UNIVERSIDAD PERUANA DE CIENCIAS APLICADAS FACULTAD FACULT AD DE INGENIE INGENIERÍA RÍA INGENIERIA CIVIL
TRABAJO FINAL: MÉTODO DE ANÁLISIS DE ESTRUCTURA SLOPE DEFLECTION
CURSO CURSO
: MECÁNIC MECÁNICA A DE MATER MATERIAL IALES ES
PROF PROFES ESOR OR : JAVI JAVIER ER MORE MORENO NO ALUMN ALUMNOS OS : JOSÉ JOSÉ CUY CUYA CALD CALDER ERÓN ÓN JOSÉ DE LA ROCA HENRY FLORES GAMARRA RAUL PACO AYUQUE FECHA
:
OCTUBRE DEL 2011
LIMA – PERÚ
TABLA TABLA DE CONTENIDO CONTEN IDO INTRODUCCION.........................................................................................................1 2.
“SLO “SLOPE PE - DEFL DEFLEC ECTI TION ON”” ..... ........ ...... ...... ...... ...... ...... ..... ..... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ....... ....34 34
2.1 2.1
Intro Int roduc ducc! c!nn ...... .......... ........ ........ ........ ........ ........ ........ ....... ....... ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ .......... ............ .......... .....3 .344
2.2 2.2
SUPOSI SUPOSICIO CIONES NES B"SICA B"SICAS S DEL #$TODO #$TODO%. %..... ........ ........ ........ ........ ......... ........... ............ ............ ........... .....3& 3&
2.2.1
Con'(ncon()% Con'(ncon()% ............................................. ........................... ..................................... ..................................... ........................ ...........3& .....3&
2.3 2.3
DEDU DEDUCC CCI* I*N N DE DE LAS LAS ECUA ECUACI CION ONES ES DEL DEL SLOP SLOPEE-DE DEFL FLEC ECTI TION ON%% ... ........ ......... ....3& 3&
2.3.1 2.3 .1
#o+(nto #o+(nto)) d( (+,otr (+,otr+(n +(nto to ..... .............. ................. ................. .................. .................. .................. ................. .............3 .....3
2.3.2 2.3 .2
#o+(nto) #o+(nto) /(n /(n(rd (rdo) o) ,or d(),0 d(),0+(n +(nto) to) .... ............. .................. .................................... ...........................41 41
2.4 2.4
PLAN PLANTE TEA# A#IE IENT NTO O ENE ENERA RALL DEL DEL #$TO #$TODO DO DEL DEL SLOP SLOPEE-DE DEFL FLEC ECTI TION ON%& %&33
2.4.1 2.4 .1
A,0cc! A,0cc!nn d(0 d(0 S0o,( S0o,( D(0( D(0(cto ctonn (n (n /) /) ......... ................. ................. .................. ............................&3 ...................&3
2.4.2 2.4 .2
A,0cc! A,0cc!nn d( S0o,( S0o,( D(0(ct D(0(cton on (n (n (0 n5 n50)) 0)) d( ,!rt ,!rtco). co)....... ............... ........................6 ...............644
2.& 2.&
E7ERCI E7ERCICIO CIOS S PROPUE PROPUESTO STOS% S% ....... ........... ........ ........ ........ ....... ....... ........ ........ ........ .......... ........... ........... ............ ......18 18&&
2. “SLOP “SLOPE E - DEFLEC DEFLECTI TION” ON”
2.1
Introducc!n
E0 ,ro()or (or/( A. #n(9 ,r()(nt! (n 1:1& (0 +;todo d(0 n50)) d( ()tructur)
S0o,(-d(0(cton (n un ,u<0cc!n )oo u( un (?t(n)!n d( ()tudo) nt(ror() c(rc d( ()u(ro) )(cundro) r(0do) ,or @(nrc #nd(r0 9 Otto #or (ntr( 0o) o) 18-1:88.
Su
,o,u0rdd )( +ntu'o (ntr( 0o) n/(n(ro) d( 0 ;,oc ,or c) 1& o) )t 0 ,rc!n d( (0 +;todo d( d)tr
t(n(r (n cu(nt u( ()t( +;todo )!0o () ,0c<0( ()tructur) con nodo) r=/do) co+o co+o () (0 c)o d( 0) '/) contnu) contnu) 9 ,!rtco) ,!rtco) r=/do) r=/do) 9 u( no )( con)d(r con)d(r (0 ((cto d( d(or+con() d(or+con() ,or cr/ ?0 u( )on 0) u( )( ,roduc(n (n 0) c(rc).
@o9 d= ()t( +;todo (n )u or+ con'(ncon0 () ,oco Gt0 d(<do 0o) ,ro/r+) tn 'ndo) d( n50)) d( ()tructur) u( (?)t(n (n 0 ctu0dd. Sn (+<r/o )( )/u( con)d(rndo co+o uno d( 0o) +;todo) d( d(),0+(nto +5) +,ortnt( d( cu(rdo con 0) )/u(nt() con)d(rcon()%
•
Pr 0/uno) ))t(+) ()tructur0() )+,0() '/) +rco) r=/do) (0 +;todo
,u(d( ,r()(ntr un )o0uc!n r5,d 9 ,rctc. •
L) (cucon() und+(nt0() d(0 +;todo )r'(n d( <)( ,r (0 d()rro00o d(0
+;todo d( d)tr
34
L) (cucon() und+(nt0() d(0 +;todo ()t<0(c(n 0 <)( d( ntroducc!n d( +;todo) d( or+u0c!n +trc0.
•
2.2 SUPOSICIONES B"SICAS DEL #$TODO% - Todo) Todo) 0o) +(+
Lo) +o+(nt +o+(nto) o) (n 0o) nodo) nodo) (n )(ntd )(ntdoo d( 0) +n(c +n(c00) 00) d(0 d(0 r(0o> r(0o> )on )on n(/t' n(/t'o). o).
-
L) rotcon rotcon() () d( 0o) nodo) nodo) (n )(ntd )(ntdoo nt- nt-orr orro o )on )on ,o)t' ,o)t'o). o).
2.3 DEDUCCI*N DE LAS ECUACIONES DEL SLOPE-DEFLECTION% I+/n( un ,!rtco (0 cu0 )do )o+(tdo un ))t(+ d( cr/) cu0u(r% ,()o ,ro,o cr/ '' u(r d( ))+o ))+o '(nto '(nto (tc. (tc. Co+o r()u0tdo d( 0 ,0cc!n d( ()t( ))t(+ d( cr/) 0 ()tructur )ur( d(or+ d(or+co con() n() rotco rotcon() n() 9 d(),0 d(),0+(n +(nto) to) (n 0o) nodo) 9 )u '( )( /(n(rn /(n(rn u(r) (n cd uno d( 0o) (0(+(nto) d( 0 ()tructur.
