CASOS DE FACTOREO.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Centro Escolar “Luisa
de
Católico
Marillac”
Materia: Matemática
Tema: Casos de factoreo.
Maestra: Silvia Ramos.
Alumnas: Roxana Giselle Chicas Guevara.
nº 5
Alexandra Yamileth Acevedo Monge. nº 1
Grado: 8º
Jessica Tatiana González González
nº 16
Julissa Alejandra Melara Rodríguez
nº 24
Sección: B
Fecha de entrega: lunes 29 de octubre del 2012.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Caso I CUANDO TODOS LOS TERMINOS DE UN POLINOMIO TIENEN UN FACTOR COMUN. a. Factor común monomio. 1) Descomponer en factores a 2 + 4 a Los factores a2 y 4 a contiene en común a. Escribimos el factor comuna como coeficiente de un paréntesis; dentro de paréntesis escribimos cocientes de dividir a2 a=÷ a y 4 a ÷ a = 4, y tendremos: a2 + 4 a = a (a+4) R. 2) Descomponer 10x – 30xy2 Los coeficientes 10 y 30 tienen los factores comunes de 2, 5 y 10. Tomamos 10 porque siempre se saca el mayor factor común. De las letras el único factor común es x porque esta de dos términos de la expresión dada y la tomamos con su menor exponente x. El factor común de 10x. Lo escribimos como coeficiente de un paréntesis y dentro ponemos los cocientes de dividir 10x ÷ 10x = 1 y 30xy 2 ÷ 10x = -3xy - 3xy y tendremos: 10x - 30xy2 = 10x (1 -3xy) R. 3) Descomponer 14x 2y2 – 28x3 + 56x4 El factor común es 14x 2. Tendremos: 14x2 (y2 + 2x + 4x2)
Ejercicio 1: 1) 4x – 6y 2) 6x2 + 3xy – 3xz 3) 4m – 2mn – 6 4) 6abc + 30abc 2 5) 4m2 – 8m + 2
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Caso II FACTOR COMUN POR LA AGRUPACION DE TERMINOS. Ejemplos:
1) Descomponer Descomponer m + mn + mx + nx Los dos primeros términos tienen el factor común m y los dos últimos términos en un paréntesis y los dos últimos en otro parecido del signo + porque el tercer término tiene el signo + y tendremos: m + mn + mx + nx = (m + mn) + (mx + nx) = m (m + n) + x (m + n) = (m + n) (m + x). R La agrupación puede generalmente ser de más de un modo con tal que los dos términos que se agrupan tengan algún factor común, siempre que las cantidades que quedan dentro de los paréntesis después de sacar el factor común en cada grupo sean exactamente iguales. Si esto no es posible lograrlo la expresión dada no se puede descomponer por este método. Así en el ejemplo anterior podemos podemos agrupar el primero y tercero, tercero, término que tienen tienen el factor común m y el segundo con el cuarto que tienen el factor común n y tenemos: m + mn + mx + nx = (m + mx) + (mn + nx) = m (m + x) + n (m + x) = (m + x) (m + n). R. Resultando idéntico al anterior, ya que el orden de los factores es indiferente.
2) Descomponer ay - by + ax - bx Los dos primeros tienen el el factor común y mientras que los dos últimos últimos el factor común es x. Agrupando, Agrupando, tendremos: ay - by + ax - bx = (ay - by) + (ax - bx) = y (a - b) + x (a - b) = (a - b) (y + x). R.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
3) Descomponer ax - 2bx 2bx - 2ay + 4by ax - 2bx - 2ay +4by = (ax - 2bx) - (2ay + 4by) = x (a - 2b) - 2y (a + 2b) = (a - 2b) (x - 2y). R.
