METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
TRABAJO COLABORATIVO 3 METODOS NUMÉRICOS
Grupo:
Tutor:
UNIVERSIDAD UNIVERSI DAD NACIONAL N ACIONAL ABIERTA Y A DISTANCIA DISTANCIA ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍAS E INGENIERÍAS -ECBTIPROGRAMA QUÍMICA CEAD IBAGUÉ MAYO
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
INTRODUCCIÓN El pr!"# #r$%$&o 'ol$%or$#()o *l 'ur!o * +#o*o! "u+r('o! #(" l$ ("$l(*$* * $%or*$r u"$ !r( * &r'('(o! pr.'#('o!, '#u$"*o &+plo! * l$ U"(*$* /: D(r"'($'(0", I"#1r$'(0" Nu+r('$ 2 E'u$'(o"! D(r"'($l!3 Por llo " !#$ u"(*$* ! *!$rroll$r$" *!$rroll$r$" lo! 'o"#"(*o! *: D(r"'($'( D(r"'($'(0" 0" Nu+r('$, I"#1r$'(0" I"#1r$'(0" Nu+r('$, R1l$ *l #r$p'(o, R1l$ * S(+p!o", I"#1r$'(0" * Ro+%r1, M#o*o * Eulr, M#o*o * Ru"1-4u##$ 2 M#o*o Mul#(p$!o!3 Lo! 'o"'p#o! 5u ! *!$rroll$" " l$ pr!"# u"(*$* !o" (+por#$"#! por5u 'orr!po"*" $ l$! 6rr$+("#$! u"'(o"$l! * #o*o pro'!o +$#+.#('o 2 !r." * )(#$l (+por#$"'($ " l *!$rrollo * l$ #+.#('$ *l 'ur!o +#o*o! "u+r('o!3 Al +o+"#o * $pl('$r l$! M$#+.#('$! $ !(#u$'(o"! *l +u"*o r$l "o! "'o"# o"#r$+ r$+o! $ +"u*o 'o" pro%l+ %l+$ $! 5u "o pu* *" !r r! r!ul#o! $"$l7#('$+"# o * +$"r$ 8$'#$ 2 'u2$ !olu'(0" *% !r $%or*$*$ 'o" $2u*$ * $l19" pro'*(+("#o "u+r('o3 Lo! +#o*o! "u+r('o! 'o"!#(#u2" pro'*(+("#o! $l#r"$#()o! pro)'6o!o! p$r$ r!ol)r pro%l+$! +$#+.#('o!, p$r$ lo! 'u$l! ! *(('ul#$ l$ u#(l($'(0" * +#o*o! $"$l7#('o! #r$*('(o"$l! 2, o'$!(o"$l+"#, !o" l$ 9"('$ op'(0" po!(%l * !olu'( !olu'(0"3 0"3 So" #'"('$ #'"('$!! !(!#+ !(!#+.#( .#('$! '$! 'u2o! 'u2o! r!ul#$ r!ul#$*o! *o! !o" $pro8( $pro8(+$' +$'(o" (o"! ! *l )r*$*ro )$lor 5u $!u+ l$ )$r($%l * ("#r!; l$ rp#('(0" 'o"!(!#"# * l$ #'"('$, $ lo 'u$l ! l *"o+("$ (#r$'(o"!, ! lo 5u pr+(# $'r'$r! '$*$ ) +.! $l )$lor %u!'$*o3 E! por "* 5u por +*(o *l pr!"# #r$%$&o ! pr#"* $pl('$r l$! #+.#('$! *l 'ur!o 'orr!po"*("#! $ l$ U"(*$* / 2 $'r'$r"o! u" po'o +.! $ lo! +#o*o! propu!#o! p$r$ !olu'(o"$r pro%l+$!3
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
OBJETIVOS OBJETIVO GENERAL M*($"# l *!$rrollo * lo! &r'('(o! propu!#o! p$r$ l #r$%$&o 'ol$%or$#()o $pl('$r lo! 'o"'p#o! $pr"*(*o! " l$ u"(*$* /3
OBJETIVOS ESPECIFICOS D!$rro D!$rroll$ ll$rr lo! &r'( &r'('(o '(o!! u#(l( u#(l($"* $"*o o lo! +#o*o! +#o*o! !#u*( !#u*($*o! $*o! " l$ u"(*$* u"(*$* /, D(r"'($'(0" Nu+r('$, R1l$ *l Tr$p'(o, R1l$ R1l$ * S(+p!o", I"#1r$'(0" * Ro+%r1, I"#1r$l! Mul#(pl!, M#o*o * Eulr, M#o*o! * T$2lor 2 M#o*o * Ru"1 4u##$3
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
Guía Int!ra"a " A#t$%$"a"& ' Pa&o 3
() P*an P*ant t + &o*u &o*u#$ #$on on "o& "o& , ,r r#$ #$#$ #$o& o& &o-r &o-r D$. D$.r rn# n#$a $a#$ #$/n /n Nu01 Nu01r$ r$#a #a 2*$#an"o a&o a a&o * ro#"$0$nto ut$*$4a"o) Ejemplo 1:
E,r#$#$o "$.rn#$a 5a#$a atr6& S$ l$ u"'(0" <8= > L"<8= #$" < 18= '$l'ul$r l$ *r()$*$ por +#o*o! "u+r('o! " l pu"#o 8>? 'o" 6> @3 $pl('$"*o l$ or+ul$ *(r"'($ 6$'($ $#r.!
() S r$l($ #$%l$ 8 F<8=
/3 @3/
/3 3@/
/3 3?
?3@ 3@H@
?3 3@@H
?3 3HH
?3/ /3//?
7) S $pl('$ l$ pr(+r$ 0r+ul$ * l$ *(r"'($ 6$'($ $#r.!