35
F/ur 6% P!rtco So+(tdo un S)t(+ d( Cr/)
i
A
j
B
C
A
B
C
To+ndo (0 (0(+(nto i− j d(0 ))t(+ ,!rtco d(),u;) d( d(or+do )( t(n(% F/ur % An50)) d(0 E0(+(nto -> W
P
j
θ j θ
Δ
RELATIVO
i
i
Pr (0 n50)) d( ()t( (0(+(nto )( c( u)o d( 0 (cuc!n <5)c u)d (n (0 n50)) +trc0 d( ()tructur)%
[F ] = ⎣F T
⎣
⎦+
F desplazamientos
⎦
Ecuc!n 2.1
empotramiento
Dond(% F T Fu(r) n0() (n 0o) (?tr(+o) d( 0 <rr.
36
Fempotramiento Fu(r) /(n(rd) (n 0o) (?tr(+o) d( 0 <rr
i− j
d(<do 0)
cr/) (?t(rn) ( P! " ctunt() )o
Fdesplazamientos Fu(r) /(n(rd) (n (0 (0(+(nto d(<d) 0o) d(),0+(nto) d( 0 <rr. Co+o )( +(ncon! 0 nco d(0 ,r()(nt( c,tu0o (0 +;todo d(0 S0o,(-d(0(cton d(),r(c 0) d(or+con() d(<d) 0) u(r) ?0() 9 cortnt() (n 0o) (0(+(nto) t(n(ndo )o0+(nt( (n cu(nt 0) d(or+con() ,or 0(?!n +o+(nto). A)= 0 (cuc!n <5)c (n (0 n50)) +trc0 ,0cd 0 +;todo d(0 S0o,(-d(0(cton u(d con'(rtd (n% [F
T#T$%&'
]=
⎣F ⎦ emp
[
)
T#T$%&'
+ [F ] des
]=⎣)
emp
Ecuc!n 2.2
⎦+⎣)
desplazamiento
W
P
P
M θ j
θi
i
⎦
j
W
M
ji
TOTALES
j i
Δ RELATIV O
=
M
M
ij
ji
)
RELATIVO
θ
F
i
M
ij DESPLAZAMIENTOS
ij TOTALES
T#T$%&'
Δ
F
M
[
θ j
+
j
]
#o+(nto) tot0() /(n(rdo) (n 0o) (?tr(+o) d( 0 <rr.
3*
ji
DESPLAZAMIETOS
⎣ )
empotramientos
( P! "
⎦ #o+(nto) /(n(rdo) (n 0o) (?tr(+o) d( 0 <rr ,or cr/) (?t(rn)
ctunt() )o
c(ro () d(cr 0 <rr ()t5 (+,otrd.
⎣ )
desplazamientos
⎦ Fu(r)
/(n(rd) (n (0(+(nto) d(<d) 0o) d(),0+(nto)
(θi θ j Δ relatio"
A contnuc!n )( ()tudn 0o) +o+(nto) d( (+,otr+(nto 9 0o) +o+(nto) d(<do) 0o) d(),0+(nto). 2.3.1 #o+(nto) d( (+,otr+(nto
⎣ )
empotramientos
⎦ % Co+o 9 )( +(ncon! nt(ror+(nt( 0o) +o+(nto) d( (+,otr+(nto
)on 0o) u( )( /(n(rn (n 0o) nodo) d( 0 <rr d(<do 0) cr/) (
P! "
(?t(rn)
,0cd) )o
F
ij F
)
= #o+(nto /(n(rdo (n (0 nodo j d( 0 <rr ij d(<do ( P ! " = #o+(nto /(n(rdo (n (0 nodo j d( 0 <rr ij d(<do ( P ! "
ji
Lo) +o+(nto) d( (+,otr+(nto )( c0cu0n% •
U)ndo un +;todo d( n50)) d( ()tructur) co+o% "r( +o+(nto c)t/0no cr/ untr '/ con>u/d (ntr( otro).
A +n(r d( (>(+,0o )( c0cu0n 0o) +o+(nto) d( (+,otr+(nto d( 0 )/u(nt( '/ u)ndo (0 +;todo d( c)t/0no.
3,
F/ur :% / Cr/d
J A
B
S( con)d(rn co+o r(dundnt() 0) r(ccon() d(0 (?tr(+o B
)
.
/ . L) .
condcon() (n (0 nodo B )on t0() u(% 9
θ =-
Lu(/o%
.
⎡
%
θ
.
=
1
Δ
)
=.
0)
⎤ ⋅ ⎢ ⎥ d = ⎣ & 2 0) . ⎦
-
Ecuc!n 2.3
⋅
1
Δ. =
%
-
⎡ ) 0) ⎤ ⎢ ⋅ ⎥ d = ⎣ & 2 0 / . ⎦
Ecuc!n 2.4
-
⋅
P0nt(ndo 0 (cuc!n d( +o+(nto) ,r 0 '/ )( t(n(%
4
-
= )(" − ). −
) ) (" = ) . +
! ⋅
! ⋅
+ ( / .⋅ 3 " = -
− ( / .⋅ 3 "
Ecuc!n 2.&
D(r'ndo 0 (cuc!n d( +o+(nto con r(),(cto cd un d( 0) r(dundnt()% 0)( "
0)(
=
"
0). •
=−3
0 /.
Pr (0 c)o d( θ . %
θ.=-=
1
% -
⎡
⎢ ⎣
) 0)
⋅
& ⋅2 0 )
% ⎡ ! ⋅ ⎤ ⎥ d = 1 - ⎢ ⎦ ⎣ .
+ ) . − / .⋅ 3
37
⎤ ⎥ ⎦
⋅ [ ] d
! ⋅
-=
3
/ .⋅ 3
+ ) .⋅ 3 −
6
/ .⋅ %
+ ) .⋅ % −
%
-
3
- = ! ⋅% 6
Ecuc!n 2.K
D(),(>ndo / . d( 0 nt(ror (cuc!n )( t(n(% 5 ). ! % = + % 3
/.
⋅
⋅
Ecuc!n 2.6
Pr (0 c)o d( Δ
•
⎡ 1 - ⎣⎢ %
Δ. = - =
/ 3
-= -=
3
3
/ .⋅ %
4
3
−
⎤ ⎥ d = ⎦ .
⎡ ! ⋅ 1- ⎢− % ⎣ %
− ) . + /.
⎤ ⋅ 3 ⎥ ⋅ [ − 3 ] d ⎦
⋅
−
,
! ⋅%
%
). 3
⋅
−
3
⋅
& ⋅2 0 /
! 3
⋅
.
) 0)
.
4
−
,
) .⋅ %
-
Ecuc!n 2.
D(),(>ndo / . d( 0 nt(ror (cuc!n )( t(n(%
/
.
3 =
,
( ! ⋅% " +
3
( )
⋅% .
Ecuc!n 2.:
"
I/u0ndo 0) (cucon() 2.6 9 2.: )( (ncu(ntr (0 '0or d(
)
.
%
3 ⋅ ! ⋅% + 3 ⋅ ) . ⋅ % ⋅ ) . ! ⋅% = + , 3 % ) . = ! ⋅%
Ecuc!n 2.18
4-
R((+,0ndo 0 (cuc!n 2.18 (n cu0u(r d( 0) (?,r()on() d(
/ .
