜ 2 + ⎪∂t ⎝ ∂ r r ∂ r r ∂ θ ⎠ ⎪u (r , θ, 0) = f (r, θ) 0 ≤ r < R, − π ≤ θ ≤ π ⎪⎪ t>0 ⎨u (r , −π, t ) = u (r, π, t ), ⎪∂ u ∂u ⎪ (r, −−ππ, t ) = (r, π, t ), t>0 ∂θ ⎪∂ θ ⎪∂ u ⎪ (r, θ, 0) = 0, 0 ≤ r < R , − π ≤ θ ≤ π ⎩⎪ ∂ t
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
2
∫
b a
2 li lim
∫
b
w →∞ a
b
b
a
b
w →∞
∫
b −ε
ε → 0 a −ε
b −ε
ε→ 0 a
lim
a
f ( t ) sen ( wt ) d t = − lim
+ lim ∫ ⇔
b −ε
∫ −ε f (t + ε) sen(πt / ε) d t −ε + ∫ f ( t ) sen (πt / ε) d t + ∫ −ε f ( t ) sen ( tπ / ε) d t
f ( t ) sen ( wt ) d t = −
∫
b a
f ( t + ε) sen (πt / ε) d t
f ( t ) sen (πt / ε) d t + lim
f (t (t ) sen ( wt ) d t = 0
∫
b
ε → 0 b −ε
f ( t ) sen ( tπ / ε) d t
11
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
32
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
La magnitud del desplazamiento de la cuerda en el punto "x" y en el instante "t" la designamos por y(x,t) y en "x+ ∆x" por y(x+∆x,t). Habrá dos fuerzas actuando sobre el elemento, figura 2, llamadas las tensiones en x y x+∆x. Se supone que la tensión depende de la posición y de la dirección de la tangente a la cuerda. Ellas son τ(x) y τ(x+∆x). La longitud del segmento de curva en [x, x+ ∆x], al deformarse se convierte en x +∆ x
∆s = ∫ x
2
⎛∂y⎞ 1+ ⎜ ⎟ dx ≈ ∆x x⎠ ⎝∂ ≈0
⇔
Ecuaciones Dif. Parciales
49
Considerando las condiciones de frontera del problema, se tiene 0 = u (0, t ) = X(0)T( t ) ⇔ X(0) = 0 0 = u ( L, t ) = X ( L ) T ( t ) ⇔ X ( L ) = 0 Luego, se tiene el siguiente problema: ⎧ X′′ − λX = 0 ⎪ ⎨ X(0) = 0 ⎪ X(L) = 0 ⎩
(3)
Para resolverlo, tenemos la ecuación característica: k2 − λ = 0
∆s ≈ ∆x
Descomponiendo las fuerzas de tensión en sus componentes, se tiene Fuerza neta vertical (hacia arriba)= τ(x+∆x) senθ2 - τ(x) senθ1 Fuerza neta horizontal (hacia la derecha)= τ(x+∆x) cosθ2 - τ(x) cosθ1 Asumimos que no hay movimiento horizontal. Luego, la fuerza neta horizontal es cero. La fuerza neta vertical produce aceleración del elemento, asumiendo que la cuerda tiene densidad (masa por unidad de longitud) ρ, la masa del elemento es ρ∆s. Por la segunda ley de Newton, se tiene
τ( x + ∆x ) senθ2 − τ( x ) senθ1 = ρ ∆s
Mag. Jube Portalatino Zevallos
∂ 2y ∂ 2
(4)
Tendremos tres casos: CASO 1. λ > 0
= ± λ ∈ La solución de la ecuación característica es k = Su solución general es X(x) = c1e λ x + c 2e − λ x Aplicando las condiciones frontera, se tiene 0 X(0)
(5)
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
48
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
Mag. Jube Portalatino Zevallos
30. SOLUCIÓN DE ECUACIONES DIFERENCIALES PARCIALES MEDIANTE SEPARACIÓN DE VARIABLES Y SERIES DE FOURIER
senθ( x ) ≈ tan θ( x ) =
Ecuaciones Dif. Parciales
∂y ∂x
33
(2)
Reemplazando (2) en (1) y tomando el límite cuando ∆x → 0, se tiene 1)
Resolver 2 ∂ 2u 2 ∂ u 2
=α
2
,