Ejercicio 2:
Factorar o descomponer 1) 3a-b+2bx-6ax 3a-b+2bx-6ax 2) 1+a+3ay+3y 3) 6a-9b+21bx-14ax 6a-9b+21bx-14ax 4) ax+3x-2a-6 5) 3ax-2by-6ay+bx 3ax-2by-6ay+bx
Caso III TRINOMIO CUADRADO PERFECTO. Una cantidad es cuadrado perfecto cuando es el cuadrado de otra cantidad, o sea, cuando es el producto de dos factores iguales. Así, 9a4 es cuadrado perfecto porque es el cuadrado de 3a 2. En efecto: (3a2)2 = 3a2 X 3a2 = 9a4 y 3a2, que multiplicada por sí misma da 9a 4, es la raíz cuadrada de 9a 4. Obsérvese que (-3a 2)2 = (-3a2) X (-3a2) = 9a4; luego, -3a2 es también la raíz cuadrada de 9a4. Lo anterior nos dice que la raíz cuadrada de una cantidad positiva tiene dos signos + y - .
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
RAIZ CUADRADA DE UN MONOMIO. Para extraer la raíz cuadrada de un monomio se extrae la raíz cuadrada de su coeficiente y se divide el exponente de cada letra por 2. Así, la raíz cuadrada cuadrada de 16a2b2 es 4ab porque (4ab) 2 = 4ab X 4ab = 16a 2b2. La raíz cuadrada de 4x 4y2 es 2x2y. Un trinomio es cuadrado perfecto cuando es el cuadrado de un binomio, o sea, el producto de dos binomios iguales. Así, x2 + 5xy + y2 es cuadrado perfecto porque es el cuadrado de x + y. En efecto: (x + y)2 = (x + y) (x + y) = x2 + 2xy + y2. Del propio modo, (2m + 2n) 2 = 4m2 + 8mn + 4n2 luego 4m 2 + 8mn + 4n2 es un trinomio cuadrado perfecto.
REGLA PARA CONOCER SI UN TRINOMIO ES CUADRADO PERFECTO. Un trinomio ordenado con relación a una letra es cuadrado perfecto cuando el primero y tercero término son cuadrados perfectos (o tienen raíz cuadrada exacta) y positivos, y el segundo término es el doble producto de sus raíces cuadradas. Así, x2- 4xy + 4y2 es cuadrado perfecto porque: Raíz cuadrada de x 2.…………...…………………………………..x Raíz cuadrada de 4y 2……………………………………………….2y Doble producto de estas estas raíces: 2 X x X 2y = 4xy, 4xy, segundo segundo término. 16m2- 48mn4 + 2n8 no es cuadrado perfecto porque: Raíz cuadrada de 16m 2...................................................4m Raíz cuadrada de 2n 8....................................................n4 Doble producto de estas raíces: 2 X 4m X n 4 = 8mn4, que no es el 2º término.
REGLA PARA FACTORAR UN TRINOMIO CUADRADO PERFECTO.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Ejemplos: 1) Factorar m2- 4mx + 4x2. m2- 4mx + 4x2 = (m-2x) (m-2x)= (m-2x)2. m
R.
2x
2) Factorar y4+ 1 + 2y2. y6+ 1 + 2y4= y6+ 2y4 + 1= (y3+1) (y3+1)= (y3+1)2. R. y3
1
3) Factorar 1+ 49m 2 - 14m. 1+ 49m2 - 14m= 49m2 - 14m + 1= (7m-1) (7m-1)= (7m-1) 2. R 7m
1
Ejercicio 3: 1) 9q2- 30p2q + 25p4. 2) 1+ 14a2b + 49a4b2. 3) 169m6+ 16 – 104m3. 4) a2- 24a2x2 + 144m4x4. 5) 4a2- 12ab +9b2.