=
! ⋅%
/ . )( o
Ecuc!n 2.11
Un '( conocdo) 0o) '0or() d( 0) r(ccon() (n (0 nodo )( ,0nt( 0 ()t5tc d( 0 '/ o
) $=
/$
=
! ⋅%
Ecuc!n 2.12
! ⋅%
Ecuc!n 2.13
A)= 0o) +o+(nto) d( (+,otr+(nto ,r un '/ d( )(cc!n con)tnt( 9 con un cr/ con)tnt( )o
)ij
F
F
=−)
j i
! ⋅ % =
Ecuc!n 2.14
F/ur 18% #o+(nto) d( E+,otr+(nto 2
J
JL 12
•
2
JL 12
Por +(do d( t<0) d( c50cu0o d( +o+(nto) 0) cu0() +u()trn un /r5co d( 0 '/ con (0 ))t(+ d( cr/ 9 (0 '0or d( 0o) +o+(nto) (n unc!n d( 0) cr/) ( P! "
ctunt() (n 0 <rr 9 0 0on/tud d( 0 <rr.
2.3.2 #o+(nto) /(n(rdo) ,or d(),0+(nto)
4
Aor )( ()tudn 0o) +o+(nto) d(<do) d(),0+(nto) ⎣ )
desplazamientos
⎦
.
F/ur 11% #o+(nto) d( E+,otr+(nto
M ji
j
θ j
DESPLAZAMIETOS
Δ
RELATIVO
θi i
M
ij
DESPLAZAMIENTOS
Co+o )( ,u(d( '(r (n 0 /ur nt(ror 0o) +o+(nto) /(n(rdo) (n 0o) (?tr(+o) d( 0 <rr )( ,roduc(n ,or 3 d(),0+(nto).
. Rotc!n d(0 nodo i (θi " <. Rotc!n d(0 nodo j (θ j " c. D(),0+(nto r(0t'o (ntr( nodo) (Δ relatio" A contnuc!n )( n0 cd d(),0+(nto ,or )(,rdo. 2.3.2.1. #o+(nto) /(n(rdo) (n 0o) (?tr(+o) d( 0 <rr i− j ,or un rotc!n (n (0 nodo i (θ i " Pr (ncontrr 0 r(0c!n (?)t(nt( (ntr( 0o) +o+(nto) /(n(rdo) (n 0o) (?tr(+o) d( 0 <rr 9 0 rotc!n ocurrd (n (0 nodo
i (θ i " con)d;r()( un <rr -> )+,0(+(nt(
,o9d (n )u (?tr(+o 9 (+,otrd (n )u (?tr(+o > 0 cu0 )urdo un rotc!n (n )u (?tr(+o co+o )( +u()tr contnuc!n%
4
F/ur 12% Rotc!n (n (0 nodo d( 0 <rr ->
θ
i
Mij )ij−θ i
−θ
M −θ
i
ji
j
#o+(nto /(n(rdo (n (0 nodo i d(<do un rotc!n (n (0 nodo i (θ i "
) ji − θ i
#o+(nto /(n(rdo (n (0 nodo j d(<do un rotc!n (n (0 nodo
i( θ i" A contnuc!n )( c( u)o d(0 t(or(+ d( 0 '/ con>u/d ,r c0cu0r (0 '0or d( 0o) +o+(nto) )i j − θ
i
9
) ji − θ
i
(n unc!n d( 0 rotc!n ( θ i "
Pr no )turr (0 do 9 ('tr ,o)<0() conu)on() )( u) 0 )/u(nt( con'(nc!n% )
i j −θ i
)
) ji −θ i
)
$
.
43
F/ur 13% D/r+ d( #o+(nto) d( 0 / Cr/d M
MB
A
= +
M
A
M
A
M
B
M
B
+
Diagramas de Momentos
M ! " #L$ EI
A
M A
EI
%iga Cargada
θ
M EI B
! #L$ MB
"
EI
P0nt(ndo un )u+tor d( +o+(nto) (n (0 nodo )( t(n(%
) =i
.
⋅%⎞⎛ ⎞ ⎛
⎛ ) ⎜ ⋅ ⎟⋅⎜ %⎟− ⎜ ⋅ ⎝ &2 ⎠ ⎝ 3 ⎠ ⎝
)
$
⋅%⎞⎛ ⎞
&2
⎟⋅⎜ %⎟= ⎠⎝3 ⎠
) =) $
.
Aor c(ndo un )u+tor d( u(r) (n 9 u)ndo 0 nt(ror r(0c!n%
4 F8 = -
44
⎛
−⎜
⋅
%⎞ ⎛ ) %⎞ . ⎟+⎜ ⋅ ⎟ + θ i= &2 ⎠ ⎝ &2 ⎠
)
⎝
$
⎛ ) % ⎞ ⎛ ( ) $ " % ⎞ −⎜ ⋅ ⎟+⎜ ⋅ ⎟ + θ i= $ ⎝ &2 ⎠ ⎝ ⎠ &2 ⎛
−⎜
⎝4
⋅
) $% ⎞ &2
⎟ + θ i= ⎠
D(),(>ndo ) $ )( o
)$ =
%
θi
Ecuc!n 2.1&
,or con)/u(nt(% θi &2
) .=
Ecuc!n 2.1K
% Lu(/o )ij−θ i
) ji − θ i
4&2
% &2
%
θi
Ecuc!n 2.16
θi
Ecuc!n 2.1
2.3.2.2 #o+(nto) /(n(rdo) (n 0o) (?tr(+o) d( 0 <rr i− j ,or un rotc!n (n (0 nodo j (θ j "
45
Pr (ncontrr 0 r(0c!n (?)t(nt( (ntr( 0o) +o+(nto) /(n(rdo) (n 0o) (?tr(+o) d( 0 <rr 9 0 rotc!n ocurrd (n (0 nodo j ( θ j " )( con)d(r un <rr -> (+,otrd (n )u (?tr(+o 9 )+,0(+(nt( ,o9d (n )u (?tr(+o > 0 cu0 )urdo un rotc!n (n )u (?tr(+o > co+o )( +u()tr contnuc!n% F/ur 14% Rotc!n (n (0 nodo > d( 0 <rr ->
M −θ ij
) i j −θ
j
θ j
i
M −θ ji
j
#o+(nto /(n(rdo (n (0 nodo d(<do un rotc!n (n (0 nodo j (θ j "
)
ji −θ j
#o+(nto /(n(rdo (n (0 nodo > d(<do un rotc!n (n (0 nodo
j (θ j "
R(0ndo (0 +)+o n50)) u( )( o ,r (0 c)o d( 0 rotc!n (n (0 nodo )( o
) i j − θ j ) ji − θ j
&2
% 4 &2
θ j
Ecuc!n 2.1:
θ j
Ecuc!n 2.28
%
2.3.2.3. #o+(nto) /(n(rdo) (n 0o) (?tr(+o) d( 0 <rr i− j ,or un d(),0+(nto r(0t'o ( Δ/ "
46
Pr (ncontrr 0 r(0c!n (?)t(nt( (ntr( 0o) +o+(nto) /(n(rdo) (n 0o) (?tr(+o) d( 0 <rr 9 (0 d(),0+(nto r(0t'o
( Δ/ "
(ntr( nodo) )( con)d(r un <rr ->
(+,otrd (n )u) do) (?tr(+o) 0 cu0 )urdo un d()c(n)o '(rtc0 (n uno d( )u) ,o9o) co+o )( +u()tr contnuc!n% . F/ur 1&% D(),0+(nto R(0t'o (ntr( nodo) d( 0 <rr ->
i
M −Δ ij
Δ
RELATIVO
& j
M −Δ ji
) i j −Δ /
&
#o+(nto /(n(rdo (n (0 nodo i d(<do 0 d(),0+(nto
r(0t'o ( Δ/ " ) ji −Δ /
#o+(nto /(n(rdo (n (0 nodo j d(<do 0 d(),0+(nto
r(0t'o ( Δ/ " Nu('+(nt( )( r5 u)o d(0 +;todo d( 0 '/ con>u/d ,r c0cu0r (0 +o+(nto (n unc!n d(0 d(),0+(nto r(0t'o (ntr( 0o) (?tr(+o) d(0 (0(+(nto. Pr no )turr (0 do 9 ('tr ,o)<0() conu)on() )( u) 0 )/u(nt( con'(nc!n% ) i j −Δ / ) ) ji −Δ / )
$
.