∂t ∂x u (0, t ) = 0, u ( L, t ) = 0, u ( x, 0) = f ( x ), ∂u ( x , 0) = g( x ), ∂t
∂ ⎛ ∂y⎞ ∂ 2y (x)) τ(x =ρ 2 ⎜ ⎟ ∂x⎝ ∂x ⎠ ∂t
0 < x < L, t > 0 t>0 t>0 0≤ x≤ L
Esta EDP es la que modela el problema de la cuerda vibrante. Si la tensión τ(x) es una constante τ, la ecuación anterior, anterior, se transforma en
0≤x≤L
∂ 2y 2 ∂ 2y =a ∂ t2 ∂ x2
Solución
τ ρ
Apliquemos el método de separación de variables que consiste en buscar la solución del problema, de la forma:
donde a 2 =
u ( x, t) t ) = X( x ) T( t )
Puesto que la cuerda está fija en los extremos x = 0, x = L, entonces tenemos las condiciones de frontera (o condiciones de contorno):
Diferenciando u, se obtiene ∂ 2u = X( x ) T ′′( t ) ∂ t2
(1)
∂ 2u x) T (t (t ) = X′′( x) ∂ x2
y(0, t) = 0 y(L, t) = 0 Además tenemos las condiciones iniciales:
Reemplazando Reemplazando en la primera ecuación diferencial parcial, se tiene t iene
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
34
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
⎧∂ 2y 2 ∂ 2y + G ( x, t ), 0 < x < L, t > 0 ⎪ 2 =a ∂ x2 ⎪∂t ⎪ y(0, t ) = 0, t≥0 ⎪ = y ( L , t ) 0 , t≥0 ⎨ ⎪ y ( x , 0) = f ( x ) , 0≤ x≤L ⎪ ⎪∂ y ⎪ ∂ t ( x, 0) = g( x ), 0 ≤ x ≤ L ⎩⎪ 2) El modelo del fenómeno de las vibraciones de una piel de tambor es
⎧ ∂ 2u 2 ⎛ ∂ 2u ∂ 2u ⎞ ⎪ 2 = a ⎜ 2 + 2 ⎟ + G ( x, y, t ), 0 < x , y < 1, t > 0 ⎪∂t ⎝∂x ∂y ⎠ ⎪⎪u (0, yy,, t) t) = u (1, y, y, t) t) = u ( x, 0, 0, t) t) = u ( x,1, t) t) = 0 ⎨ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 ⎪u ( x , y, 0) = f ( x , y), ⎪∂ u ⎪ ( x, y, 0) = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 ⎪⎩ ∂ t 3) El fenómeno de las vibraciones de una superficie esférica o las ondas de la radio o televisión está modelado por la EDP ∂ 2u 2 ⎛ ∂ 2u ∂ 2u ∂ 2u ⎞ = a ⎜ 2 + 2 + 2 ⎟ + G ( x , y, z, t ) ∂ t2 ⎝∂x ∂y ∂z ⎠ 4) Un problema más general que 1) es el siguiente: ⎧∂ 2y ∂ 2y
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
2
⎛ dy ⎞ + e y = 0 ⎟ ⎝ dx ⎠
ex ⎜
⇔
dy ± −4e x + y ey / 2 = = ± x/2 i x dx 2e e
⇔ e − y / 2 ± ie − x / 2 = c Sea el cambio de variable −y / 2 ⎪⎧ξ = e
⎨ −x / 2 ⎩⎪η = e
ξx = 0 ξxx = 0
ξy = -e-y/2 / 2 ξyy = e-y/2 / 4
ηx = -e-x/2 / 2 ηy = 0 ηxx = e-y/2 / 4 ηyy = 0 u xx = u ξξ (ξ x ) 2 + 2u ξη ξ x ηx + u ηη (ηx )2 + u ξ ξxx + u ηηxx u xx = 14 e− x u ηη + 14 e − x / 2 u η e x u xx = 14 u ηη + 14 e x / 2 u η u yy = u ξξ (ξ y ) 2 + 2u ξη ξ y ηy + u ηη (ηy )2 + u ξ ξyy + u η ηyy u
= 14 e− y u ξξ + 14 e − y / 2 u ξ
47
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
46
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
dy x ± x 2 − 4 y x = = dx 2 2 x2 ⇔ y − = C1 4 4 y ⇔ − x2 = C
⇔
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
35
⎧∂ 2y 2 ∂ 2y + G ( x, t ), − ∞ < x < ∞, t > 0 ⎪ 2 =a ∂ x2 ⎪∂t ⎪ −∞ < x < ∞ ⎨ y( x , 0) = f ( x ), ⎪∂ y ⎪ ( x, 0) = g( x ), − ∞ < x < ∞ ⎪⎩ ∂ t solamente tiene condiciones iniciales.
