Integrantes: Joselin Lapaca Martínez Martínez Leydi Jimena Guzmán Marlene Pérez Junny Padilla Karem Villa Cruz
Petroquímica es la ciencia y la técnica correspondiente a la petroleoquímica. La petroleoquímica es lo perteneciente o relativo a la industria que utiliza el petróleo o el gas natural como materias primas para la obtención de productos químicos. Petroquímica es la extracción de cualquier sustancia química a partir de combustibles fósiles. Estos incluyen combustibles fósiles purificados como el metano, el butano, el propano, la gasolina, el queroseno, el gasoil, el combustible de aviación, así como pesticidas, herbicidas, fertilizantes y otros artículos como los plásticos, el asfalto o las fibras sintéticas. La petroquímica es la industria dedicada a obtener derivados químicos del petróleo y de los gases asociados. Los productos petroquímicos incluyen todas las sustancias químicas que de ahí se derivan. La industria petroquímica moderna data de finales del siglo XIX. La mayor parte de los productos petroquímicos se fabrican a partir de un número relativamente pequeño de hidrocarburos, entre ellos el metano, el etano, propano, butano y los aromáticos que derivan del benceno, etc.
Petroquímica es la ciencia y la técnica correspondiente a la petroleoquímica. La petroleoquímica es lo perteneciente o relativo a la industria que utiliza el petróleo o el gas natural como materias primas para la obtención de productos químicos. Petroquímica es la extracción de cualquier sustancia química a partir de combustibles fósiles. Estos incluyen combustibles fósiles purificados como el metano, el butano, el propano, la gasolina, el queroseno, el gasoil, el combustible de aviación, así como pesticidas, herbicidas, fertilizantes y otros artículos como los plásticos, el asfalto o las fibras sintéticas. La petroquímica es la industria dedicada a obtener derivados químicos del petróleo y de los gases asociados. Los productos petroquímicos incluyen todas las sustancias químicas que de ahí se derivan. La industria petroquímica moderna data de finales del siglo XIX. La mayor parte de los productos petroquímicos se fabrican a partir de un número relativamente pequeño de hidrocarburos, entre ellos el metano, el etano, propano, butano y los aromáticos que derivan del benceno, etc.
A partir del gas natural se produce el gas de síntesis que permite la producción a gran escala de hidrógeno, haciendo posible la producción posterior de amoniaco por su reacción con nitrógeno, y de metanol, materia prima en la producción de metil-terbutil-éter, entre otros compuestos. Del etileno se producen un gran número de derivados, como las diferentes clases de polietileno, cloruro de vinilo, compuestos clorados, oxidos de etileno, monómeros de estireno, entre otros, que tienen aplicación en plásticos, recubrimientos, moldes, etc. Por deshidrogenación de butenos, o como subproducto del proceso de fabricación de etileno se obtiene el 1.3-butadieno que es una materia prima fundamental en la industria de los elastómeros, para la fabricación de llantas, sellos, etc. Del propileno se producen compuestos como alcohol isopropílico, polipropileno y acrilonitrilo, que tienen gran aplicación en la industria de solventes, pinturas y fibras sintéticas.
La utilización del petróleo y el gas natural como fuentes de productos petroquímicos ha sido posible gracias al desarrollo de técnicas de transformación de su estructura molecular. El crecimiento de la demanda de los productos petroquímicos se ha debido al desplazamiento de las materias primas tradicionales por las nuevas materias sintéticas: Industria textil: Fibras sintéticas que suplen a la lana y el algodón.
Industria del caucho: nuevos productos con iguales propiedades y a veces superiores a las del caucho natural.
Industria de envases y embalajes: el polietileno como alternativa al cristal y al celofán, plásticos para la construcción, por su gran resistencia a la corrosión y a las inclemencias del tiempo, por su ligereza y flexibilidad.
