FIG. 23-2 Physical Constants
23-2
FIG. 23-2 (Cont’d) Physical Constants
23-3
FIG. 23-2 (Cont’d) Physical Constants
23-4
FIG. 23-2 (Cont’d) Notes and References for the Table of Physical Constants
23-5
FIG. 23-2 (Cont’d) Notes and References for the Table of Physical Constants
23-6
FIG. 23-2 (Cont’d) Notes and References for the Table of Physical Constants
23-7
FIG. 23-2 (Cont’d) Notes for the Table of Physical Constants a.
Va l u es in pa r e n t h es es a r e e s t im a t e d v a l u es .
p.
An ex tr a pola t ed va l ue .
b.
Th e t em p er a t u r e is a b ov e t h e cr i t ic a l po in t .
q.
G a s a t 60° F a n d t h e l iq u i d a t t h e nor m a l boi li n g p oi n t .
c.
At s a t u r a t i on pr e ss u r e (t r i pl e p oi n t ).
r.
d.
S ub lim a tion p oin t.
e.
Th e + s ig n a n d n u m b er f ol low i n g s pe ci fy t h e n u m b er o f cm3 of TEL added per gallon to achieve the ASTM octane number of 100, which corresponds to that of Isooctane (2,2,4Trimet hylpent a ne).
F i xe d p oi n t s on t h e 1 96 8 I n t e r na t i on a l P r a c t ica l Te m pe r a t u r e Sca le (IP TS-68).
s.
F i xe d p oi n t s on t h e 19 90 I n t er n a t i on a l Te m pe r a t u r e S ca l e (ITS-90).
t.
Densities at the normal boiling point are: Ethane, 4.540 [29]; P ropan e, 4.484 [28]; P ropene, 5.083 [5]; Hydr ogen C hloride, 9.948 [43]; H ydr ogen S ulfid e, 7.919 [25]; Amm onia , 5.688 [43]; Sulfur Dioxide, 12.20 [43].
u.
Technically, wat er has a heating value in two cases: net (–1060. B tu/lb) when w at er is liquid in the rea ctant s, and gross (+ 50.313 B tu /ft 3) when wa ter is gas in the reacta nts. The value is the ideal heat of vaporizat ion (entha lpy of the ideal ga s less the enthalpy of the saturated liquid at the vapor pressure). This is a ma tter of definition; wa ter does not burn.
f.
Th es e com pou n ds for m a g la s s .
g.
Average value from octane numbers of more than one sample.
h.
S a t u r a t ion pr es su r e a n d 60° F .
i.
I n de x of re fr a ct i on of th e g a s .
j.
D e n si t ie s of t h e l iq u i d a t t h e nor m a l b oi li n g p oi n t .
k.
H ea t of s ub lim a t ion .
m.
Equa tion 2 of the reference wa s refitted to give: a = 0.7872957; b = 0.1294083; c = 0.03439519.
n.
N or m a l h y d r og en (2 5% p a r a , 7 5% or t h o).
v.
E x t r em e v a l ue s of t h o se r e por t e d b y r ef er e nc e 19 .
A.
Molar mass (molecular weight) is based upon the following a tomic weights: C = 12.011; H = 1.00794; O = 15.9994; N = 14.0067; S = 32.066; Cl = 35.4527. The values wer e rounded off after calculating the molar ma ss using all significant figures in the at omic weights.
J.
The liquid value is not rigorously C P , but rather it is the heat capacity along the saturation line C S defined by: C S = C P – T (∂V/∂T)P (∂P /∂T)S . For liquids far from the critical point, C S ≈ C P .
K.