( x 0−1 ) f ( ( x0 ) − f ( h
se remplazala remplazala formula formula
f ’ ( x x 0 ) =
1.6050 −1.2849 =3.201 0.1
S '$l'ul$ l rror
|
Er =
E=
V v −V a V v
|
3.534 −3.201 X 100 =9.4 3.534
NOTA: NOTA: /3H/? )$lor )r*$*ro )r *$*ro * l$ *r()$*$ *r ()$*$
3) C$l'ul$+o! l$ !1u"*$ *r()$*$ S $pl('$ l$ !1u"*$ 0r+ul$ * l$ *(r"'($ 6$'($ $#r.!
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
f ´ ( x x 0 ) =
f ( ( x0 ) −2 f ( ( x 0−1 ) + f ( ( x 0−2 ) 2
h
se remplaz emplazala ala formul formula a
f ’ ( x x 0 ) =
1.6050 −2 ( 1.2894 ) + 1.0326 2
( 0.1)
S '$l'ul$ l rror For+ul$
|
Er =
E=
V v −V a V v
=5.88
|
8.611 −5.88 X 100 =31.71 8.611
NOTA: NOTA: 3 )$lor )r*$*ro * l$ *r()$*$
8) S $pl('$ l$ !1u"*$ *(r"'($ p$r$ l$ pr(+r$ *r()$*$ For+ul$ f ' ' ( x x 0 ) =
3 f ( ( x0 ) −4 f ( ( x 0−1 ) + f ( ( x 0−2 ) 2h
reempla reemplazamosla zamosla formula formula x
( ¿¿ 0 )=
3 ( 1.6050 ) − 4 ( 1.2894 ) + 1.0326 2 ( 0.1 ) ' '
f ¿
S '$l'ul$ l rror For+ul$
|
Er = E=
V v −V a V v
|
3.534 −3.45 x 100=2.3 3.534
= 3.45
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
9) S $pl('$ l$ !1u"*$ *r()$*$ * l$ !1u"*$ *(r"'($ For+ul$ f ' ' ( x x 0 ) =
2 f ( ( x 0−3 ) x 0 ) −5 f ( ( x 0−1 ) + 4 f ( ( x x 0 −2 )− f ( ( x
h2
S r+pl$$ l$ or+ul$ 2 ( 1.6050 )−5 ( 1.2894 ) + 4 ( 1.0326 ) − 0.8173 =7.61 f ' ' ( ( x x )= ( 0.1 )2 0
S '$l'ul$ rror For+ul$
|
Er = E=
V v −V a V v
|
8.611 −7.61 x 100 =11.6 8.611
Ejemplo 2:
E" !# !(1u("# &+plo, "'o"#r$r+o! u"$ #$%l$, " l 'u$l ! +u!#r$ l$ po!('(0" p$r$ *#r+("$*o #(+po * u"$ p$r#7'ul$ +o)("*o! " l !p$'(o3 D%+o! '$l'ul$r l$ po!(%l $'lr$'(0" * l$ +(!+$3 S( l$ p$r#7'ul$ *!'r(% u" +o)( +o)(+( +(" "#o #o p$r$% p$r$%0l 0l(' ('o o *$*o *$*o por f ( ( t )=r 2 '$l'ul l rror * l$ $'lr$'(0" $pro8(+$*$3
, T, 2, @ @ @ @3@ @3@@@ @3@ @3@@@? / @3@/ @3@@@ ? @3@? @3@@ H @3@H @3@@H P$r$ !# '$!o po*+o! '$l'ul$r l$ $'lr$'(0" " #>@3@, @3@@, @3@@/ 2 @3@?3 f ´ ´ ( 0.01) ≈
1
[ 0.0004 −2 ( 0.0001 ) + 0 ] ≈ 2
2
0.01
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
f ´ ´ ( 0.01) ≈ f ´ ´ ( 0.02) ≈ f ´ ´ ( 0.01) ≈ f ´ ´ ( 0.03) ≈ f ´ ´ ( 0.03) ≈
f ´ ´ ( 0.04 ) ≈
f ´ ´ ( 0.04 ) ≈
1
[ 2
0.01 1
1 ]≈ 2 5000
[ 0.0009−2 ( 0.0004 )+ 0.0001 ]≈ 2
2
0.01
1
[ 2
0.01 1
0.01 1 0.01
1 0.01
1 0.01
2
1 ]≈ 2 5000
[ 0.0016 −2 ( 0.0009 )+ 0.0004 ] ≈ 2
[ 2
1 ]≈ 2 5000
[0.0025 −2 ( 0.0016 ) + 0.0009 ] ≈ 2
2
[ 2
1 ]≈ 2 5000
A6or$, #"("*o " 'u"#$ lo! r!ul#$*o! $"#r(or!, "'o"#r$+o! 5u l$ !1u"*$ *r()$*$ * ! (1u$l $ <*o!= " #o*o l ("#r)$lo, " l 'u$l ! pu* *'(r 5u " !# '$!o ! o%#u)o u" rror * 'ro p$r$ !# &r'('(o3
7) So*u#$on * &$!u$nt ,r#$#$o ut$*$4an"o *a R!*a "* Tra#$o) n; 8< 8< 2
a)
2
x3 x 3 ∫ 1+ x1 /2 dx →∫ 1 +√ x dx 0 0
L7+(# ("r(or: $ > 3@ L7+(# !upr(or: % > @ @3@ N9+ro * !u%("#r)$lo!: ">?
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
L$ lo"1(#u* * u" !u%("#r)$lo:
h=
(b− a ) n
→ h=−0,5
x
x
xi
(¿¿ i ) f ¿ ¿
@
,@@@
/,//@
/,//@
,H@@
,H@
/,@/?@H
,@@@
@,H@@@@@
,@@@@@@
/
@,H@@
@,@//
@,???