O C L O I E L M D L Í S O U R A R Q P A O A S R T E T E D E P
Fabricación de materias de base o productos de primera generación. Partiendo del petróleo y del gas natural, se obtienen diversos productos básicos que son los pilares de la petroquímica. Los dos grupos más importantes son las olefinas y los aromáticos. Introducción de átomos de ciertos componentes (oxigeno, nitrógeno y azufre) en los productos básicos, para obtener productos de segunda generación (productos intermedios). Elaboración de productos de consumo. Conjugando los productos básicos e intermedios. Su diversidad es asombrosa y alcanza una casi infinita variedad de productos habituales de consumo (fibras, cauchos, plásticos, detergentes, pinturas, barnices, abonos, anticongelantes, perfumes, explosivos, aislantes, alimentos, etc.)
La inmensa variedad de productos terminados de la Petroquímica puede clasificarse en cinco grupos: · Los plásticos. · Las fibras sintéticas. · Los cauchos sintéticos o elastómeros. · Los detergentes · Los abonos nitrogenados
El nombre común de plásticos se debe a la propiedad que tienen de ser deformables por plasticidad (frente a la elasticidad), bajo la influencia del calor, la presión o de ambos a la vez. Este término abarca productos que difieren entre sí por su estructura química, sus propiedades físicas, sus aplicaciones prácticas y sus procesos de fabricación. Hay tres grandes familias de plásticos: los termoplásticos, los termoendurecibles y los poliuretanos.
Termoplásticos: Películas fotográficas, bolsas, papel de envasar, tuberías, canalizaciones, construcción en general, embalajes, muebles, juguetes, aislamientos, electrónica, PVCs para revestimientos, tuberías, válvulas, flores artificiales, botas, etc.
Termoendurecibles: Aislamientos eléctricos, paneles decorativos, utensiliosdomésticos, etc.
Poliuretanos: Productos con apariencia de vidrio, espumas extraligeras
Las fibras sintéticas se obtienen por hilado de sustancias fundidas. La primera que se comercializó fue el nailon, en 1938. Desde entonces, el aumento de la demanda no ha dejado de crecer. Por su volumen, representan la segunda materia en importancia de la Petroquímica, tras los plásticos.
Poliamidas Lencería fina, alfombras, cortinas, trajes de baño, recubrimiento interior de neumáticos
Poliéster Trajes, corbatas, impermeables, visillos, alfombras
Acrílicas Sustituyen a la lana: ovillos y moquetas, entre otros usos
Es el suministrador principal de la industria del automóvil, en un elemento tan fundamental como los neumáticos. También se emplean, en algunas de sus variedades, para los calzados y para la construcción de recubrimientos de terrazas y tejados
Son productos solubles en el agua, cuya propiedad fundamental consiste en poder modificar la tensión superficial de los líquidos en los que se encuentra, disminuyendo o eliminando la suciedad contenida en ellos. Sus usos principales están centrados en el hogar, en forma de polvos, escamas o líquidos que sirven para lavar la ropa y la vajilla. Para suprimir sus efectos contaminantes en las aguas residuales, los detergentes se fabrican ahora a base de productos biodegradables, que son rápidamente destruidos por los microorganismos que viven en los ríos
La agricultura, que hasta hace poco sólo utilizaba el estiércol natural, ha sufrido una gran revolución gracias a la química. El ácido sulfúrico, los fosfatos y la síntesis del amoniaco, han puesto en circulación una gama muy amplia de abonos químicos que mejoran el rendimiento de la agricultura. La petroquímica, mediante el suministro de hidrógeno a bajo precio para la producción de amoniaco, contribuye a promover el empleo masivo del nitrógeno asimilable en sus tres variantes: nitratos, sulfatos y urea y la infinidad de abonos complejos. Además, la petroquímica proporciona a la agricultura productos fitosanitarios tales como herbicidas, fungicidas e insecticidas
El proceso intensivo de la industria petroquímica está demandando cambios en la gestión medioambiental, para proteger el agua, el suelo y la atmósfera de contaminantes procedentes de las refinerías. Lenntech proporciona diferentes tipos de tecnologías y procesos para el agua residual y el procesado del agua de las industrias de refinerías. Refinerías de petróleo usan relativamente grandes volúmenes de agua, especialmente en procesos de refrigeración Procesos de refrigeración . De hecho, las aguas residuales de la industria petroquímica contienen generalmente productos químicos peligrosos, como los hidrocarburos, el fenol o amoniaco entre otros. Debajo veremos algunos de los residuos de las refinerías de petróleo y temas del proceso de aguas.