Caso IV
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
REGLA PARA FACTORAR UNA DIFERENCIA DE CUADRADOS. Se extrae la raíz cuadrada al minuendo y al sustraendo y se multiplica la suma de estas raíces cuadradas por la diferencia del minuendo y la del sustraendo. Ejemplos: 1) Factorizar 1-b2 . La raíz cuadrada de 1 es 1; la raíz cuadrada de b 2 es b. Multiplico la suma de estas raíces (1+b) por la diferencia diferencia (1-b) y tendremos: 1-b2 = (1+b) (1-b) R. 2) Factorizar 9m2 – 36m2 . La raíz cuadrada de 9m 2 es 3m; la raíz cuadrada de 36m 2 es 6m. Multiplico la suma de estas raíces (3m + 6m) por su diferencia (3m – 6m) y tendremos: 9m2 – 36m2 = (3m+6m) (3m-6m) 3) Factorizar: 64n 2m2 – 25n2m2 64n2m2 – 25n2m2 = (8nm + 5nm) (8nm – 5nm)
Ejercicio 4: 1) 27 + 8x3 2) 216m6 – 512n3 3) 343a3b3 + 64c3 4) 8m3 – 1 5) P3 + q3
Caso V
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Para que sea cuadrado perfecto hay que lograr que el segundo termino p 2 b2 se convierta en 2 p 2b2, lo cual se consigue sumándole p 2 b2 , pero para que el trinomio no varíe hay que restarle la misma cantidad que suema, p2 b2, y tendremos:
p4 + p2b2 + b4 + p2b2
- p2b2
p4 +2 p2b2 + b4 - p2b2
= (p4 +2 p2b2 + b4 ) - p2b2
(Formado el trinomio cuadrado perfecto)
= (p 2 + b2)2 - p2b2
(Factorando (Factor ando la diferencia de cuadrados)
= (p2 + b2 + pb) pb) (p4 + b4 - pb) pb) = (p2 + pb + b2 ) (p2 - pb + b2 ). R.
(Ordenando)
2) Descomponer 4m 4 + 8m2n2 + 9n4 La raíz cuadrada de 4m4 es 2m2 ; la raíz cuadrada de 9n4 es 3n2 y el doble producto de estas raíces es 2X 2m2 X 3 n2 = 12 m2 n2 ; luego, este trinomio no es cuadrado perfecto porque porque su segundo segundo término es 8m2 n2 y para que sea cuadrado perfecto debe ser 12m2 n2 . Para que 8m2 n2 se convierta en 12 m2 n2 le sumamos 4m 4 n2 y para que trinomio no varíe le restamos restamo s 4m2 n2 y tendremos: 4m4 + 8m2n2 + 9n4 +4 m2n2
- 4m2n 2
4m4 +12 m2n2 + 9n4- 4m2n2 = (4m4 + 8m2n2 + 9n4) - 4m2 n 2 (Formado el trinomio cuadrado perfecto)
= (2m 2 + 3n2)2 - 4 m2n2
(Factorando (Factora ndo la diferencia de cuadrados)
= (2m 2 +3n2 + 2mn) (2m2 + b2 - 2pb)
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
c4 - 16c2d2 + 36d4 +4c2 d2
-4c2d2
c4 - 12c2d2 + 36d4 -4c2d2 = (c4 - 16c2d2 + 36d4) - 4c2d2 = (c2 - 6d2)2 - 4c2d2 = (c2 - 6d2+ 2cd) 2cd) (c (c2 - 6b2 - 2cd) 2cd) = (c2 + 2cd - 6d2) ( c2 - 2cd - 6d2). R.
Ejercicio 5: 1) m8 + 3m4 + 4. 2) a4 + 2a2 + 9. 3) 4x4 + 3x2y2 + 9y4. 4) 4 - 108m2 + 121m4. 5) 16p4 - 25p2q2 + 9q4.
Caso VI Trinomio de la forma forma perfecta x2 +bx+c Trinomio de la forma de la forma x 2+bx+c son trinomios como: x2 +5x+6
m2+5m-14
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Regla practica para factorizar un trinomio de la forma x2+bx+c 1) El trinomio se descompone en dos factores binomios cuyo primer término es x, o sea, la raíz cuadrada del primer termino del trinomio. 2) En el primer factor, después de x se escribe el signo del segundo término del trinomio, y en segundo factor, después de x se escribe el signo que resulta de multiplicar el signo del segundo término del trinomio por el signo del tercer término del trinomio. 3) Si los dos factores binomios tiene en los medios signos iguales se buscan dos números cuya suma sea el valor absoluto del segundo término del trinomio y cuyo producto sea el valor absoluto del tercer término del trinomio. Estos números son los segundos términos de los binomios. 4) Si los dos factores binomios tienen en medio signos distintos se buscan dos números cuya diferencia sea el valor absoluto del segundo término del trinomio y cuyo producto sea el valor absoluto del tercer término del trinomio. El mayor de estos niños es el segundo término del primer binomio, y el menor, el segundo término del segundo binomio.