?
@,@@@
@,@@@@@@
@,@@@@@@
i
(¿¿ i ) mf ¿ ¿
m
∑ ¿ 7,4942108722 2
x 3 ∫ 1+ √ x dx ≈ h2 Σ=−1,8735527180 0
2
-)
∫ √ x x (e )dx 3
x
1
L7+(# ("r(or: $ > 3@ L7+(# !upr(or: % > 3@ N9+ro * !u%("#r)$lo!: ">? L$ lo"1(#u* * u" !u%("#r)$lo:
h=
( b− a )
x
n
→ h=−0,25
x
xi
(¿¿ i ) f ¿ ¿
@
,@@@
,?H/
,?H/
,H@
,H?@
?,/
,H@@
,/H
/,?
i
m
(¿¿ i ) mf ¿ ¿
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
/
,H@
,/?@
/,@HH
?
,@@@
,/H
,/H
∑ ¿ 15,2112674010 2
∫ √ x x (e )dx ≈ h2 Σ =−1,9014084251 3
x
1
3) So*u#$on& So*u#$on& *o& *o& &$!u$nt& &$!u$nt& ,r#$#$o ,r#$#$o& & ut$*$4an"o ut$*$4an"o *a R!*a R!*a " S$0&on S$0&on (=3 + 3=>) n; 8<
3
4
e x a .∫ dxb. ∫ e x ∈( x ) dx 1 x 2 3
e x Intera!i"n Intera!i"n 1 : ∫ dx 1 x
Regla de Simpson 1/3
Pr(+ro ! *()(* l ("#r)$lo J$,%K " " !u%("#r)$lo! * (1u$l $ lo"1(#u*3 S '$l'ul$ 6 h=
b −a n
D0"*: %>/; $>; ">? # x=
b − a 3− 1 2 = = =# x = 0,50 n 4 4
S '$l'ul$" l$! 'oor*"$*$! X i= a + i∗# x
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
x 0=1 + 0 ( 0,50 ) =1 x 1=1 + 1 ( 0,50 )=1.5 x 2=1 + 2 ( 0,50 )=2,0 x 3=1 + 3 ( 0,50 )= 2.5 x 4=1 + 4 ( 0,50 ) =3,0
C$l'ul$r l$! $l#ur$! * l$! u"'(o"!, r+pl$$+o! e1
e 1.5
1
1.5
f ( ( x 0 ) = =2.718 f ( ( x 1 )= e
=2.987
2
f ( ( x x 2 )= = 3.694 f ( ( x x 3 )= 2
f ( ( x x 4 ) =
e 3,0 3,0
=6.695
R+pl$$+o! f ( ( x x 4 ) f ( ( x x 3 ) + ¿ f ( ( x 2 ) + 4 ¿ f ( ( x 1) + 2 ¿ f ( ( x 0 ) + 4 ¿ h f ( ( x ) ≈ ¿ 3
b
∫¿ a
f ( ( 6.695 ) f ( ( 4.873 ) + ¿ f ( ( 3.694 )+ 4 ¿ f ( ( 2.987 ) + 2 ¿ f ( ( 2.718 )+ 4 ¿
( x ) ≈ f (
0,5 3
¿
b
∫¿ a
b
∫ f ( ( x x ) ≈ 0,167∗48.248 a
3
e x ∫1 x dx= 8.041
e
2.5
2.5
= 4.873
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
E* 6ra -a,o *a #ur%a & >)?8(
Regla de Simpson 3/8
# x=
b − a 3− 1 2 = = =# x = 0,50 n 4 4
S '$l'ul$" l$! 'oor*"$*$! X i= a + i∗# x x 0=1 + 0 ( 0,50 ) =1 x 1=1 + 1 ( 0,50 )=1.5 x 2=1 + 2 ( 0,50 )=2,0 x 3=1 + 3 ( 0,50 )= 2.5 x 4=1 + 4 ( 0,50 ) =3,0
C$l'ul$r l$! $l#ur$! * l$! u"'(o"!, r+pl$$+o! e1
e 1.5
1
1.5
f ( ( x 0 ) = =2.718 f ( ( x 1 )= e
=2.987
2
f ( ( x x 2 )= = 3.694 f ( ( x x 3 )= 2
f ( ( x x 4 ) =
e 3,0 3,0
=6.695
R+pl$$+o! f ( ( x 4 ) f ( ( x x 3 ) +¿ f ( ( x2 ) + 3 ¿ f ( ( x1 ) + 3 ¿ f ( ( x x 0 ) + 3 ¿ 3 h f ( ( x ) ≈ ¿ 8
b
∫¿ a
e
2.5
2.5
= 4.873
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
R+pl$$+o! f ( ( 6.695 ) f ( ( 4.873 ) + ¿ f ( ( 3.694 )+ 3 ¿ f ( ( 2.987 ) + 3 ¿ f ( ( 2.718 ) + 3 ¿ b ∫ f ( ( x ) ≈ 0,5∗3 ¿ 8
a b
∫ f ( ( x x ) ≈ 0,188∗44.075 a
3
e x ∫1 x dx = 8.286
E* 6ra -a,o *a #ur%a & >)7>@ 4
Intera!i"n 2 : ∫ e x ∈( x ) dx 2
Regla de Simpson 1/3
Pr(+ro ! *()(* l ("#r)$lo J$,%K " " !u%("#r)$lo! * (1u$l $ lo"1(#u*3 S '$l'ul$ 6 h=
b −a n
D0"*: %>?; $>; ">? # x=
b −a 4 −2 2 = = =# x =0,5 n 4 4
S '$l'ul$" l$! 'oor*"$*$! X i= a + i∗# x x 0=2 + 0 ( 0.5 ) =2 x 1=2 + 1 ( 0.5 ) =2.5 x 2=2 + 2 ( 0.5 )=3.0 x 3=2 + 3 ( 0.5 ) =3.5 x 4=2 + 4 ( 0.5 ) =4.0
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
C$l'ul$r l$! $l#ur$! * l$! u"'(o"!, r+pl$$+o! f ( ( x 0 ) =e ∈ ( 2 )=5.122 f ( ( x x 1 )= e ∈ ( 2.5 ) =11.162 2
2.5