Contaminación
Cantidades Aproximadas
Sistemas de refrigeración aguas residuales contaminadas
3,5-5 m3 de agua residual generada por tonelada de petróleo bruto DBO 150-250 mg/l COD 300-600 mg/l fenol 20-200 mg/l aceite 100-300 mg/l (agua del desaltere) aceite 5000 mg/l en el fondo del tanque benceno 1-100 mg/l metales pesados 0,1-100 mg/l 3 a 5 kilogramos por tonelada de petróleo bruto (80 % se debería considerar como desechos peligrosos debido a la presencia de metales pesados y sustancias orgánicas tóxicas) 0,5 a 6 kg/ton petróleo bruto , BTX ( benceno, tolueno y xileno) 0,75 a 6 g/ton de petróleo bruto Óxidos de sulfuro 0,2-0,6 kg/ton de petróleo bruto Óxidos del nitrógeno 0,006-0,5 kg/ton de petróleo bruto
Residuos sólidos y lodos Emisiones de COV Otras emisiones
Sales en la materia base (corrosión y problemas de suciedad) y los compuestos aromáticos (fuente de COV): Las refinerías del petróleo no les gustan las sales en su materia base puesto que éstas corroen y ensucian el equipamiento del proceso. El primer paso de la refinación es la desalación donde una colada de agua caliente extrae las sales. Si no es común utilizar inhibidores antioxidantes o que eviten la corrosión en el combustible. Si la materia base contiene productos aromáticos con buenas solubilidades como el benceno o el tolueno entonces algunos serán desalados en el efluente y este será la mayor fuente compuestos orgánicos volátiles en el agua a gua residual de una refinería.
Compuestos aromáticos, orgánicos, aceites, grasas eliminados: Un tratamiento directo de las aguas residuales es con el carbón activado reduce el contenido de los compuestos aromáticos debajo de los límites aceptables. Además, el carbón también captura el aceite, la grasa y otros compuestos orgánicos. El carbón activado también se utiliza para quitar los hidrocarburos pesados del hidrógeno y de corrientes de gases ligeros en la refinería. (tratamiento del gas de la refinería). Otro uso del carbón activado es realzar el lodo activado de la refinería de petróleo. Esto está determinado por la adición de CAA (carbón activado accionado) en el lodo
Fenol y nitrógeno amoniacal eliminado con un tratamiento biológico En orden de eliminar el Fenol y el nitrógeno la mejor solución es usar un tratamiento biológico gracias al peróxido de hidrógeno por ejemplo. Además usando un catalizador como el H 2O2 es posible eliminar COD, DBO5 y la toxicidad de las aguas residuales. Los fenoles son transformados en compuesto menos biodegradables los cuales pueden ser eliminados por subsecuente coagulación y precipitación
Los contaminantes orgánicos e inorgánicos de aguas residuales de la refinería: Un proceso para eliminar contaminantes orgánicos e inorgánicos solubles e insolubles de aguas residuales de la refinería, el empleo de corrientes la ultrafiltración y la ósmosis inversa es proporcionada. Antes del paso de la ultra filtración, primero las aguas residuales se pasan a través de un sistema que las ablanda para quitar cationes metálicos bivalentes y trivalentes antes de ser pasado al paso de ósmosis inversa para evitar que se ensucie.
Separación de la fase aceitosa del agua:
Uno de los mayores temas de la industria petroquímica es también eliminar el aceite del agua después de los procesos o en caso de escapes que pueden aparecer en la red de tuberías. Para resolver el desafío usted puede utilizar nuestra tecnología de separación por membranas. En el acontecimiento de la limpieza alcalina de petroleros, los niveles de contaminación por emulsionantes son extremadamente altos. La corrección del pH es importante y puede ser necesario utilizar un coagulante mineral por ejemplo
Lluvia de agua aceitosa:
La eliminación del aceite por la filtración o la flotación depende de su solubilidad, del nivel de DBO5 y la concentración de fenoles. El agua puede ser biológicamente purificada. Después que un tratamiento terciario se puede realizar una transformación para eliminar los SS y los fenoles residuales.
