Procedimiento simplificado para el diseño de una zapata corrida de acuerdo al NTC2004Descripción completa
Descripción: Procedimiento simplificado para el diseño de una zapata corrida de acuerdo al NTC2004
Descripción: INTEGRACION
Descripción completa
ejercicio de medidas de concentración en probabilidadesDescripción completa
RESISTENCIA DE MATERIALES II (CIV -203) -203)
1. M ÉTODO ÉTODO DOBLE INTEGRACION De la estática. ∑ M B = 0
RC L - M 2 + M 1 = 0
M 2 - M 1 RC ≔ ―― L
∑ F V = 0
R B + RC = 0
R B ≔ -⎜
⎛ M 2 - M 1 ⎞ ⎟ L ⎝ ⎠
b. Ecuaciones de Momento Flecto !aa cada tamo Corte I-I
TRAMO AB x ≤ L
M AB ≔ - M 1
Cort Cortee II-I II-III
TRAM TRAMO O BC L < x ≤ 2 L
Corte Corte III-II III-IIII TRAMO TRAMO CD 2 L < x ≤ 3 L
⎛ M 2 - M 1 ⎞ ⎟⋅ x-L L ⎝ ⎠
⎛ M 2 - M 1 ⎞ ⎛ M 2 - M 1 ⎞ ⎟ x-L +⎜ ⎟ ⋅ x - 2 L L L ⎝ ⎠ ⎝ ⎠
M BC ≔ - M 1 - ⎜
M CD ≔ - M 1 - ⎜
c. M "todo "todo Doble Inte#aci$n Corte I-I
TRAMO TRAMO AB x ≤ L
E ⋅ I ⋅
d2 dx
2
2
y = M AB
Ecuación de Momento Flector :
M AB x ≔ - M 1
Ecuación de Deformacion Anular:
θ AB x =
Ecuacion de Defle!ion:
⎞ x 1 ⎛ y AB x = ― ⎜- M 1 ⋅ ― + C1 ⋅ x + C2⎟ EI ⎝ 2 ⎠
Cort Cortee II-I II-III TRAM TRAMO O BC L < x ≤ 2 L
E ⋅ I ⋅
Ecuación de Momento Flector :
M BC x ≔ - M 1 - ⎜
1 EI
- M 1 ⋅ x + C1 2
d2 dx
2
2
y = M BC
⎛ M 2 - M 1 ⎞ ⎟⋅ x-L L ⎝ ⎠
2 ⎛ ⎞ ⎛ M 2 - M 1 ⎞ x - L 1 ⎜ x = - M 1 ⋅ x - ⎜ ⎟⋅ + C3⎟ EI ⎝ L 2 ⎝ ⎠ ⎠ 3 ⎛ ⎞ 2 ⎛ M 2 - M 1 ⎞ x - L x 1 x = ― ⎜- M 1 ⋅ ― - ⎜―― ⎟ ⋅ ―― + C3 ⋅ x + C4⎟ EI ⎝ L 2 ⎝ 6 ⎠ ⎠
Ecuación de Deformacion Anular:
θ BC
Ecuacion de Defle!ion:
y BC
Corte III-III III-III TRAMO TRAMO CD 2 L < x ≤ 3 L
E ⋅ I ⋅
Ecuación de Momento Flector :
M CD x ≔ - M 1 - ⎜
Ecuación de Deformacion Anular:
θCD x =
Ecuacion de Defle!ion:
yCD x =
d2
2
d x2
y = M CD
1 EI
1 EI