4*
F/ur 1K% C50cu0o d( #o+(nto) d(<do) 0 d(),0+(nto R(0t'o (ntr( nodo) i
M
ij
−Δ & j
=
M
ji
−Δ
&
+
M
A
M
B
M
B
Diagramas de Momentos
M
A
+
%iga Conj'gada ! #L$ AM
" M EI
EI
A
Δ& MB EI !
"
@c(ndo )u+tor d( u(r) (n 9%
4F
8
=-
⎛) ⋅% ⎞ ⎛ ) ⋅% ⎞ $ . − ⎜ ⎟+ ⎜ ⎟ =⎝ &2 ⎠ ⎝ &2 ⎠
4,
#L$ M EI
B
)$=)
Ecuc!n 2.21
.
Aor ,0nt(ndo un )u+tor d( +o+(nto) con r(),(cto 0 nodo >%
4)
=-
j
⎛ ) $ ⋅ % ⎞ ⎛ ⎞⎛ . ) ⋅ % ⎞ ⎛ ⎞ ⎜ ⎝ &2 ⎟⎠ ⎜⎝ 3 % ⎠⎟ −⎝⎜ &2 ⎟⎠ ⎜⎝ 3 % ⎠⎟ − Δ / =
) $⋅ % − ) $⋅ % = Δ / 3 &2 6 &2
) $⋅ % = Δ / 6 &2
D(),(>ndo ) $ % )
6&2 $
=
⋅ Δ
Ecuc!n 2.22
/
%
,or con)/u(nt(% ).
6 &2 =
⋅ Δ
Ecuc!n 2.23 /
%
Lu(/o%
)
6
i j −Δ /
) ji −Δ /
&2 % 6
Ecuc!n 2.24
Δ
⋅
/
⋅
Ecuc!n 2.2&
Δ
&2
%
/
47
I+,ortnt(% E0 )/no d(0 +o+(nto 'r= d(,(nd(ndo ) (0 d(),0+(nto r(0t'o c( /rr 0 <rr (n )(ntdo orro ! nt-orro.
En (0 d()rro00o d( ()t( c,tu0o )( ,0nt( 0 )/u(nt( con'(nc!n ,r d(t(r+nr (0 )/no d(0 +o+(nto d(<do 0 Δ/ C)o A. S (0 d(),0+(nto r(0t'o
Δ/ c( u( 0 <rr t(nd rotr (n )(ntdo d( 0)
+n(c00) d(0 r(0o> 0o) +o+(nto) (n 0o) (?tr(+o) )on ,o)t'o). F/ur 16% Rotc!n d( 0 <rr (n )(ntdo d( 0) +n(c00) d(0 r(0o>
Δ RELATIVO
Mij −Δ&
M ji −Δ& )
i j −Δ /
6 &2
) ji −Δ
/
Ecuc!n 2.2K
Δ/
%
C)o B. S (0 d(),0+(nto r(0t'o
Δ/ c( u(
0 <rr t(nd rotr (n )(ntdo nt-
orro 0o) +o+(nto) (n 0o) (?tr(+o) )on n(/t'o). F/ur 1% Rotc!n d( 0 <rr (n )(ntdo contrro 0) +n(c00) d(0 r(0o>
M −Δ ji
M ij −Δ
Δ RELATIVO
&
5-
&
)
i j −Δ /
6 &2
) ji −Δ
− %
/
Ecuc!n 2.26
Δ /
Su+ndo 0o) 3 ((cto) n0do) )( ,u(d( d(cr u(% E0 +o+(nto /(n(rdo (n (0 nodo i d(<do 0o) d(),0+(nto) θi θ j 9
•
Δ/
() /u0 %
)
(
)
"
ij − θ M
ij
i
i j desplazamientos
) i j desplazamientos =
()
4 &2
%
"
&2
θi +
%
M
−θ j
()
i j −Δ
" /
6 &2
θ j 9
Δ
%
Ecuc!n 2.2
/
E0 +o+(nto /(n(rdo (n (0 nodo j d(<do 0o) d(),0+(nto) θi θ j 9
•
() /u0 %
)
)
( j i − θ
i
ji desplazamientos
) ji
desplazamientos
"
= &2
θi +
M
()
j i − θ
"
M
j
4 &2 &2
%
6
θ j 9
()
j i −Δ
" /
Δ /
Ecuc!n 2.2:
%
#o+(nto) tot0() F/ur 1:% C50cu0o d( +o+(nto) tot0() W
P
M j
j i
TOTALES
θ j Δ
θi i
M
ij
TOTALES
5
RELATIVO
Δ/
R(to+ndo 0 (cuc!n
) T#T$%&' = ) empotramiento + ) desplazamientos ,0c5ndo0 0 nodo i d( 0 <rr -> )( t(n(%
)
= ) i j Total
F
ij
+)
i j desplazamientos
F
) Total
)
ij
θ
)
ij
F
) ij = )ij +
"
()
M ( ij − i M
4 &2
%
θi +
&2
%
i j −θ
"
M
j
()
i j −Δ
" /
6 &2
θ j 9
Δ /
%
Ecuc!n 2.38
0o +)+o )( c( (n (0 nodo j o
F
) Total
)
ij
j i
θ
F
) ji
M (
)
&2
=)
%
i
()
M
" j i − θ
j
M
()
" j i − Δ
/
6 &2
4 &2
θ +
+
ji
" ji− i
θ 9
%
j
Δ
%
Ecuc!n 2.31
/
S(ndo ()t) 0) (cucon() <5)c) u)d) (n (0 +;todo d(0 S0o,(-d(0(cton ,r un <rr -> d( )(cc!n con)tnt(%
4 &2 6 &2 ) ij= )ij F + θ i+ θ j 9 Δ / &2
% )
F
=) j i
ji
%
%
4 &2
6 &2
+ θ + &2
%
i
θ 9
%
j
Ecuc!n 2.38
Ecuc!n 2.31
Δ
%
/
5
2.4 PLANTEA#IENTO ENERAL DEL #$TODO DEL SLOPE-DEFLECTION% Pr )o0uconr ()tructur) c(ndo u)o d(0 S0o,(-d(0(cton )( )/u(n 0o) )/u(nt() ,)o)% . A,0cr 0) (cucon() <5)c) d( +o+(nto d(0 S0o,( cd un d( 0) <rr) d( 0 ()tructur. E)to) +o+(nto) u(dn (n unc!n d( 0) rotcon() (n 0o) (?tr(+o) 9 d( 0o) d(),0+(nto) r(0t'o) (ntr( 0o) (?tr(+o) d( cd <rr. <. P0nt(r un (cuc!n d( (u0
()tructur. En 0/un) ()tructur) () n(c()ro
,0nt(r (cucon() d( (u0
0/uno) (0(+(nto) o (n tod 0 ()tructur co+o )( '(r5 +) d(0nt( (n 0o) (>(rcco) t,o. A0 ()t<0(c(r tod) 0) (cucon() d( (u0
Δ/ ()to) )( )u)ttu9(n (n 0) (cucon() d(
+o+(nto) n0() ,0nt(d) (n (0 ,)o .