Refinerías de petróleo y metales pesados:
De toda la clase de agua tal como agua del proceso diversos metales pesados deben ser quitados. La tabla de abajo muestra que metales pesados están principalmente presente: Cd
Cr
Cu
++
++
+
Hg
Pb
Ni
++
+
Sn
Zn
++
Lenntech se ocupa también del tratamiento del olor y tratamiento del aire en la industria petroquímica
Agua del proceso:
Esta agua tiene un contenido salino y de emulsión muy alto y puede contentar contaminación por S 2-. Se puede causar una oxidación catalítica preliminar antes de la eliminación por floculación-flotación y purificación biológica. Dos procesos se utilizan principalmente: - purificación fisicoquímica Esta técnica combina la filtración rápida del agua de lluvia aceitosa y de la FAD , la cual trata efluentes del lavado del filtro y agua emulsionada de la desalación y otros procesos. - reciclaje Separación de caudales del agua de lastre (salina pero baja en DOB5) y reciclaje parcial, después de dos estados de purificación biológica del proceso del agua y la lluvia aceitosa del agua (bajo contenido salino) para la torre de refrigeración.
Los productos petrolíferos se almacenan en el suelo debido a la preocupación por la seguridad, siempre pensando en proteger los depósitos de atentados; además, es también una solución económica a los problemas de los grandes almacenamientos, que evita inmovilizar terrenos de valor o desfigurar el paisaje. Esta idea se presenta, hoy, de formas muy diversas: Depósito enterrado En lugar de construir cubas, cubetas y otros recipientes al ras del suelo, es muy fácil, con cierto suplemento de coste, construirlas en fosas que se rellenan a continuación, o en cavernas, canteras o minas de sal. Esta técnica no sólo es utilizada por las pequeñas instalaciones (estaciones de servicio, calefacción doméstica), también para las reservas militares estratégicas. Almacenamiento en la sal El subsuelo encierra inmensos yacimientos de sal gema, en los cuales se pueden crear cavidades explotables como almacenamiento subterráneo de productos petrolíferos líquidos. Es suficiente perforar pozos por los cuales se inyecta agua dulce de lavado, que disuelve la sal y vuelva a subir a la superficie en forma de salmuera; al cabo de un cierto tiempo, se obtiene en la base de cada pozo una gran bolsa rellena de esta salmuera, que es agua saturada de sal. El pozo sirve a continuación para el rellenado de la cavidad por desplazamiento de la salmuera que es recogida en la superficie en un estanque a suelo abierto y luego para la recuperación del producto almacenado, empujado hacia lo alto por una reinyección de agua o de salmuera. El excedente de salmuera puede ser tratado para recuperar la sal o echado al mar ya sea con un curso de agua y respetando el
Caverna barrenada Utilizando la excavación con explosivos y otras técnicas de perforación de toneles, es posible realizar galerías subterráneas de almacenamiento a una profundidad que debe ser tanto mayor cuanto más volátil sea el producto, a fin de que la presión hidrostática que reina en el subsuelo sea siempre superior a la tensión de vapor de este último. Mina abandonada Una antigua mina de hierro ya abandonada puede ser puesta de nuevo en servicio a fin de servir como almacenamiento, por ejemplo: para gas-oil. Yacimiento en formación El gas puede ser almacenado bajo presión en rocas porosas subterráneas, bien se trate de yacimientos agotados o estructuras geológicas vacías que presenten las características requeridas.