The heating value is the negative of the enthalpy of combustion at 60°F and 14.696 psia in an ideal reaction (one where all ga sses are ideal gasses). For an arbitra ry orga nic compound, the combustion rea ction is: C n H m O h S jN k (s,l,or,g) + (n + m/4 – h/2 + j ) O2(g) → n C O 2(g) + m/2 H 2O (g or l) + k/2 N 2(g) + j SO2(g), where s, l a nd g denote respectively solid, liquid and ideal ga s. For gross heat ing values, the wat er formed is liquid; for net heat ing values, the wat er formed is ideal ga s. Values reported ar e on a dry ba sis. To account for wa ter in the heating value, see GP A 2172. The B tu/lb or gal. liquid column a ssumes a reaction wit h the fuel in the liquid sta te, while the B tu/ft 3 ideal ga s column assum es the gas in the ideal gas sta te. Therefore, the values are not consistent if used in the same calculation, e.g. a gas plant bala nce. Th e h ea t of v a p or i za t i on i s t h e en t h a l py o f t h e s a t u r a t e d v a p or at the boiling point at 14.696 psia minus the enthalpy of the satura ted liquid at the same conditions.
B.
B o il in g p oi n t : t h e t em p er a t u r e a t e q u i li br i um b e t w ee n t h e li q uid and vapor phases a t 14.696 psia.
C.
Freezing point: the temperature at equilibrium between the crystalline phase and the air saturated liquid at 14.696 psia.
D.
The refractive index reported refers to the liquid or gas and is measur ed for light of wa velength corresponding to the sodium D-line (589.26 nm).
E.
The relative density (specific gravity): ρ(liqu id, 60° F)/ρ(water, 60°F ). The density of wa ter a t 60°F is 8.3372 lb/ga l.
F.
The temperature coefficient of density is related to the expansion coefficient by : (∂ρ/∂T)P /ρ = –(∂ρV/∂T)P /V, i n unit s of 1/T.
G.
Pitzer acentric factor: ω = –log 10(P /P c) –1, P a t T = 0.7 Tc
H.
Compressibility factor of the real gas, Z = PV/RT, is calculated using the second virial coefficient.
L.
I.
Th e d en s it y o f a n i d ea l g a s r e la t i v e t o a i r is c a lc ul a t e d by d i viding the molar ma ss of the of the ga s by 28.9625, the calculat ed average molar ma ss of air. See ref. 34 for the avera ge composition of dry a ir. The specific volume of a n idea l gas is calculated from the ideal ga s equat ion. The volume ratio is: V(idea l ga s)/V(liquid in v a cuum).
M. Air required for the combustion of ideal gas for compounds of formula C n H m O h S jN k is: V(ai r)/V(ga s) = (n + m/4 ( h/2 + j)/0.20946.
COMMENTS Un its: reported values ar e based upon the following units with their equiva lent corresponding SI units: ma ss: P ound (a vdp), lbm = 0.45359237 kg lengt h: foot, ft = 0.3048 m temperat ure: degree Fa hrenheit t/° F) = 32 = [1.8(t/° C)]. The Celsius scale is defined by t he Int ernat ional Temperatur e of 1990 (ITS-90), wh ere 0° C = 273.15 K. Other derived units are: 3 3 volume: cubic foot, ft = 0.02831685 m 3 gallon = 231 in = 0.0037854512 m 3 pressure: pound per square inch absolute psia = 6894.757 kPa
energy: B ritish therma l unit (I.T.) B tu = 251.9958 cal (I.T.) = 1055.056 J Ga s constant, R: 1.985887 B t u (I. T.)/(R lb m ol) 10.73164 ft 3 psia /(R lb m ol) 8.314510 J /(K(mol) Conversion factors: 1 f t 3 = 7.480520 gal. 3 3 1 lb m /ft = 0.1336806 lbm /ga l = 16.018462 kg/m 1 psia = 0.06804596 at m = 6.894757 kPa 1 at m = 14.69595 psia = 760 Torr = 101.3250 kPa 1 B tu (I .T.) = 252.1644 cal th
23-8
FIG. 23-2 (Cont’d) References for the Table of Physical Constants 1. Ambrose, D., Nat ional Ph ysical La boratory, Teddington, Middlesex, England: Feb. 1980, NPL Report Chem 107.