Sean
⎪⎧ξ = 4y − x 2 ⎨ ⎩⎪η = x
pues,
ξx ξ y −2x 4 = = −4 ≠ 0 η x ηy 1 0
ξx = -2x ξy = 4 ξxx = -2 ξyy = 0
ξyx = 0
ηx = 1 ηxx = 0
ηxy = 0
ηy = 0 ηyy = 0
25. ECUACIÓN PARABÓLICA O ECUACIÓN DEL CALOR PROBLEMA DE LA TEMPERATURA EN UNA BARRA y
u x = −2xu ξ + u η
figura (1)
u xy = −8xu ξξ + 4u ξη
U(x,t)
u yy = 16u ξξ
Reemplazando en la ecuación original, se obtiene 4x 2 u ξξ − 4xu ξη + u ηη − 2u ξ − 8x 2 u ξξ + 4 xu ξη − 16 yu ξξ − 2 x 2 yu ξ + xyu η = 0
x
L
O
u xx = 4x 2 u ξξ − 4xu ξη + u ηη ηη − 2 u ξ
U(x+∆x,t)
A B
C
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
36
Mag. Jube Portalatino Zevallos
•
La cantidad de calor necesario para elevar la temperatura de un objeto de masa "m" en una cantidad de temperatura ∆U es ms∆U, donde "s" es una constante que depende depende del material usado, y se llama el calor específico. La cantidad de calor que fluye a través de una área (tal como B o C, figura (2)) por unidad de tiempo es proporcional a la tasa de cambio de la temperatura con respecto a la distancia perpendicular al área (llamada "Ley de Fourier").
•
Ecuaciones Dif. Parciales
La ley de Fourier, se puede escribir como: ∂U Q = − k A ∆t ∂x donde Q es la cantidad de calor que fluye a la derecha, ∆t es la longitud de tiempo, y k es la constante de proporcionalidad llamada "conductividad térmica" (la cual depende del material). En la figura (2), la cantidad de calor que fluye de izquierda a derecha a través del plano B es ∂U −k A ∆t ∂x x
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
45
donde A* = A ( ξ x ) 2 + B ξ x ξ y + C ( ξ y ) 2 B* = 2A ξ x ηx + B (ξ x ηy + ξy ηx ) + 2C ξ y ηy C* = A (ηx ) 2 + B ηx ηy + C ( ηy ) 2 D* = A ξ xx + B ξ xy + C ξ yy + D ξ x + E ξ y E* = A ηxx + B η xy + C ηyy + D ηx + E ηy F* = F G* = G
Si A* = 0, entonces 2
⎛ξ ⎞ ⎛ξ ⎞ A (ξ x ) + B ξ x ξ y + C (ξ y ) = 0 ⇔ A ⎜ x ⎟ + B ⎜ x ⎟ + C = 0 ⎜ ξy ⎟ ⎜ ξy ⎟ ⎝ ⎠ ⎝ ⎠ 2
2
t an t e , entonces Consideremos ξ( x , y ) = cons ta dξ = ξ x dx + ξ y dy = 0 ⇔
ξ dy =− x dx ξy
y la cantidad de calor que fluye a través del plano C es ∂U −k A ∆t ∂ x x +∆ x
Reemplazando en la ecuación (1), se tiene
La cantidad de calor que se acumula en el volumen entre B y C es la cantidad
Al cual se le llama ecuación característica de la EDP.