El petróleo crudo no es directamente utilizable, salvo a veces como combustible. Para obtener sus diversos subproductos es necesario refinarlo, de donde resultan, por centenares, los productos acabados y las materias químicas más diversas. El petróleo crudo es una mezcla de diversas sustancias, las cuales tienen diferentes puntos de ebullición. Su separación se logra mediante el proceso llamado "destilación fraccionada". Esta función está destinada a las "refinerías", factorías de transformación y sector clave por definición de la industria petrolífera, bisagra que articula la actividad primaria y extractiva con la actividad terciaria. El término de refino, nos fue heredado en el siglo XIX, cuando se contentaban con refinar el petróleo para lámparas, se reviste hoy de tres operaciones: La separación de los productos petrolíferos unos de otros, y sobre la destilación del crudo (topping).
La depuración de los productos petrolíferos unos de otros, sobretodo su desulfuración. La síntesis de hidrocarburos nobles mediante combinaciones nuevas de átomos de carbono y de hidrógeno, su deshidrogenación, su isomerización o su ciclado, obtenidos bajo el efecto conjugado de la temperatura, la presión y catalizadores apropiados.
Este es el primer proceso que aparece en una refinería. El petróleo que se recibe por ductos desde las instalaciones de producción, se almacena en tanques cilíndricos de gran tamaño, de donde se bombea a las instalaciones de este proceso. El petróleo se calienta en equipos especiales y pasa a una columna de destilación que opera a presión atmosférica en la que, aprovechando la diferente volatilidad de los componentes, se logra una separación en diversas fracciones que incluyen gas de refinería, gas licuado de petróleo (LPG), nafta, queroseno (kerosene), gasóleo, y un residuo que corresponde a los compuestos más pesados que no llegaron a evaporarse En una segunda columna de destilación que opera a condiciones de vacío, se logra la vaporización adicional de un producto que se denomina gasóleo de vacío, y se utiliza como materia prima en otros procesos que forman parte de las refinerías para lograr la conversión de este producto pesado en otros ligeros de mayor valor. En este proceso, el petróleo se separa en fracciones que después de procesamientos adicionales, darán origen a los productos principales que se venden en el mercado: el gas LP (comúnmente utilizado en las estufas domésticas), gasolina para los automóviles, turbosina para los aviones jet, diesel para los vehículos pesados y combustóleo para el calentamiento en las operaciones industriales. Pero estos productos tienen que cumplir con una serie de especificaciones que aseguren su comportamiento satisfactorio.
Originalmente, las especificaciones tuvieron un enfoque eminentemente técnico, como el número de octano de la gasolina, o el de cetano del diesel, o el punto de humo del queroseno, o la viscosidad del combustóleo; actualmente, las consideraciones de protección ambiental han incorporado muchos más requerimientos, limitándose, por ejemplo en la gasolina, el contenido del azufre (este compuesto al quemarse, produce dióxido de azufre que al pasar a la atmósfera se oxida, y con el agua da origen a la lluvia ácida), el benceno (que es un hidrocarburo que tiene carácter cancerígeno), las olefinas y los aromáticos (que son familias de hidrocarburos altamente reactivas en la atmósfera, promotoras de la formación de ozono); la presión de vapor (que debe limitarse para reducir las emisiones evaporativas en los automóviles y gasolineras), e inclusive se requiere la presencia de compuestos oxigenados que no ocurren naturalmente en el petróleo (estos compuestos favorecen la combustión completa en los motores automotrices). Además de la destilación atmosférica y al vacío, los procesos de refinación más importantes son los siguientes:
En forma generalizada, en los combustibles de hoy día se reducen los compuestos de azufre, para evitar daños ambientales por lluvia ácida. Al proceso que se utiliza para este propósito y al cual se someten las diferentes fracciones que se obtienen en la destilación atmosférica y al vacío se le denomina hidrotratamiento o hidrodesulfuración, por estar basado en el uso de hidrógeno que reacciona con los compuestos de azufre presentes en los hidrocarburos para formar ácido sulfhídrico; en un procesamiento posterior, este compuesto se convierte en azufre elemental sólido que tiene una importante aplicación industrial. En el proceso ocurren reacciones adicionales que permiten complementar el tratamiento al eliminar también compuestos nitrogenados, convertir las olefinas en compuestos saturados y reducir el contenido de aromáticos. El hidrotratamiento requiere de altas presiones y temperaturas, y la conversión se realiza en un reactor químico con catalizador sólido constituido por gg-alúmina impregnada con molibdeno, níquel y cobalto.