f ( ( x x 2 )= e ∈( 3.0 ) =22.067 f ( ( x x 3 )= e ∈ ( 3.5 )= 41.485 3.0
3.5
f ( ( x x 4 ) =e 4.0 ∈ ( 4.0 )=75.689
R+pl$$+o! f ( ( x x 4 ) f ( ( x x 3 ) + ¿ f ( ( x 2 ) + 4 ¿ f ( ( x x 1) + 2 ¿ f ( ( x 0 ) + 4 ¿ h f ( ( x ) ≈ ¿ 3
b
∫¿ a
f ( ( 75.689 ) f ( ( 41.485 ) + ¿ f ( ( 22.067 )+ 4 ¿ f ( ( 11.162 )+ 2 ¿ f ( ( 5.122 ) + 4 ¿ f ( x ) ≈
0,5 3
¿
b
∫¿ a
b
∫ f ( ( x x ) ≈ 0,167∗335.533 a
2
∫ e ∈( x ) dx=55.922 x
1
E* 6ra -a,o *a #ur%a & 99)77
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
Regla de Simpson 3/8
X i= a + i∗# x
x 0=2 + 0 ( 0.5 ) =2 x 1=2 + 1 ( 0.5 ) =2.5 x 2=2 + 2 ( 0.5 )=3.0 x 3=2 + 3 ( 0.5 ) =3.5 x 4=2 + 4 ( 0.5 ) =4.0
C$l'ul$r l$! $l#ur$! * l$! u"'(o"!, r+pl$$+o! f ( ( x 0 ) =e 2∈ ( 2 )=5.122 f ( ( x x 1 )= e2.5 ∈ ( 2.5 ) =11.162 f ( ( x x 2 )= e3.0 ∈( 3.0 ) =22.067 f ( ( x x 3 )= e3.5 ∈ ( 3.5 )= 41.485
f ( ( x x 4 ) =e 4.0 ∈( 4.0 )=75.689
R+pl$$+o! f ( ( x 4 ) f ( ( x x 3 ) + ¿ f ( ( x2 ) + 3 ¿ f ( ( x1 ) + 3 ¿ f ( ( x x 0 ) + 3 ¿ 3 f ( ( x ) ≈ h ¿ 8
b
∫¿ a
f ( ( 75.689 ) f ( ( 41.485 ) + ¿ f ( ( 22.067 ) + 3 ¿ f ( ( 11.162 )+3 ¿ f ( ( 5.122 ) + 3 ¿
( x ) ≈ f (
3∗0,5
b
∫¿ a
8
¿
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30 b
∫ f ( ( x x ) ≈ 0,188∗304.953 a
2
∫ e ∈( x ) dx=57.179 x
1
E* 6ra -a,o *a #ur%a & 9)( 8) So*u#$on So*u#$on *o& *o& &$!u$nt& &$!u$nt& ,r#$#$ ,r#$#$o& o& ut$*$4an"o ut$*$4an"o *a *a Int!ra#$/n Int!ra#$/n " Ro0-r!) U&an"o &!0nto& " *on!$tu" ( (=7 + (=8)
So*u#$/n 2
∫ e x dx 3
1
S1+"#o!: , , $ll+o! I : 3
f ( ( x )= e x
E" !# '$!o ">: f ( ( a ) + f ( ( b )
I 1=
2
3
=
3
e1 +e 2
I : "> L$ 0r+ul$ '$+%($
2
≈ 1491.8
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
[
b
n− 1
(
b −a f ( ( a ) + f ( ( b ) b −a I = f ( ( x ) dx + 2∗ f a + $ n n 2 $ =1 a
∫
∑
)]
E" !# '$!o ">
[
(
1 b −a f ( ( a )+ f ( ( b ) b − a + 2∗∑ f a +$ I 2 = n n 2 $ =1
)]
R+pl$$"*o 1
I 2 =0.5
3
e +e
2
3
2
3 2
3
+ 2∗e =775.14
I/ : ">? E!#o! )$lor! !o" *%(*o! $ lo! !1+"#o! *$*o! L$ 0r+ul$ ! l$ +(!+$ 5u p$r$ I
[
b
n− 1 b −a f ( ( a ) + f ( ( b ) b −a I =∫ f ( ( x ) dx + 2∗∑ f a + $ n n 2 $ =1 a
(
[
(
3
b − a f ( ( a )+ f ( ( b ) b− a I 3 = + 2∗ f a + $ 2 n n $ = 1
∑
)]
R+pl$$"*o )$lor! I 3 =0.25
[
3
1
e + e 2
2
3
(
5 4
3
1 2
3
+ 2∗ e + e + e
Y$ #"+o! l pr(+r "()l:
3 4
3
)]= 374.82
)]
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
I 3 =374.82
I 2 =775.14 I 1 =1491.8
$ll+o! l !1u"*o "()l 'o" l$! or+ul$! 4 1 I m − I l 3 3
I m=interal interalmas masexa exa!ta !ta I l =interal interal menos exa!ta exa!ta
$ll$+o! *o! )$lor!: El pr(+r '$!o ! p$r$ lo! )$lor! * ">, 2 ">: 4 1 ∗775.14 − 1491 3 3
¿ 536.25333 P$r$ l '$!o *o"* lo! )$lor! * ">, 2 ">?: 4 1 ∗374.82 − 775.14 3 3
¿ 241.38
PARA EL NIVEL /: 16 1 I m− I l 15 15
A6or$ lo! )$lor! * I lo! o%#"+o! *l "()l $"#r(or: 16 1 ∗241.38− ∗536.25 =221.722 15 15
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
Por !# +#o*o l )$lor * l$ ("#1r$l ! *
221.722
?3% 4
∫e
x
ln ( x ) dx
2
I1u$l 5u " l &r'('(o $"#r(or u!$+o! lo! +(!+o! !1+"#o! 2 lo! +(!+o! )$lor! * ": <">, , ?=, $*+.! $>, %>?