⎛ M 2 - M 1 ⎞ ⎛ M 2 - M 1 ⎞ ⎟ x-L +⎜ ⎟ ⋅ x - 2 L L L ⎝ ⎠ ⎝ ⎠ 2 2 ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜- M ⋅ x - ⎜ M 2 - M 1 ⎟ x - L + ⎜ M 2 - M 1 ⎟ ⋅ x - 2 L + C ⎟ 1 5 L L 2 2 ⎝ ⎝ ⎠ ⎝ ⎠ ⎠ 3 3 ⎛ ⎞ 2 ⎛ ⎞ ⎛ ⎞ ⎜- M ⋅ x - ⎜ M 2 - M 1 ⎟ x - L + ⎜ M 2 - M 1 ⎟ ⋅ x - 2 L + C ⋅ x + C ⎟ 1 5 6 L L 2 ⎝ 6 6 ⎝ ⎠ ⎝ ⎠ ⎠
RESISTENCIA DE MATERIALES II (CIV -203)
EI ≔ 2500000
"or condicion del #ro$lema:
L ≔ 2.5
"or Condiciones de A#o%o x≔0
0.018 = x ≔ 2.5
0=
y A ≔ 0.018 2 ⎞ solve , C2 x 1 ⎛ + C1 ⋅ x + C2⎟ ―― → 45000.0 ⎜- M 1 ⋅ EI ⎝ 2 ⎠
C2 ≔ 45000.0
y B ≔ 0
⎞ solve , C1 x2 1 ⎛ + C1 ⋅ x + C2⎟ ―― → 1.25 ⋅ M 1 - 18000.0 ⎜- M 1 ⋅ EI ⎝ 2 ⎠
C1 ≔ 1.25 ⋅ M 1 18000.0
"or Continuidad x ≔ 2.5
θ I = θ II
y I = y II
⎛ ⎛ M 2 - M 1 ⎞ x - L 1 ⎜ - M 1 ⋅ x + C1 = - M 1 ⋅ x - ⎜ ⎟⋅ EI EI ⎝ L 2 ⎝ ⎠ 1
2 ⎞ 1 x 1 ⎛ - M 1 ⋅ + C1 ⋅ x + C2 = EI ⎝ 2 ⎠ EI
x≔5
2
⎞ solve , C 3 + C3⎟ ―― → 1.25 ⋅ M 1 - 18000.0 ⎠
⎛ 2 ⎜- M ⋅ x - ⎛ M 2 - M 1 ⎞ ⋅ x - L 1 L 2 ⎝ 6 ⎝ ⎠
θ II = θ III
3
C3 ≔ 1.25 ⋅ M 1 18000.0
⎞ solve , C 4 + C3 ⋅ x + C4⎟ ―― → 45000.0 ⎠
C4 ≔ 45000.0
y II = y III
⎛ ⎛ M 2 - M 1 ⎞ x - L 1 ― - M 1 ⋅ x - ―― ⋅ ―― EI ⎝ L 2 ⎝ ⎠
2
⎞
⎛ ⎛ M 2 - M 1 ⎞ x - L 1 + C3 = ― - M 1 ⋅ x - ―― ―― L 2 ⎠ EI ⎝ ⎝ ⎠
2
2 ⎞ solve , C ⎛ M 2 - M 1 ⎞ x - 2 L 5 + ―― ⋅ ――― + C5 ―― → 1.25 ⋅ M 1 - 18000.0 L 2 ⎝ ⎠ ⎠
C5 ≔ 1.25 ⋅ M 1 18000.0 ⎛ ⎛ M 2 - M 1 ⎞ x - L 1 ⎜ x2 ⎟⋅ - M 1 ⋅ -⎜ EI ⎝ 2 L 6 ⎝ ⎠
3
⎞ 1 + C3 ⋅ x + C4⎟ = ⎠ EI
⎛ 2 ⎛ ⎞ ⎜- M ⋅ x - ⎜ M 2 - M 1 ⎟ x - L 1 2 L 6 ⎝ ⎝ ⎠
3
⎛ M 2 - M 1 ⎞ x - 2 L ⎟⋅ +⎜ L 6 ⎝ ⎠
3
⎞ solve , C 6 + C5 ⋅ x + C6⎟ ―― → 45000.0 ⎠
C6 ≔ 45000 x ≔ 7.5
y D ≔ 0.012
⎛ ⎛ M 2 - M 1 ⎞ x - L x2 1 ⎜ 0.012 = - M 1 ⋅ -⎜ ⎟ EI ⎝ L 2 ⎝ 6 ⎠
x≔5
yc ≔ 0
⎛ 2 ⎛ M 2 - M 1 ⎞ x - L x 1 ⎜ 0= - M 1 ⋅ ⋅ EI ⎝ L 2 ⎝ 6 ⎠
3
⎛ M 2 - M 1 ⎞ x - 2 L +⎜ ⎟⋅ L 6 ⎝ ⎠
3
⎞ float , 3 + C5 ⋅ x + C6⎟ ―― → 0.012 = -0.00000458 ⋅ M 1 + -0.00000292 ⋅ M 2 - 0.036 ⎠
0.048 = -0.00000458 ⋅ M 1 - 0.00000292 ⋅ M 2 3
⎞ float , 3 + C3 ⋅ x + C4⎟ ―― → 0 = -0.00000208 ⋅ M 1 + - 4.17 ⋅ 10 -7 ⋅ M 2 - 0.018 ⎠