Ejemplos: 1) Factorizar x2 + 9x + 20 El trinomio se descompone en dos binomios cuyo primer término es la raíz cuadrada de x2 o sea x; x2+ 9x + 20
(x ) (x
)
En el primer binomio después de x se pone el signo + porque el segundo término del trinomio +9x tiene signo +. En el segundo binomio, después de x, se escribe el signo que resulta de multiplicar el signo +9xpor el signo de +20 y se entiende que + por + da + o sea:
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Ahora, como en los binomios tenemos tenemos signos distintos distintos buscamos buscamos dos números cuya cuya resta sea x y cuyo producto sea sea 12. Estos números números son 4 y 3, luego: luego: X2 + x – 12 = (x + 4) (x- 3) R.
3) Factorizar n2 – 6n -40 n2 – 6n – 40 = (n-10) (n + 4).
R.
Ejercicios 6: 1) c2 – 14 + 33 2) m2 – 2m – 15 3) p2 – 4p -21 4) a2 – 2 a – 35 5) q2 + 13q – 30
Caso VII
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
DESCOMPOSICION EN FACTORES DE UN TRINOMIO DE LA FORMA ax2 +bx c. Ejemplos:
1) Factorar
4x2 +13x +3
Multiplicamos el trinomio por el coeficiente de x 2 que es 4 y dejamos indicado el producto de 4 por 13x se tiene: 16x2 + 4 (13x) +12 Pero 16x2 = (4x)2 y 4(13x) = 13(4x) luego podemos escribir: (4x)2 + 4(13x) + 12. Descomponiendo Descomponien do este trinomio según se vio en el caso anterior, el primer término de cada factor será será la raíz raíz cuadrada de 16x2 o sea 4x: (4x - ) (4x + ). Dos números cuya diferencia sea 4 y cuyo producto sea 12 Tendremos (4x -4) (4x + 12). Como al principio multiplicamos el trinomio dado por 4 ahora tendremos que dividir entre 4 para no alterar el trinomio y tendremos: (4x -4) (4x + 12). = (2x -2) (2x -6) 2x 2
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
3) Factorar 3m2- 5m -2. Multiplicando Multiplicando el trinomio por 3, tendremos: (3m) 2- 5(3m) - 6. Factorar este trinomio: (3m- 6) (3m + 1). Dividiendo por 3, para lo cual, como el primer binomio 3m- 6 es divisible por 3 basta dividir este factor entre 3, tendremos: (3m- 6) (3m+ 1) = (m-2) (3m+1) 3
Luego:
Ejercicio 7:
1) 2p2 + 3p - 2. 2) 4m2 + m - 33. 3) 3x2 + 19x -14. 4) 10m2 -m - 21.
18a2- 13a - 5 = (m- 2) (3m+ 1). R.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
4. Que el tercer término sea más o menos el triplo de la raíz cúbica del primer término por el cuadrado de la raíz cúbica del último. Si todos los términos de la expresión son positivos, la expresión dada es el cubo de la suma de las raíces cúbicas de su primero y último término, y si los términos son alternativamente positivos y negativos la expresión dada es el cubo de la diferencia de dichas raíces.
RAICES CUBICAS DE UN MONOMIO. La raíz cúbica de un monomio se obtiene extrayendo la raíz cúbica de su coeficiente y dividiendo el exponente de cada letra entre 3. Así, la raíz cúbica de de 9m6n12 es 3m2n4. En efecto: (3m2n4)3= 3m2n4 X 3m2n4 X 3m2n4= 9m6n12.