$ll+o! I : x f ( ( x )= e ln ( x x )
E" !# '$!o ">: I 1=
f ( ( a ) + f ( ( b ) 2
e ln ( 2 )+ e ln ( 4 ) 2
=
4
2
≈ 32.0333
I : "> L$ 0r+ul$ '$+%($
[
b
n− 1 b −a f ( ( a ) + f ( ( b ) b a ( x ) dx + 2∗∑ f a + $ − I =∫ f ( 2 n n $ =1 a
(
E" !# '$!o ">
[
1
(
b −a f ( ( a )+ f ( ( b ) b− a I 2 = + 2∗ f a + $ n n 2 $ =1
∑
)]
R+pl$$"*o I 2 =1
[
e 2 ln (2 )+ e 4 ln ( 4 ) 2
]
+ 2∗e3 ln ( 3 ) =48.2
)]
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
I/ : ">? E!#o! )$lor! !o" *%(*o! $ lo! !1+"#o! *$*o! L$ 0r+ul$ ! l$ +(!+$ 5u p$r$ I
[
b
n− 1
(
b −a f ( ( a ) + f ( ( b ) b −a I = f ( ( x ) dx + 2∗ f a + $ n n 2 $ =1 a
∫
[
∑
3
(
b − a f ( ( a )+ f ( ( b ) b − a I 3 = + 2∗∑ f a +$ 2 n n $ = 1
)]
R+pl$$"*o )$lor!
( 2.5 ) +e 3 ln ( 3 ) + e 3.5 ln (3.5 ) e2.5 ln ¿ e2 ln ( 2 ) + e 4 ln ( 4 ) + 2∗¿ =181.5 2
I 3 =0.25 ¿
Y$ #"+o! l pr(+r "()l: I 3 =181.5
I 2 =48.2 I 1 =32.03
$ll+o! l !1u"*o "()l 'o" l$! or+ul$! 4 1 I m − I l 3 3
I m=interal interalmas masexa exa!ta !ta I l =interal interal menos exa!ta exa!ta
)]
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
$ll$+o! *o! )$lor!: El pr(+r '$!o ! p$r$ lo! )$lor! * ">, 2 ">: 4 1 ∗48.2− ∗32.03 3 3
¿ 53.59
P$r$ l '$!o *o"* lo! )$lor! * ">, 2 ">?: 4 1 ∗181.5 − ∗48.2 3 3
¿ 225.93 PARA EL NIVEL /: 16 1 I m− I l 15 15
A6or$ lo! )$lor! * I lo! o%#"+o! *l "()l $"#r(or: 16 1 ∗53.59− ∗225.93 15 15
¿ 42.1
El )$lor * l$ ("#1r$l ! $pro8(+$*$+"# ?3
9) So*u#$on So*u#$on *o& &$!u$nt &$!u$nt& & ,r#$#$o& ,r#$#$o& " Int!ra*& Int!ra*& M*t$* M*t$*& & #o0ru- #o0ru- u: 2
0.5 x
∫∫ e /
% x
3
0.1 x
d% .dx ≈ 0.0333054
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
{ } x
0.5
2
∫ ¿ ∫ e / d% % x
0.1
x
3
0.5
dx →∫ ¿ 0.1
{ } x
2
∫ e / d% % x
x
dx
3
1 2 x
∫∫ ( x x + % ) d% . dx≈ 1.000122 2
0
{
1
x
(
2
x % + lim % → x =+ x
% 4
}
2 x
∫ ¿ ∫ x + % 0
3
2
3
d% dx →
x
{
1
%
4
∫ ¿ x % + 4 0
2
)
}
dx
(
4
1 % x + 4 ) → lim % →2 x =− x x 2 % + = x 3 ( x 4 4 4
1 4
¿ 2 x 3 ( 2 x + 1 )− x 3
15 x ( x x + 4 )= 4
4
+ x 3
S '$l'ul$ l$ ("#1r$l ("*("(*$
∫
(
15 x 4
4
)
5
3 x + x dx = 4 3
x 4
+
(
3 x → lim 4 4 x →0
5
+
x 4 4
)=(
3 (0) 4
5
+
)=
( 0) 4 4
0
)
=2 x 3 ( 2 x +1 )
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
(
3 x lim 4 x→ 1
5
+
x
4
4
)=(
3 (1)
5
4
+
)=
( 1 )4 4
3 1 12 + 4 16 + = = =1 4 4 16 16
→=1− 0 → =1
@) D0o&trar D0o&trar u * %a*or %a*or aro2$0 aro2$0a"o a"o n 2 ; ?7 " *a &o*u#$/n &o*u#$/n "* "* ro-*0a ro-*0a " %a*or $n$#$a* +
;
?<; ? u&an"o * M1to"o " Eu*r #on 5 ; ?)?9
& 0 =0 & ??(99?@79
So*u#$/n S 6$ll$ l )$lor * x 1 % % 1 x 1= x 0+ h=0 + 0.05=0.05 % 1= % 0 + hf ( ( x 0 % 0) =0 + 0.05 f ( ( 0,0 )
¿ 0 +0.05∗0 =0 A6or$ por x 2 % % 2 x 2= x 1+ h=0.05 + 0.05
¿ 0.1 % 2= % 1 + hf ( ( x 1 % 1 )
¿ 0 + 0.05 f ( ( 0.05,0 )
¿ 0 +0.05∗0.05 =0.0025
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
A6or$ por x 3 % % 3 x 3= x 2+ h=0.1 + 0.05
¿ 0.15 % 3= % 2 + hf ( ( x 2 % 2 )
¿ 0.0025 + 0.05 f ( ( 0.1,0 .0025)
¿ 0.0025 +0.05∗0.1025 ¿ 0.007625
A6or$ por x 4 % % 4 x 4= x 3 + h =0.15 + 0.05 =0.2
% 4 = % 3+ hf ( ( x3 % 3 )=0.007625 + 0.05 f ( ( 0.15,0 .007625 )
¿ 0.007625 + 0.05∗0.157625
¿ 0.01550625 x n
f ( ( x n % n )
%n
@ @
@
@
@3@H
@
@3@H
@3
@3@@H
@3@H
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
/ @3H
@3@@H
@3HH
? @3
?)?(99?@79
Co+o Co+o ! pu* pu* o%! o%!r) r)$r $r " l$ #$%l$ $%l$ l )$lor $lor $pro $pro8( 8(+ +$*o $*o "
x =0,2
!