d. C0cu0do) 0o) +o+(nto) )( ,u(d(n o
E>(+,0o 2.1
53
C0cu0r 0o) +o+(nto) (n 0o) (?tr(+o) d( 0) <rr) A-B 9 B-C d( 0 )/u(nt( '/ +(dnt( 0) (cucon() d(0 S0o,(-d(0(cton.
Pr dr )o0uc!n 0 '/ ,ro,u()t )( ,0cn 0) (cucon() <5)c) d(0 S0o,(
cd un d( 0) <rr) d( 0 ()tructur. Co+o 0 ()tructur no ,r()(nt d(),0+(nto) r(0t'o) (n nn/uno d( 0o) ,o9o) (0 G0t+o t;r+no d( 0) (cucon() no )( t(n( (n cu(nt.
L) (cucon() ,r cd <rr )on%
)
F
=) ij
)
+
ij
j i
ji
%
&2
θ+ i
&2 +
4 &2
θ+
%
θ
%
F
=)
4 &2
i
%
j
θ j
C50cu0o d( #o+(nto) d( (+,otr+(nto
•
Con)d(rndo todo) 0o) nodo) d( 0 ()tructur (+,otrdo) )( c0cu0n 0o) +o+(nto) d( (+,otr+(nto ,r cd un d( 0) <rr)%
) $.
P a :
F
⋅
,- 4 5
⋅
= %
⋅
⋅
= 6
= 35;55 N - +.
54
) .$ = − F
P ⋅a
% F
F
) .
=−)
.
⋅ :
=−
! ⋅% =
,-⋅ 4
6 =
5
⋅
= − *; N - +.
5- < 4
= 66;6* N - +.
R((+,0ndo 0o) '0or() (n 0) (cucon() )( t(n(%
) $.
4 < ---= 35;55 + θ
⋅
< ---$
⋅ θ.
+
6 6 4 < --- < ---⋅θ + ⋅ θ. ) . $ = − *; + $ 6 6 4 < --- < ---) = 66;6* + ⋅θ + ⋅ θ . . 4 4 < ---4 < ---) = − 66;6* ⋅θ + ⋅θ + . . 4 4
E'0undo cd uno d( 0o) '0or() d( 0) (cucon() )( o
) $.
= 35;55 + 6666;6* ⋅ θ + 3333;33 ⋅ θ $
.
= − *; + 3333;33 ⋅ θ + 6666;6* ⋅ θ
) .$
) .
) .
$
= 66;6* + ----⋅ θ + 5---⋅ θ .
.
= −66;6* + 5---⋅ θ + ----⋅ θ .
L) condcon() d( ,o9o d( 0 ()tructur )on t0() u(%
$
d()conocdo
θ.
d()conocdo
θ
θ
8 (+,otr+(nto d(0 nodo
55
T(n(ndo (n cu(nt 0) nt(ror() con)d(rcon() 0) (cucon() u(dn con'(rtd) (n%
) $.
)
= 35;55 + 6666;6* ⋅ θ
+ 3333;33 ⋅ θ
(6"
θ + 6666;6* ⋅ θ
("
$
.
= − *; + 3333;33
⋅
$
.$
) .
= 66;6* + ---- ⋅ θ
.
(3" .
= − 66;6* + 5--- ⋅ θ
(4"
) .
.
@)t ()t( ,unto )( t(n(n (n (0 ))t(+
θ θ ) $
.
$.
) ) ) . .$
.
4 (cucon() 9
.
P0nt(ndo 0 condc!n d( (u0
) i = - (n 0o) nodo) A 9 B )( t(n(%
Nodo A%
4)
$
= - = )$.
)$ . = -
Lu(/o 0 (cuc!n 1 u(d con'(rtd (n% - = 35;55 + 6666;6* ⋅θ
$
+ 3333;33 ⋅ θ
.
Nodo B%
4
.
= - =
)
+
) . = -
) .$
) .$
+
K nc!/nt)
) .
(6"
56
A)= )u+ndo 0) (cucon() 2 9 3 )( o
$
+ 6666;6* ⋅ θ
(5" .
S )( to+n 0) (cucon() 1 9 & )( t(n( un ))t(+ d( do) (cucon() 9 do)
nc!/nt) θ
%
θ
$
.
- = 35;55 + 6666;6* ⋅ θ - = − 4;44 + 3333;33 ⋅ θ
$
$
+ 3333;33 ⋅ θ
.
+ 6666;6* ⋅ θ
.
R()o0'(ndo (0 ))t(+ )( o
−3
< - rad −3
θ. = ;4,<-
rad
R((+,0ndo 0o) '0or() d( 0) rotcon() (n 0) (cucon() nc0() d( +o+(nto) d(0 (>(rcco )( (ncu(ntrn 0o) '0or() d( 0o) +o+(nto) (?tr(+o)% −3 ) $ . = 35;55 + 6666;6* ⋅ (− 6;-* < -− 3" + 3333;33 ⋅ ( ;4, < -" = - HN - +. −3
−3
) . $ = − *; + 3333;33 ⋅ ( − 6;-* < " + 6666;6* ⋅ ( ;4, < -" = − ,;4, HN - +. ) . ,;4, HN - +. −3 = 66;6* + ---- ⋅ ( ;4, < - " = −3
) . = − 66;6* + 5--- ( ;4, < - " = − 57;* HN - +.
⋅
Co+,ro<c!n%
•
4)
$
=
) $.
5*
= -
4)
•
.
= ) . $ + ) . = − ,;4, + ,;4, = -
E)to )( c( con (0 n d( '(rcr u( 0 )o0uc!n d(0 ))t(+ d( (cucon() )( o d( +n(r corr(ct E)t5tc d( 0 ()tructur%
Conocdo) 0o) +o+(nto) r()u0tnt() (n 0o) (?tr(+o) d( cd (0(+(nto )( ,u(d(n c0cu0r 0o) cortnt() ,r cd <rr +(dnt( 0) (cucon() <5)c) d( (u0
4 ) = - F = - )= co+o 0) r(ccon() (n 0o) nodo).