HALLAR SI UNA EXPRESION DADA ES EL CUBO DE UN BINOMIO.
Ejemplos: 1) Hallar si 8m 3 + 12m2 + 6m + 1 es el cubo de un binomio. Veamos si cumple las condiciones expuestas antes. La expresión tiene cuatro términos.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
3) Hallar si y6 + 3y4 + 3y2 + 1. Veamos si cumple las condiciones expuestas antes. La expresión tiene cuatro términos. La raíz cúbica de y 6 es y2. La raíz cúbica de 1 es 1. 3(y2)2(1)= 3y4, segundo término. 3(y2) (1)2= 3y2, tercer término.
FACTORAR UNA EXPRESIÓN QUE ES EL CUBO DE UN BINOMIO. 1) Factorar 1 + 9a + 5a2 + 27a6. Aplicando el procedimiento procedimiento anterior veamos veamos que esta expresión expresión es el cubo cubo de (1 + 2 9a ); luego: 1 + 9a + 5a 2 + 27a6= (1 + 9a2)3. R.
2) Factorar p9 – 18p6b5 + 108p3b10 – 216b15. Aplicando el procedimiento procedimiento anterior, vemos que esta expresión expresión es el cubo de (p 3 –
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Ejercicio 8:
1) 1 + 18x2y3 + 108x4y6 +216x6y9. 2) 216p6q3 – 324p4q2t2 +162p2qt4 – 27t6. 3) 1 + 6mn – 12m2n2 – 8m3n3. 4) p3 + 6p2 + 12p + 8. 5) x3 + 3x2y + 3xy2 + y3.
CASO IX SUMA O DIFERENCIA DE CUBOS PERFECTOS.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
1. la diferencia diferencia sus raíces raíces cubicas. 2. el cuadrado de la primera raíz, mas el producto de las dos raíces, mas el cuadrado de la segunda raíz.
FACTORAR UNA SUMA O UNA DIFERENCIA DE CUBOS PERFECTOS.
Ejemplos: 1) Factorar 27+8x. La raíz cubica de 27 es 3; la raíz cubica de 8x es 2x .Según . Según la regla 1 27+8X= (3+2X) (3+2X) (X -X (3)+3)= (3+2X) (3+2X) (9-6X+4X) (9-6X+4X)
2) Factorar 216m-512n
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Caso X Suma o diferencia de dos potencias iguales. Ejemplos: 1) Factorar m7 + n7. Dividiendo entre m + n los signos del cociente son alternativamente alternati vamente + y –. m7 + n7 = m6 - m5n + m4n2 + m3n3 + m2n4 + m5n + n6. m+n
2) Factorar x5+ y5. Dividiendo x+ y los signos son alternativam alternativamente ente + y - .
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
RESPUESTAS A LOS EJERCICIOS DEL TEXTO. Respuestas de ejercicio 1: 1) 2 (2x – 3y) 2) 3x (2x + y – z) 3) 2 (2m – mn – 3) 4) 6abc (1 + 5c) 5) 2 (2m2 – 4m +1)
Respuestas de ejercicio 2: 1) (1-2x) (3a-b)
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Respuestas de ejercicio ejercicio 5: 1) (m4 - m2 +2) (m4 + m2 +2). 2) (a2 - 2a + 3) (a2 + 2a + 3). 3) (2x2 - 3xy + 3y2) (2x2 + 3xy + 3y2). 4) (2 - 8m - 11m 2) (2 + 8m - 11m 2). 5) (4p2 - pq - 3q2) (4p2 + pq - 3q2).
Respuestas de ejercicio 6: 1) (c – 11) (c – 3) 2) (m – 5) (m – 3)
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Respuestas de ejercicio 9: 1) (10x-9y) (100x+90xy+81y) 2) (2m-1) (4m+2m+1) ( 4m+2m+1) 3) (p+q) (p-pq+q) 4) (a+1) (7a-4a+1) 5) (a+5b) (a-10ab+25b)