0,01550625
)
A*$#ar * * 01t 01to"o " " Ta Ta+*or " or or"n "o& "o& a *a #u #uaa#$/n % ´ =cos ( x% ) #on *a #on"$#$/n $n$#$a*: % ( 0 )=1
%´ 0= % ( 0) 2
´ ( + hf ( ( x i % i ) + %´ ( 11= %
h
[ f x ( x x % ) +f % ( x x % ) f ( ( x x % ) ] 2 '
'
i
i
i
i
% ' =cos ( x% x% ) =f ( ( x % )
% ( 0 )=1 h= 0.1 [ 0,1 ]
f ' x ( x x % )=− %sen ( x% x% )
f ' x ( x x % )=− xsen ( x% x% )
% 0=1 Itera!i"n Itera!i"n 1 x =0 % 0=2
2
0.1 %´ i=1 +0.1cos ( o ( 1 ) )+ [−1 sen ( 0 (1 )) −0 sen ( 0 ( 1 ) ) cos ( 0 ( 1 ) ) ] 2
i
i
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
%´ 1=1 + 0.1 +
0.01 [ −0 − 0 ] 2
¿ 1 +0.1=1.1 Itera!i"n Itera!i"n 2 x =0.1 % 1=1.1 2
0.1 [− 1.1 sen ( 0.1 ( 1.1 ) )−0.15 sen ( 0.1 ( 1.1 ) ) cos ( 0.1 (1.1 )) ] %´ 2=1.1 +0.2cos ( 0.1 ( 1.1 ) ) + 2
%´ 2=1.1 +0.0993956 +
0.01 [ −0.120756 −0.0109115 ] 2
%´ 2=1.198703
Itera!i"n 3 x 2=0.2 %´ 2=1.1987 2
0.1 %´ 3=1,1987 + 0.1cos ( 0.2 ( 1.1987 ) )+ 2
[ −1.1987 sen ( 0.2 ( 1.1987 ) ) cos ( 0.2 ( 1.1987 ) ) ]
%´ 3=1.294186 ≈ 1.2942
Itera!i"n 4 x 3 =0.3 %´ 3=2.2942
2
0.1 %´ 4 =1.2942 + 0.2cos ( 0.3 ( 1,2942 ) )+ [ −1,2942 sen ( 0.3 ( 1.2942 ) ) −0.3 sen ( 0.3 ( 1.2942 ) ) cos ( 0.2( 1.2942 ) ) ] 2
%´ 4 =1.38395673 ≈ 1.3840
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
Itera!i"n 5 x 4=0.4 %´ 4=1.3840
%´ 5=1.3840 + 0.1 cos ( 0.4 ( 1.3840 ) ) +
2
0.1 2
[−1.304 sen ( 0.4 ( 1,3840 ) )−0.4 sen ( 0.4 ( 1.3840 ) ) cos ( 0.4 ( 1.3840 ) ) ]
%´ 5=1.465
Itera!i"n 6 x 5=0.5 %´ 5=1.465
2
0.1 %´ 6=1.465 +0.1cos ( 0.5 (1.465 ) )+ 2
[ −1.465 sen ( 0.5 ( 1.465 ) )−0.5 ( 1.465 ) ) cos (0.5 ( 1.465 ) )¿
%´ 6=1.533
Itera!i"n Itera!i"n 7 x 6=0.6 %´ 6= 1.533 2
0.1 %´ 7=1.533 +0.1cos ( 0.6 ( 1.533 ) ) + 2
[−1.533 sen ( 0.6 ( 1.533 ) )− 0.6 sen ( 0.6 (1.533 ) ) cos ( 0.6 ( 1.533 ) ) ]
%´ 7=1.5860 =1.586
Itera!i"n 8 x 7=0.7 %´ 7= 1.586
0.1 %´ 8=1.586 + 0.1cos ( 0.7 ( 1.586 ) ) + 2
2
[−1.586 sen ( 0.7 (1.586 ) )−0.6 sen ( 0.6 ( 1.586 ) ) cos ( 0.6 ( 1.586 ) ) ]
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
%´ 8=1.622
Itera!i"n 9 x 8=0.8 %´ 8=1.622
2
0.1 1.622 sen ( 0.8 (1.622 ) ) −0.8 sen ( 0.8 ( 1.622 ) ) cos ( 0.8 ( 1.622 ) ) %´ 9=1.622 +0.1cos ( 0.8 ( 1.622 ) ) + 2
[
%´ 9=1.64
Itera!i"n Itera!i"n 10 x 9=0.9 %´ 9=1.64
2
0.1 %´10=1.64 + 0.1cos ( 0.9 (1.64 ) ) + [−1.64 sen ( 0.9 (1.64 ) )− 0.9 sen ( 0.9 ( 1.64 ) ) cos ( 0.9 ( 1.64 ) ) ] 2
%´10=1.64
>) P*ant P*ant + &o*u#$on &o*u#$on a&o a&o a a&o un un ,r#$#$o ,r#$#$o or or * M1to"o M1to"o " Run!H Run!H utta " #uarto or"n) Pro-*0a !nra* d% x 0 ) = % 0 =f ( ( x % ) % ( x dx
For0u*a x i+ 1= x i + h x 1=0 + 0.5 =0.5
]
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
% i+ 1= % i +
h 6
( $ 1+ 2 $ 2+2 $ 3 + $ 4 )
Don" $ 1= f ( ( x i % i )