C
i
AB
BA
BC
CB
8 n -1.4 n-+
1.4 n-+
&8 n+
-&:.26 n-+
-&:.26 n-+
8
AB
R A
BA
BC
RB
Brr AB% 8 n 8
-1.4 n-+
AB
•
4)
$
BA
= −,;4, − (,-<4" + 6 ⋅>. $ = -
>. $ = 66;7 HN.
5,
CB
RC
•
F
?
= − ,- + 66;7 + > $. = -
> $ . = 3;-7 HN.
Brr BC% &8 n+
1.4 n-+
-&:.26 n-+
BC
•
4
CB
) = ,;4, − 57;* − ⎡( 5- < 4 " ⎤ + 4 ⋅ >
⎣
⎦
.
> = 74;45 HN. .
• +
F
?
= − ( 5- < 4 " 74;45 + > . =
> . = -5;55 HN.
C0cu0o d( r(ccon()% Nodo A
AB 8
R A
•
4F
8
= / $ − >$ . = -
57
=-
/ = > $
= 3;-7
HN.
$.
Nodo B BA
BC
-1.4 n-+
1.4 n-+
RB
•
4
F 8 = / . − > . $− > . = -
/
= 66;7 + -5;55 = *;46 HN.
.
Nodo C
CB
&:.26 n-+
-&:.26 n-+
RC
•
F 8= / − > .= -
4 /
•
= 74;45 HN.
=>
4)
.
=
)
.
− )@ = -
6-
)@ = ) . = − 57;*
HN - +.
Eu0
4 ) = − ( ,-⋅ 4 " + (6 ⋅ / " − ⎣ ( 5-⋅ 4 "⋅ , ⎦ + (- ⋅ / " + ) 4 ) = − ( 3- " + (-34;*6" − ( 6-- " + (744;5" − ( 57;* " = 4 F = − ,- − (5-⋅ 4" + / + / + / 4 F = − ,- − -- + 3;-7 + *;46 + 74;45 = $
.
$
•
$
8
.
8
D/r+) d( 0 ()tructur%
A contnuc!n )( ,r()(ntn 0o) d/r+) d( cortnt( 9 +o+(nto ,r 0 nt(ror '/. F/ur 28% D/r+) d( Cortnt( 9 d( #o+(nto d( 0 E)tructur 18&.&& n 13.8:n
K:.:1 n
162.4Kn :4.4& n
D/r+ d( Cortnt(
-1.43 n-+ &:.2K n-+
2:.K3 n-+ &2.3& n-+ D/r+ d( #o+(nto
6
E>(+,0o 2.2
C0cu0r 0o) +o+(nto) (n 0o) (?tr(+o) d( 0) <rr) A-B 9 B-C d( 0 )/u(nt( '/. T(n/ (n cu(nt u( )( ,r()(nt un )(nt+(nto Δ (n (0 ,o9o B con un '0or d( 2 c(nt=+(tro). U)( (0 +;todo d(0 S0o,(-D(0(cton.
E)t( (>(rcco () )+0r 0 nt(ror ,(ro )( d(<( con)d(rr (0 G0t+o t;r+no d( 0
(cuc!n 9 u( (n ()t( c)o ocurr( un d(),0+(nto r(0t'o (ntr( 0o) nodo) A 9 B )= co+o (ntr( 0o) nodo) B 9 C. E) +,ortnt( t(n(r (n cu(nt (0 )(ntdo d(0 d(),0+(nto ,r ,od(r d(t(r+nr (0 6
)/no u( t(ndr5 (0 t;r+no &2 Δ /
%
A
B
6
C
An0ndo 0 ()tructur d(),u;) d( ocurrdo (0 )(nt+(nto con'(nc!n ,ro,u()t (n 0 )(cc!n 2.3.2.3
9 c(ndo u)o d( 0
,r d(t(r+nr (0 )/no d(0 t;r+no d(0
d(),0+(nto r(0t'o )( '( u(%
L <rr AB t(nd( /rr (n )(ntdo orro 0u(/o (0 t;r+no
•
6 &2
Δ /
)(r5
6 Δ / &2
)(r5
% ,o)t'o (n 0) do) (cucon() d( +o+(nto) d( 0 <rr. L <rr BC t(nd( /rr (n )(ntdo ntorro 0u(/o (0 t;r+no
•
n(/t'o (n 0) do) (cucon() d( +o+(nto) d( 0 <rr. Aor )( ,u(d( (ncontrr 0) (cucon() ,r cd <rr% 4 &2
F
)
ij
)
=)
ij
=)
j i
+
F
ji
&2 θ +
&2 +
%
i
θ+
%
6 &2 θ 9 j
%
4 &2
i
%
/
%
θ 9 j
Δ
6 &2
Δ
%
/
C50cu0o d( #o+(nto) d( (+,otr+(nto
•
Son 0o) +)+o) '0or() (ncontrdo) ,r (0 (>(+,0o nt(ror.
) F
$.
= 35;55 N - +.
F
) .$ = − *; N - +. )
F .
F
=−)
.
= 66;6* N - +.
R((+,0ndo 0o) '0or() t(n(+o)%
) $. ) .$
4 < ---= 35;55 + θ
⋅
< ---$
+
⋅θ
6 < ---.
+
⋅ ( -;- "
6 6 6 4 < ---6 < --- < ---- θ + ⋅θ + ⋅ ( -;- " ⋅ = − *; + . $ 6 6 6
%
63
)
= 66;6* + .
) +
4 < ----
< ----
6 < ----
⋅ θ. + ⋅ θ − ⋅ ( -;- " 4 4 4 < ---4 < ---6 < ---= − 66;6* ⋅θ + ⋅θ − ⋅( -;- "
.
.
4
4
4
6
O<);r'()( u( (0 )/no d(0 t;r+no &2 Δ / d(,(nd( d(0 )(ntdo d( rotc!n d( 0 <rr
% 9 no d( u( Δ )( ,o)t'o o n(/t'o.
E'0undo cd uno d( 0o) '0or() d( 0) (cucon() )( o
) $.
= 6666;6* ⋅ θ + 3333;33 ⋅ θ + 6,;,, $
.
= 3333;33 ⋅ θ + 6666;6* ⋅ θ − 3*;*,
) .$
) .
) .
$
= ----⋅ θ + 5---⋅ θ .
= 5---⋅ θ + ----⋅ θ .
.
− ,;33
− 4;6*
L) condcon() d( ,o9o d( 0 ()tructur )on t0() u( % θ$
d()conocdo
θ.
d()conocdo
θ
8 (+,otr+(nto d(0 nodo
A)= 0) (cucon() u(dn con'(rtd) (n%
) $.
)
= 6666;6* ⋅ θ + 3333;33 ⋅ θ + 6,;,, $
= 3333;33 ⋅ θ + 6666;6* ⋅ θ − 3*;*, .$
) ).
(6"
.
("
$ .
= --- ⋅ θ − ,;33 . = 5--- ⋅ θ − 4;6*
.
(3" (4"
.