Los cortes de nafta que se obtienen por destilación directa de cualquier tipo de petróleo presentan un número de octano muy bajo (45 a 55), y serían inaplicables para la gasolina que requieren los automóviles modernos (octanajes de 80 a 100). Es necesario entonces modificar la estructura química de los compuestos que integran las naftas, y para ello se utiliza el proceso de reformación en el que a condiciones de presión moderada y alta temperatura, se promueven reacciones catalíticas conducentes a la generación de compuestos de mayor octano como son los aromáticos y las isoparafinas. Simultáneamente en las reacciones se produce hidrógeno, que se utiliza en la misma refinería en los procesos de hidrotratamiento. Las reacciones son promovidas por catalizadores basados en gg-alúmina como soporte de metales activos (platino-renio o platinoestaño).
Los isómeros son moléculas que tienen el mismo tipo y cantidad de átomos, pero con diferente estructura en su conformación. En el caso particular de las parafinas, que son hidrocarburos constituidos por cadenas de átomos de carbono asociados a hidrógeno, se tienen para una misma fórmula general (CnH(2n+2)) una gran variedad de estructuras; cuando la cadena de átomos de carbono es lineal, el compuesto se denomina parafina normal, y si la cadena es ramificada, el compuesto es una isoparafinas. En el grupo de parafinas que forman parte de las gasolinas, las isoparafinas tienen número de octano superior a las parafinas normales, de tal manera que para mejorar la calidad del producto se utiliza un proceso en el que las parafinas normales se convierten en isoparafinas a través de reacciones de isomerización. La práctica es separar por destilación la corriente de nafta en dos cortes, ligero y pesado; el ligero que corresponde a moléculas de cinco y seis átomos de carbono se alimenta al proceso de isomerización, mientras que el pesado, con moléculas de siete a once átomos de carbono, es la carga al proceso de reformación antes descrito. Las reacciones de isomerización son promovidas por catalizador de platino soportado en gg-alúmina
Este es un proceso de conversión de hidrocarburos pesados presentes en los gasóleos de vacío, que permite producir gasolina, y en consecuencia aumentar el rendimiento de este combustible en las refinerías, disminuyendo la producción de residuales. El proceso FCC se basa en la descomposición o rompimiento de moléculas de alto peso molecular; esta reacción se promueve por un catalizador sólido con base en zeolitas en presentación pulverizada, que se incorpora a los hidrocarburos de carga en un reactor de tipo tubular con flujo ascendente. A la salida del reactor, el catalizador se separa de los productos de reacción a través de ciclones, y el coque que se genera y adhiere al mismo por las altas temperaturas de reacción, se quema en un equipo especial antes de recircularse al reactor; la energía liberada en el quemado sirve para dar parte del calentamiento de la corriente de carga. En el proceso se producen, además de gasolina, productos más ligeros como gas seco (metano y etano) y fracciones de 3 a 5 átomos de carbono, de carácter olefínico, que se utilizan como materia prima en la producción de éteres y gasolina alquilada en procesos subsecuentes de la refinería. También se genera un producto pesado rico en aromáticos, conocido como aceite cíclico ligero, que se procesa en las hidrotratadoras de la fracción diesel, y otro denominado aceite decantado que se incorpora al combustóleo.
Con el propósito de reducir las emisiones de monóxido de carbono e hidrocarburos no quemados de los vehículos con motor a gasolina, se agregan a este combustible componentes que contienen oxígeno en su molécula, como es el caso de los éteres. Estos componentes se dosifican en la gasolina para obtener un contenido de oxígeno de 1 a 2% en peso y, en virtud de su alto número de octano, contribuyen al buen desempeño de este combustible en los motores. Los componentes oxigenados utilizados en la formulación de gasolinas en México son el MTBE (metil tert-butil éter) y en menor grado el TAME (tert-amil metil éter). Estos éteres se obtienen en las refinerías a partir de alcohol metílico, producido en los complejos petroquímicos, y de las olefinas ligeras producidas en los procesos de desintegración catalítica FCC, con el beneficio adicional de reducir el contenido de estas olefinas ligeras (importantes contribuyentes a la formación de ozono en la atmósfera) en la gasolina.