(
1 2
1 2
)
(
1 2
1 2
)
$ 2= f x x i + h % i+ $ 1 h
$ 3= f x x i + h % i+ $ 2 h
$ 4= f ( ( x x i + h % i + $ 3 h )
E,r#$#$o) R&o*%r * ro-*0a "* %a*or $n$#$a* 5; ?)9 d% x + 1 )∗cos ( x x2 + 2 x ) % ( 0 ) =4 =( % + 1 )∗( x dx
% 2= % 1 +
h 6
( $ 1+ 2 $ 2+ 2 $ 3 + $ 4 )
Pr$0r a&o $ 1= f ( ( 0, 4 )=( 4 + 1 )∗ ( 0 + 1 )∗cos ( 02 + 2∗0 ) $ 1= f ( ( 0, 4 )=( 5 )∗( 1 )∗cos ( 0 )
¿5
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
(
1 2
1 2
$ 2= f 0 + ∗0.5,4 + 5∗0.5
)
$ 2= f ( ( 0.25,5.25 )=( 5.25 + 1 )∗( 0.25 + 1 )∗cos ( 0.252 + 2∗0.25 ) $ 2= f ( ( 0.25,5.25 )=( 5.25 + 1 )∗ ( 0.25 + 1 )∗cos ( 0.25 + 2∗0.25 ) 2
$ 2= f ( ( 0.25,5.25 )=( 6.25 )∗( 1.25 )∗cos ( 0.5625 )
¿ 6.609
(
1 2
1 2
$ 3= f 0 + 0.5,4 + 6.609∗0.5
)
$ 3= f ( ( 0.25, 0.25, 4 + 5.652 ) $ 3= f ( ( 0.25, 5.652)=( 5.652 + 1 )∗( 0.25 + 1 )∗cos ( 0.5625 )
¿ 7.034
$ 4= f ( ( 0 + 0.5,4 + 7.034∗0.5 ) $ 4= f ( ( 0.5,7.534 )=( 7.534 + 1 )∗( 0.5 + 1 )∗cos ( 0.52 + 2∗0.5 ) $ 4= f ( ( 0.5,7.534 )=( 8.534 )∗( 1.5 )∗cos ( 1.25 )
¿ 4.036
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
% 2= 4 +
0.5 ( 5 + 2∗6.609 +2∗7.034 +4.036 ) 6
% 2= 4 +
0.5 ( 5 + 2∗6.609 +2∗7.034 +4.036 ) 6
¿ 7.027
S!un"o a&o x =0.5 % =7.027
$ 1= f ( ( 0.5,7.027 )=( 7.027 + 1 )∗( 0.5 + 1 )∗cos ( 0.52 + 2∗0.5 )
$ 1= f ( ( 0.5,7.027 )=( 8.027 )∗( 1.5 )∗cos ( 0.25 + 1 )
¿ 3.797
(
1 2
1 2
$ 2= f 0.5 + ∗0.5,7.027 + 3.797∗0.5
)
2 $ 2= f ( ( 0.75, 0.75, 8 )=( 8 + 1 )∗( 0.75 + 1 )∗cos ( 0.75 + 2∗0.75 )
¿− 7.436
(
1 2
1 2
$ 3= f 0.5 + 0.5,7.027 + (−7.436 )∗0.5
)
$ 3= f ( ( 0.75, 5.168) $ 3= f ( ( 0.75, 5.168 )=( 5.168 + 1 )∗( 0.75 + 1 )∗cos ( 0.752 + 2∗0.75 )
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
$ 3= f ( ( 0.75, 5.168)=( 6.168 )∗( 1.75 )∗cos ( 0.752 + 2∗0.75 )
¿− 5.1 $ 4= f ( ( 0.5 +0.5,7.027 +(−5.1 )∗0.5 ) $ 4= f ( ( 1,4.477 )=( 4.477 + 1 )∗( 1 + 1 )∗cos ( 12 + 2∗1 ) $ 4= f ( ( 1,4.477 )=( 5.477 )∗( 2 )∗cos ( 3 )
¿− 10.844 x 1=0..5 + 0.5=1
% 1=7.027 +
0.5 ( 3.797 +2∗(−7.436 ) + 2∗(−5.1 )+(−10.844 ) ) 6
¿ 4.35
CONCLUSIONES
E! (+por#$"# $"#! * ("('($r ("('($r u" #r$%$&o #r$%$&o 'ol$%or$#() 'ol$%or$#()o, o, 'o"o'r (*"#(('$r (*"#(('$r l$ #+. #+.#(#('$ '$ pl$" pl$"# #$* $*$, $, lo! lo! o%& o%&#(#()o )o!! !p !pr$ r$*o *o!! 2 l$! l$! $'#( $'#()( )(*$ *$* *!! $ *!$rroll$r; !#o 'o" l (" * prou"*($r ("*$1$r " l 'o"#"(*o 2 !#$%l'r u" 'ro"o1r$+$ * #r$%$&o 5u $!1ur l 'u+pl(+("#o * l$! +#$! !#(pul$*$!3
Co" l pr!"# pr!"# #r$%$&o 'ol$%or$#( 'ol$%or$#()o )o *l 'ur!o * +#o*o! +#o*o! "u+r('o! "u+r('o! ! $%or*$ro" u"$ !r( * &r'('(o! pr.'#('o!, '#u$"*o &+plo! * l$ U"(*$* /: D(r"'($'(0", I"#1r$'(0" Nu+r('$ 2 E'u$'(o"! D(r"'($l!3
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