64
Nu('+(nt( )( ,r()(nt un ))t(+ d( 4 (cucon() 9 0) +)+) K nc!/nt) d(0
(>(+,0o nt(ror θ
$
θ ) ) ) ) . .
$.
.$
P0nt(ndo 0 condc!n d( (u0
.
.
) i = - (n 0o) nodo) A 9 B )( t(n(%
Nodo A%
4
) =-=)
$.
$
) $. = -
Lu(/o 0 (cuc!n 1 u(d con'(rtd (n% - = 6666;6* ⋅ θ
$
+ 3333;33 ⋅ θ + 6,;,,
(6"
.
Nodo B%
4
.
)
+)
= - = ) .$ + ) . =.
)
.$
Su+ndo 0) (cucon() 2 9 3 )( o
$
+ 6666;6* ⋅ θ − 46;
(5"
.
S )( to+n 0) (cucon() 1 9 & )( o
nc!/nt) θ
$
%
θ .
65
- = 6666;6* ⋅ θ
+ 3333;33 ⋅θ
$
- = 3333;33 ⋅ θ
+ 6,;,, .
+ 6666;6* ⋅ θ − 46;
$
.
R()o0'(ndo (0 ))t(+ )( o
−3
< - rad −3
θ. = 5;3* <-
rad
R((+,0ndo 0o) '0or() d( 0) rotcon() (n 0) (cucon() nc0() d(0 (>(rcco )( (ncu(ntrn 0o) '0or() d( 0o) +o+(nto)% ) $ . = -;
HN - +.
) . $ = − 45;3 ) . = 45;36
HN - +.
HN - +.
) . = −4;,
HN - +.
Co+o )( o<)(r' (0 nodo A 9 (0 nodo B ,r()(ntn (rror() d( c(rr( ,(ro ()to) )on c(,t<0() co+,rdo) con 0 +/ntud d( 0o) '0or() d( 0o) +o+(nto). •
E)t5tc d( 0 ()tructur%
E0 c0cu0o d( 0o) cortnt() d( 0) <rr) 9 d( 0) r(ccon() d( 0 ()tructur )( c( d( 0 +)+ or+ co+o )( d()rro00o (n (0 (>(rcco nt(ror. Lo) r()u0tdo) o
>$ . = 7; HN.
66
>. $ = 6-;,7 HN. >. = 4-;-5 HN. > . = 57;76 HN.
R(ccon()%
/ $ =
3;-7
/ . =
--;73
/
= 57;76
HN. HN.
HN.
)@ = − 4;,
HN - +.
E>(+,0o 2.3. C0cu0r 0o) +o+(nto) (n 0o) (?tr(+o) d( 0) <rr) A-B 9 B-C d( 0 )/u(nt( '/. L ()tructur ,r()(nt un )(nt+(nto
Δ (n (0 ,o9o A d(
3 c(nt=+(tro) 9 un
)(nt+(nto (n (0 ,o9o B d( 1 c(nt=+(tro. U)( (0 +;todo d(0 S0o,(-D(0(cton.
A0 n0r 0 ()tructur d(),u;) d( ocurrdo) 0o) )(nt+(nto) (n 0o) nodo) )( ,u(d( '(r u( (0 d(),0+(nto r(0t'o (ntr( (0 nodo A 9 B () /u0 0 )(nt+(nto
6*
u( )ur( (0 nodo A +(no) (0 )(nt+(nto u( )ur( (0 nodo B. E)crto (n or+ d( (cuc!n )( t(n(%
Δ
= Δ
$ −.
− Δ $
.
Δ $ − . 3 c+. - 1 c+. Δ $ − . 2 c+. 8.82 +.
En (0 c)o d( 0 <rr BC (0 nodo B )( )(nt 1 c+. +(ntr) u( (0 nodo C ,(r+n(c( (n )u ,o)c!n nc0.
Δ .− = Δ
.
− Δ
Δ .−
1 c+. - 8.
Δ .−
1 c+. 8.81 +.
Co+o )( ,u(d( '(r 0) do) <rr) t(nd(n /rr (n )(ntdo ntorro 0u(/o (0 6
t;r+no &2 Δ / )(r5 n(/t'o (n 0) (cucon() d( cd <rr.
%
E0 ,roc(d+(nto d( d()rro00o () /u0 0 ,0nt(do (n 0o) do) (>(rcco) nt(ror().
P0nt(ndo 0) (cucon() ,r cd <rr%
•
4 <---)
$.
) .$ ) .
= 35;55 + θ
<----
⋅
$
+
6<----
⋅ θ.
−
⋅ ( -;- "
6 6 6 4 < ---6 < --- < ---⋅θ + ⋅ θ. − ⋅ ( -;- " = − *; + $ 6 6 6 4 < ---6 < ---⋅ . − ⋅ ( -;- " = 66;6* + θ 4 4
6,
).
< ---= − 66;6* +
4
⋅
6 < ---θ
.
− 4
⋅ ( -;- "
R(cordndoθ = - ,or (0 (+,otr+(nto.
E'0undo 0o) t;r+no) d( cd (cuc!n )( o
•
) $.
)
= 6666;6* ⋅ θ + 3333;33 ⋅ θ + ;
(6"
= 3333;33 ⋅ θ + 6666;6* ⋅ θ − -4;44
("
$
$
.$
) .
.
.
= ---- ⋅ θ − 7;*
(3"
= 5--- ⋅ θ − -4;*
(4"
.
) .
•
4
4
.
P0nt(ndo (0 (u0
=$.
= ) . $+ ) . = -
)
A)= )( o
$
+ 3333;33 ⋅ θ + ; .
$
+ 6666;6* ⋅ θ − 33;6 .
L )o0uc!n d( 0) (cucon() nt(ror() ()% θ $= − 4;,
−3
< - rad
θ. = ,;7,<-
•
−3
rad
R((+,0ndo ()to) '0or() (n 0) (cucon() nc0() d( +o+(nto) )( o
67
) $. = -
HN - +.
) . $ = − 6-;64
HN - +.
HN - +.
) . = 6-;64
) . = − 57;*
HN - +.
R(ccon()%
/ $ =
6;56
HN.
/ . =
63;*,
HN.
/
= 77;66
HN.
)@ = − 57;*
HN - +.
E>(+,0o 2.4. C0cu0r 0o) +o+(nto) (n 0o) (?tr(+o) d( 0) <rr) A-B 9 B-C d( 0 )/u(nt( '/. E0 ,o9o A ()t r(,r()(ntdo ,or un r()ort( con un r/d( d(
A = 5--- AB C m
En 0/un) oc)on() 0) ()tructur) c'0() no ,r()(ntn ,o9o) ,(r(ct+(nt( r=/do) co+o )( ,u(d( ,r()(ntr 0 t(n(r co+o ,o9o un )u(0o co+,r()<0(. E)t( t,o
*-
d( )u(0o ,u(d( ,r()(ntr )(nt+(nto) d(r(nc0() 0 )(r )o+(tdo cr/). S )( conoc(n 0) ,ro,(dd() d(0 )u(0o )u r/d( ,u(d( )(r r(,r()(ntd con (n r()ort(
d(
/u0 r/d( () d(cr 0o) r()ort() )on d(0con() u( (n (0 n50)) ()tructur0 )( ,u(d(n (+,0(r ,r r(,r()(ntr r/d(c(). Co+o )( ,udo '(r (n (0 (>(rcco 2 9 3 0o) )(nt+(nto) u( )ur(ron 0o) ,o9o)
(rn
conocdo). En ()t( (>(rcco (0 )(nt+(nto u( ocurr( (n (0 ,o9o A () d()conocdo (0 nodo B ,(r+n(c( (n )u ,o)c!n nc0 0u(/o (0 d(),0+(nto r(0t'o (ntr( 0o) do) nodo) )(r5 Δ .