24. G lasg ow, A. R.; Murphy, E. T.; Willingha m, C. B .; Rossini, F. D., J . Res. N B S, 37, 141 (1946).
2. Ambrose, D.; Hall, D. J .; Lee, D. A.; Lewis, G. B.; Mash, C. J ., J . Ch em. Therm o., 11, 1089 (1979).
25. Goodwin, R. D., “Hydr ogen Sulfide Provisiona l Thermochemical Properties from 188 to 700 K at Pressures to 75 MPa,” NBSIR 83-1694, October 1983.
3. Angus, S.; Armstr ong, B.; de Reuck, K. M., Eds. “Car bon Dioxide. Interna tional Thermodynam ic Tables of the Fluid St at e-3,” P ergamon P ress: Oxford, 1976. 4. Angus, S.; Armstr ong, B.; de Reuck, K. M., Eds. “Metha ne. Interna tional Thermodynam ic Tables of the F luid Sta te-5,” Pergamon Press: Oxford, 1978. 5. Angus, S.; Armstr ong, B.; de Reuck, K. M., “Propylene (Propene). Int erna tiona l Thermody na mic Tab les of the Fluid Sta te-7,” Perga mon P ress: Oxford, 1980.
26. Goodwin, R. D .; Ha ynes, W. M., “Thermophysical P roperties of Isobutane from 114 to 700 K at Pressures to 70 MPa,” NBS Tech. Note 1051, J a nua ry 1982. 27. Goodwin, R. D .; Ha ynes, W. M., “Thermophysical P roperties of Normal Butane from 135 to 700 K at Pressures to 70 MPa,” NB S M onograph 169, April 1982. 28. Goodwin, R. D .; Ha ynes, W. M., “Thermophysical P roperties of P ropane from 85 to 700 K at P ressures to 70 MPa ,” NBS Monogra ph 170, April 1982.
6. Angus, S.; de Reuck, K. M.; Armstr ong, B., Eds. “Nitrogen. Interna tional Thermodynam ic Tables of the F luid Sta te-6,” Pergamon Press: Oxford, 1979.
29. Goodwin, R. D.; Roder, H. M.; Stra ty, G. C.; “Thermophysical P roperties of Et han e, 90 to 600 K at P ressures to 700 bar,” NB S Tech. N ote 684, Augu st 1976.
7. Angus, S.; de Reuck, K. M.; McCart hy, R. D., Eds. “Helium. Interna tional Thermodynam ic Tables of th e Fluid S ta te-4,” P ergamon P ress: Oxford, 1977.
30. Gut hrie, G. B.; H uffma n, H. M., J . Am. Chem. Soc., 65, 1139 (1943).
8. Armstrong, G. T.; J obe, T. L., “Hea ting Values of Natu ra l Ga s and its Components,” NBSIR 82-2401, May 1982.
31. Ha ar, L.; G allagher, J. S.; Kell, G. S., “NB S/NRC St eam Tables,” Hemisphere P ublishing Corporat ion, Wash ington, 1984.
9. Aston, J. G .; Szasz, G. J .; Finke, H. L., J . Am. Chem. Soc., 65, 1135 (1943).
32. Huffman, H. M.; P ark, G. S .; Thomas, S. B., J . Am. Chem. Soc., 52, 3241 (1930).
10. B ar ber, C. R., Metrologia 5, 35 (1969).
33. Hust, J . G.; S tewar t, R. B ., “Thermodynamic Pr operty Values for Gaseous and Liquid Carbon Monoxide from 70 to 300 Atmosph eres, ” NB S Techni cal Not e 202, Nov. 1963.
11. Boundy, R. H.; B oyer, R. F., (Eds.), “Styrene, It s P olymers, Copolymers a nd D erivatives,” A.C.S. monograph No. 115, Reinholt, N.Y., 1952.