El proceso de alquilación es una síntesis química por medio de la cual se unen olefinas ligeras (propileno y/o butenos producidos en el proceso FCC antes descrito) con isobutano (proveniente de la fracción de gas LP recuperada en la destilación atmosférica del petróleo y complementada con corrientes equivalentes del procesamiento del gas natural). Al resultado de la síntesis se le denomina alquilado o gasolina alquilada, producto constituido por componentes isoparafínicos cuyos puntos de ebullición se ubican dentro del intervalo de la gasolina. En sus inicios el proceso tuvo como objetivo obtener un combustible aplicable a aviones de turbohélice, y aumentar el rendimiento de gasolina a partir de las diversas corrientes ligeras producidas en la refinería, pero actualmente su objetivo es producir una fracción cuyas características tanto técnicas (alto octano) como ambientales (bajas presión de vapor y reactividad fotoquímica) la hacen hoy en día, uno de los componentes más importantes de la gasolina reformulada. La alquilación es un proceso catalítico que requiere de un catalizador de naturaleza ácida fuerte, y se utilizan para este propósito ya sea ácido fluorhídrico o ácido sulfúrico
La cada vez mayor disponibilidad relativa de crudo pesado, con altos contenidos de azufre y metales y bajos rendimientos de destilados, hace necesario el contar con unidades de proceso que permitan modificar estos rendimientos en conformidad con las demandas, produciendo combustibles con calidad ecológica. Esto apunta hacia la introducción de procesos de conversión que aumenten la producción de destilados y disminuyan los residuales pesados. A este tipo de procesos se les ha llamado en su conjunto procesos de fondo de barril, y constituyen ya una sección específica de la mayor parte de las refinerías. En México, esta tendencia se justifica por la necesidad de procesar cada vez mayores proporciones de crudo tipo Maya. Entre las opciones de procesamiento, se tienen las orientadas a la producción de combustóleo de bajo contenido de azufre, utilizando el proceso de hidrotratamiento de residuos, aunque se empiezan a generalizar los esquemas de alta conversión, basados en hidrodesintegración profunda o en coquización, para aumentar el rendimiento de destilados a expensas de la desaparición del combustóleo. Los procesos de hidrotratamiento se basan en la reacción catalítica del hidrógeno con los compuestos de azufre a condiciones severas de presión y temperatura, y con catalizadores de características muy especiales. Los procesos de hidrodesintegración se diferencian fundamentalmente en el tipo de catalizador, que se diseña para orientar las reacciones a la descomposición de las moléculas para generar productos ligeros; la presencia del hidrógeno permite que estos productos resulten de carácter no olefínico y bajos en azufre. Por otro lado, los procesos de coquización consisten en la desintegración térmica no catalítica de los residuales; la ausencia de hidrógeno hace que los productos del proceso sean ricos en olefinas y azufre, requiriendo entonces procesamiento ulterior en las unidades de hidrotratamiento de destilados. Simultáneamente se produce coque de petróleo, compuesto constituido principalmente de carbón. Otro proceso basado en la descomposición térmica, bastante antiguo pero aún presente en muchas refinerías, es el de reducción de viscosidad, orientado a la autogeneración de diluentes del combustóleo para reducir el uso de destilados valiosos que también se usan para este propósito.