P0nt(ndo 0) (cucon() d( +o+(nto ,r cd <rr%
•
4 <---)
$.
) .$ ) .
).
= 35;55 + θ
<----
⋅
$
+
6 <----
⋅ θ.
−
Δ
⋅
6 6 6 4 < ---6 < --- < ---⋅θ + ⋅ θ. − = − *; + Δ $ 6 6 6 4 < ---θ ⋅ . = 66;6* + 4 < ---⋅ θ. = − 66;6* + 4 ⋅
R(cordndoθ = - ,or (0 (+,otr+(nto. E'0undo 0o) t;r+no) d( cd (cuc!n )( o
•
) $.
) .$
•
$
+ 3333;33 ⋅ θ − 666;6*
$
.
= 66;6* + ---- ⋅ θ
.
= − 66;6* + 5--- ⋅ θ
(6"
Δ
⋅
.
= − *; + 3333;33 ⋅ θ + 6666;6* ⋅ θ − 666;6*
)
)
= 35;55 + 6666;6* ⋅ θ
Δ
⋅
("
.
(3" .
(4" .
P0nt(ndo (0 (u0
*
) $= )
$.
=-
- = 35;55 + 6666;6* ⋅ θ $ + 3333;33 ⋅ θ − 666;6*
(6"
Δ
⋅
.
)
.
= ) . $+ ) . = -
⋅θ
+ 6666;6* ⋅ θ − 666;6*
Δ
⋅
(5"
- = − 4;44 + 3333;33 $
.
O
(6"
Δ
⋅
.
- = − 4;44 + 3333;33 ⋅ θ
$
+ 6666;6* ⋅ θ − 666;6*
Δ
⋅
(5"
.
Co+o )( ,u(d( '(r )( t(n(n 2 (cucon() 9 3 nc!/nt). Pr (ncontrr 0 t(rc(r (cuc!n d(0 ))t(+ )(,r+o) (0 tr+o AB d( 0 ()tructur 9 r(0+o) )u d/r+ d( cu(r,o 0
A0 c(r un cort( (n 0o) (?tr(+o) d( cu0u(r <rr (0 +o+(nto nt(rno u( ,r(c( )(r5 ,o)t'o () d(cr )(ntdo nt-orro. E)to )( d(<( 0 con'(nc!n u)d (n 0 d(ducc!n d( 0) (cucon() <5)c) d(0 )0o,(. @c(ndo un )u+tor d( +o+(nto) (n (0 ,unto B )( o
*
4)
= − ( / $ ⋅6" + ,-⋅ + ) . $ = -
.
D(),(>ndo ).$ =
). $ %
/ $⋅6
− 6-
R(corddo u( 0 u(r d( 0o) r()ort() ()t dd ,or 0 (?,r()!n F= A ⋅ Δ 0 r(cc!n d(0 ,o9o A / $ )( ,u(d( ()cr<r (n unc!n d(0 )(nt+(nto d(0 ,o9o
/ $ = 5---⋅ Δ . •
R((+,0ndo ()t (?,r()!n (n 0 (cuc!n d( +o+(nto
) . $ = (5--- Δ"⋅6 ⋅
) . $ = 3----
⋅
Δ−
). $ )( o
− 6-
6-
(*"
E)t (cuc!n r(0con (0 +o+(nto
). $
con (0 d(),0+(nto r(0t'o d( 0 <rr AB.
S )( /u0 ()t (cuc!n 6 con 0 (cuc!n 2 )( o
⋅
Δ − 6-
= − *; + 3333;33 ⋅ θ
- = ,,;,7 + 3333;33 ⋅ θ
$
$
+ 6666;6* ⋅ θ
+ 6666;6* ⋅ θ − 666;6* − 3666;6*
(,"
Δ
⋅
.
E0 ))t(+ d( (cucon() )o0uconr ()% - = 35;55 + 6666;6* ⋅ θ $ + 3333;33 ⋅ θ − 666;6*
(6"
Δ
⋅
.
- = − 4;44 + 3333;33 ⋅ θ
$
Δ
⋅
.
+ 6666;6* ⋅ θ − 666;6* .
*3
Δ
⋅
(5"
- = ,,;,7 + 3333;33 ⋅ θ
$
+ 6666;6* ⋅ θ − 3666;6*
Δ
⋅
(,"
.
So0uconndo (0 ))t(+ d( (cucon() d( 3?3 )( o
Δ = ;5* < -− 3m $
Con ()to) '0or() d( d(),0+(nto) (ncontr+o) (0 '0or d( 0o) +o+(nto)% ) $. = -
HN - +.
) . $ = − ,;73
HN - +.
HN - +.
) . = ,;,*
) . = − 5,;5*
HN - +.
R(ccon()%
/ $ =
;,5
/ . =
*3;3
/
= 73;73
HN. HN. HN.
)@ = − 5,;5*
HN - +.
*4
BIBLIORAFIA
C@A7ES A0(?nd(r. 1::8. Structur0 An50)). N(Q 7(r)9. Edtor0 Pr(ntc( @00 @EAO NORRES Cr0() JILBUR BENSON 7on UTU S(no0
1:6K. E0(+(ntr9
Structur0 An09)) Edtor0 #c rQ @00
S@EPLE Erc.1:&8. Contnu) B(+ Structur() A (/r(( o F?t9 #;tod nd t( #(tod o +o+(nt D)tr
TI#OS@ENO S P 1:K&. T(or9 o )tructur() 7,n. #crQ @00 o/Hu) Ltd #c Cor+n 7cH C.1:6&. Structur0 An09)). N(Q orH Int(?t Educton0 Pu<0)tor) IA JAN Cu. 1:&3 Sttc009 Ind(t(r+nt( Structur() 7,n #c rQ @00odHu) Ltd PLU##ER L. Fr(d. 1:44. Fund+(nt0 o Ind(t(r+nt( Structur(). N(Q orH Pt+n Pu<0)n/ Cor,orton. ONALE CUEAS O)cr #. 2882 An50)) E)tructur0. #;?co D.F. L+u) Nor(/ (dtor() #ARS@AL J. T. NELSON @. #. 1:66 E)turctur() 2( Londr() Pt+n. Pu<0)n/ L+t(d
ALLECILLA B. Cr0o) R+ro. 2883. Fu(r) S=)+c) ,rnc,o) 9 ,0ccon() NSR : Bo/ot5 Co0o+<. +,r() Ltd.
*5