2
⎛ dy ⎞ − B ⎛ dy ⎞ + C = 0 ⎟ ⎜ dx ⎟ ⎝ dx ⎠ ⎝ ⎠
A⎜
(1)
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
44
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
ξ = ξ(x,y) η = η(x,y) que son soluciones de su ecuación característica. Luego, se hace los siguientes cálculos, aplicando la regla de la cadena u x = u ξ ξ x + u η ηx
u y = u ξ ξ y + u η ηy u
= u ξξ (ξ )2 + 2u ξ ξ η + u (η )2 + u ξ ξ + u η η
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
37
Dividiendo esto entre A∆x∆t, y haciendo que ∆x y ∆t tiendan a cero, se obtiene
∂U ∂ 2U =a 2 ∂t ∂x donde a =
k
ρs
k: conductividad térmica
ρ: densidad del material
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
38
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
⎧ ⎪u = a ∆u + F( x, t ), x ∈ ∂Ω, t > 0 t ⎪⎪u ( x, 0) f ( x ), x = ∈ ∂Ω ⎨ ⎪∂ u ⎪ = g( x, t ), x ∈ ∂Ω, t > 0 ⎪⎩ ∂ n
Mag. Jube Portalatino Zevallos
Lv1 = 0
Lv2 = 0
Lv3 = 0
M1v1 = g1
M1v 2 = 0
M1v3 = 0
M 2 v1 = 0
M 2 v2 = g 2
M 2 v3 = 0
M3 v1 = 0
M3 v 2 = 0
M 3 v3 = g 3
M 4 v1 = 0
M 4 v2 = 0
M 4 v3 = 0
se llama problema tipo Newmann. n es un vector normal a la frontera de la región Ω y ∂u / ∂n representa la derivada direccional.
Lv4 = 0
Lv5 = g
M1v 4 = 0
M1v5 = 0
M2 v4 = 0
M 2 v5 = 0
3) Al problema
M3 v 4 = 0
M3 v5 = 0
⎧
Ecuaciones Dif. Parciales
43
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
42
Mag. Jube Portalatino Zevallos
Lw j = 0
j = 1, 2… , n
Si hacemos u j = v j + w j
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
Ecuaciones Dif. Parciales
⎧ ∆u = f ( x), x ∈ ∂Ω, t > 0 ⎨ ⎩u (x ) = ϕ( x), x ∈ ∂Ω (condicion de Dirichlet ) se llama problema de Dirichlet.
entonces la función n
u=
∑ j=1
satisface la EDP
u j
2) Al problema: ⎧ ∆u = F( x ), x ∈ ∂Ω ⎪ ⎨ ∂ u = ϕ( x ), x ∈ ∂Ω (condicion de Newmann) ⎪∂ n ⎩ se llama problema tipo Newmann
39
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
40
3)
Ecuaciones Dif. Parciales
Mag. Jube Portalatino Zevallos
La ecuación de Laplace o del potencial
∇2 u = 0 4)
5)
La ecuación de Poisson ∇ 2 u = f La ecuación de Helmholtz
∇ 2 u + λu = 0 6)
La ecuación biharmónica
∇4 u = 0
(o
∆ u = f )
Mag. Jube Portalatino Zevallos
ν
Ecuaciones Dif. Parciales
∂ 3u ∂ u ∂ 2 u ∂ u ∂ 2 u − + =0 ∂ y 2 ∂ y ∂ y∂ x ∂ x ∂ y 2
14) La ecuación de la difusión no lineal ∂u ∂ ⎛ ∂u ⎞ − ⎜ D( u ) ⎟ = f ( x ) ∂t ∂x ⎝ ∂x⎠ 15) La ecuación para perturbaciones pequeñas ∂ 2u ∂ 2u ∂ 2u (1 − M 2 ) 2 + 2 + 2 = 0 ∂x ∂y ∂z
41