Cu2o! 'o"#"(*o! 'o"'p#u$l! 2 #+.#('o! !o": D(r"'($'(0" Nu+r('$, I"#1r$'(0" Nu+r('$, R1l$ *l #r$p'(o, R1l$ * S(+p!o", I"#1r$'(0" * Ro+%r1 M#o*o * Eulr, M#o*o * Ru"1-4u##$ 2 M#o*o Mul#(p$!o!3
Co"o'r lo! 'o+p$ro! * 'ur!o ("#r$'#u$r 'o" llo!, $!1ur$ u"$ %u" %u"$ $ *(". *(".+( +('$ '$ p$r$ p$r$ l *!$ *!$rr rrol ollo lo 2 'o"! 'o"!#r #ru' u''( '(0" 0" * lo! lo! #r$% #r$%$& $&o! o! 'ol$%or$#()o!, 2$ 5u lo1r$ ro+pr lo! p$r$*(1+$! ("('($l! 2 prop('($ u" r'o"o'(+("#o * lo! rol! *l 5u(po3
El 'ur!o 'o"!#$ * #r! u"(*$*! *(*.'#('$!, 'orrl$'(o"$*$! 'o" l "9+ro * 'r*(#o! $'$*+('o! $!(1"$*o!3 L$ #r'r$ 5u ! $pl('$ " l pr!"# #r$%$&o, ! rl$'(o"$ 'o" l$ r1l$ * S(+p!o" 2 l +#o*o * Ru"1-4u##$3
R$l($r &r'('(o! 2 pr$'#('$r 'o" pro%l+$! pl$"#$*o!, pr+(# $pl('$r lo! 'o"o'(+("#o! $*5u(r(*o! " l *!$rrollo *l #+$ * l$ U"(*$* /, #$l! 'o+o: l$ r1l$ * S(+p!o" 2 l +#o*o * Ru"1-4u##$3
S r'o"o'(ro" 2 $pr"*(ro" lo! *()r!o! pro'*(+("#o! 2 'o"'p#o! r5ur(*o! " l 'ur!o p$r$ '#u$r '.l'ulo! "u+r('o! por +*(o * $l1or(#+o! 'o+o: D(r"'($'(0" Nu+r('$, I"#1r$'(0" Nu+r('$, R1l$ *l #r$p'(o, R1l$ * S(+p!o", I"#1r$'(0" * Ro+%r1, M#o*o * Eulr, M#o*o * Ru"1-4u##$ 2 M#o*o Mul#(p$!o!3
S $"$l(0 l$ (+por#$"'($ * lo! +#o*o! "u+r('o! " l$ ("1"(r7$ 2 " l$! '("'($!, $!7 'o+o !u $pl('$'(0"3
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
BIBLIOGRAFA
A%$lo!, C3 C3 <@@H=3 Revisión acerca de las normas para la presentación de referencias bibliográficas según el estilo de la American Psychological Association (APA)3 E8#r$7*o l / * M$ro * @ *!* l$ %$! * *$#o! E-L(%ro " l$
orl* (* %: 6##p:!(#3%r$r23'o+l(%u"$*!p
Bu'6l( C6$)!, C$rlo! I)." <@/=3 Modulo métodos numéricos !nidad " 3 U"()r!(*$* N$'(o"$l A%(r#$ 2 $ D(!#$"'($3 D(!po"(%l ": 6##p:*$#$#'$3u"$*3*u3'o'o"#"(*o!@@?@Mo*uloU"(*$*/3p*
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30
C$"$l!, T3 T3 <@@, ? * M$2o=3 For+$#o For +$#o APA APA Qu("#$ E*('(0"3 E8#r$7*o l / * M$ro * @ *!* 6##p:3+(!#$r$!3'o+3)l$!-"or+$!-$p$3p6p
C6$pr$, S#)" C3 C$"$l, R$2+o"* P3 <=3 Métodos numéricos para ingenieros3 <$p$#$
S, C$rlo! Cor#! A"$2$, Alr*o, #r$*3=M8('o3 M'Gr$-
(ll3 D(!po"(%l ": 6##p:?3@3H/3?#!(u$+(L(%ro!L/?3p*
E!#u*($"#! * l$ Fu"*$'(o" U"()r!(#$r($ *l Ar$ A"*("$3 < * No)(+%r * @/=3 Tu#or($l3 Método de #uler y #uler Me$orado 3 O%#"(*o * 6##p!:32ou#u%3'o+$#'6)>PW/2T%E F7!('$ C("'($, ? * D('(+%r * @3Método de %impson &'" ntegración *umérica Regla de %impson &'"+ R'upr$*o * l$ p.1("$ %
6##p:32ou#u%3'o+ R2! , Lu'll2 <"3*=3 Método numérico de Runge,ut #$3 #$3 R'upr$*o * l$ p.1("$ %: 6##p:(!('$3u*$3*u3'o Vr$ C6.), I!$$' <@/=3 Método de Romberg 3 V7*o #u#or($l3 D(!po"(%l ": 6##p!:32ou#u%3'o+$#'6)>l??6SGuWY4
METODOS NUMERICOS_100401_30 NUMERICOS_100401_30