34. J ones, F. E., J . Res. NB S, 83, 419 (1978).
12. Cha iyavech, P.; Van Winkle, M., J . Chem. Eng . Da ta , 4, 53 (1959).
35. Keenan, J . H.; Chao, J.; Ka ye, J. “Ga s Tables: (SI U nits),” J ohn Wiley a nd S ons, In c.: New York, 1983.
13. Cha o, J.; Ha ll, K. R.; Yao, J ., Thermochimica Acta , 64, 285 (1983).
36. “The Matheson U nabridged Gas D ata Book,” Matheson Ga s P roducts ; New York, 1974.
14. COD ATA Tas k G roup on Key Va lues for Thermody na mics, C ODATA Sp ecia l Report No. 7, 1978.
37. McCa rt y, R. D.; Weber, L. A., “Thermophy sical P roperties of Oxygen from the Fr eezing Liquid Line to 600 R for P ressures to 5000 Ps ia, ” NB S Technical Not e 384, J uly 1971.
15. Commission on Atomic Weights a nd I sotopic Abunda nces, Pur e and Appl. Chem. 63, 975 (1991).
38. Messerly, J . F.; Gut hrie, G. B .; Todd, S. S.; Finke, H. L., J . Chem. En g. D a ta , 12, 338 (1967).
16. Dea n, J . W., “A Tabula tion of the P roperties of Normal H ydrogen from L ow Tempera tur e to 300 K a nd fr om 1 to 100 Atm ospheres,” NB S Tech. Note 120, November 1961.
39. Messerly, J . F.; Todd, S. S .; Guthrie, G. B ., J . Chem. Eng. Da ta, 15, 227 (1970).
17. Douslin, D. R.; Huffma n, H. M., J . Am. Chem. Soc., 68, 1704 (1946).
40. Ohe, S., “Computer Aided Da ta Book of Vapor Pr essure,” Data B ook P ublishing C o., Tokyo, Ja pan , 1976.
18. Edw ard s, D. G ., “The Vapor P ressure of 30 Inorganic Liquids Between One Atmosphere and the Critical Point,” Univ. of Ca lif., La wrence Radia tion Laborat ory, UC RL-7167. J une 13, 1963.
41. Roder, H. M., “Measur ements of the Specific Heats, C s, and C v, of Dense Gaseous and Liquid Ethane,” J. Res. Nat. B ur. Stand. (U. S .) 80A, 739 (1976). 42. Scott, R. B.; Meyers, C. H.; Rands, R. D.; B rickwedde, F. G.; B ekkeda hl, N., J . Res. NB S, 35, 39 (1945).
19. Engineering Sciences D ata Unit, “EDSU , Engineering S ciences Data ,” EDSU International Ltd., London.
43. St ull, D. R.; Westrum, E . F.; Sinke, G. C ., “The Chemical Thermodynam ics of Organic C ompounds,” J ohn Wiley & Sons, In c., New York, 1969.
20. Flebbe, J . L.; Ba rclay, D. A.; Manley, D. B ., J . Chem. Eng. Da ta, 27, 405 (1982). 21. Fra ncis, A. W., J . Chem. Eng. Da ta , 5, 534 (1960). 22. Ginnings, D. C .; Furuka wa , G. T., J . Am. Chem. S oc. 75, 522 (1953).
44. “TRC Therm odyna mic Tab les ( Hy drocar bons,” Thermody na mics Research C enter, Texas A&M Univer sity S yst em: College St a tion, Texas.
23. Gira rd, G., “Recommended Reference Materia ls of the Realization of Physicochemical Properties,” Chapter 2, Marsh, K. N. Ed.; B lackwell Sci. Pu b.: London, 1987.
45. “TRC Thermodyna mic Ta bles ( Non-Hydroca rbons,” Therm odyna mics Research C enter, Texas A&M U niversity S ystem: College Sta tion, Texas.
23-9