Dentro de la industria en general, los lubricantes juegan un papel fundamental, pues evitan que el contacto continuo entre partes móviles de una máquina provoque esfuerzos por fricción que puedan llevarla a un mal funcionamiento e inclusive a su destrucción. Durante la refinación del petróleo es posible, si se desea, producir bases de lubricantes, las cuales deben cumplir en forma muy estricta con el rango de viscosidad que las caracteriza. La materia prima para obtener las bases de lubricantes es el residuo de la destilación atmosférica del petróleo, el cual se redestila a condiciones de vacío para generar cortes específicos que se denominan: especialidades, neutro ligero y neutro, generándose además en otro proceso de desasfaltización del residuo de vacío por extracción con solventes, cortes adicionales que se denominan: neutro pesado, pesado y cilindros. En su conjunto, los cortes lubricantes requieren de un procesamiento posterior que involucra plantas de desaromatización y de desparafinación, indispensables para ajustar los índices de viscosidad, o sea la variación de la viscosidad del lubricante con la temperatura, que es la propiedad fundamental que define su calidad. Simultáneamente se produce parafina suave y parafina dura.
El gas natural está constituido principalmente por metano con proporciones variables de otros hidrocarburos (etano, propano, butanos, pentanos y gasolina natural) y de contaminantes diversos. El objetivo del procesamiento del gas natural es eliminar los contaminantes, incluyendo los componentes corrosivos (agua y ácido sulfhídrico, este último también por su carácter contaminante), los que reducen el poder calorífico (dióxido de carbono y nitrógeno) y los que forman depósitos sólidos a bajas temperaturas (nuevamente agua y dióxido de carbono), para después separar los hidrocarburos más pesados que el metano, que constituyen materias primas básicas para la industria petroquímica. Las etapas normales en el procesamiento del gas natural son la deshidratación (eliminación de agua, usualmente con adsorbentes sólidos, como alúmina o mallas moleculares), el endulzamiento (eliminación de ácido sulfhídrico y dióxido de carbono con soluciones absorbentes en un esquema similar al descrito para los procesos de endulzamiento de gas de refinería), y la recuperación criogénica de etano e hidrocarburos más pesados (condensación de estos componentes a bajas temperaturas, del orden de 100oC, y destilación fraccionada de los líquidos condensados). Otras etapas complementarias son el fraccionamiento de los hidrocarburos recuperados y la conversión del ácido sulfhídrico a azufre.
Además de los combustibles, del petróleo se obtienen derivados que permiten la producción de compuestos químicos que son la base de diversas cadenas productivas que terminan en una amplia gama de productos conocidos genéricamente como productos petroquímicos, que se utilizan en las industrias de fertilizantes, plásticos, alimenticia, farmacéutica, química y textil, entre otras. Las principales cadenas petroquímicas son las del gas natural, las olefinas ligeras (etileno, propileno y butenos) y la de los aromáticos. La cadena del gas natural se inicia con el proceso de reformación con vapor por medio del cual el metano reacciona catalíticamente con agua para producir el llamado gas de síntesis, que consiste en una mezcla de hidrógeno y óxidos de carbono. El descubrimiento de este proceso permitió la producción a gran escala de hidrógeno, haciendo factible la producción posterior de amoníaco por su reacción con nitrógeno, separado del aire. El amoníaco es la base en la producción de fertilizantes. También a partir de los componentes del gas de síntesis se produce metanol, materia prima en la producción de metil-terbutil-éter y teramil-metil-éter, componentes de la gasolina; otra aplicación es su uso como solvente en la industria de pinturas. La cadena del etileno se inicia a partir del etano recuperado del gas natural en las plantas criogénicas, el cual se somete a un proceso de descomposición térmica para producir etileno principalmente, aunque también se forma hidrógeno, propano, propileno, butano, butilenos, butadieno y gasolina pirolítica. Del etileno se producen un gran número de derivados, como las diferentes clases de polietilenos cuyas características dependen del proceso de polimerización; su aplicación se encuentra en la producción de plásticos, recubrimientos, moldes, etc.
Proceso Destilación
Absorción
Agente Adición/remoción de calor Solvente
Adsorción
Absorbente
Cristalización Remoción de calor Filtración
Material filtrante
Agotamiento Gas de arrastre Permeación
Membranas
Ciclones
Fuerza inercial
Ejemplos de aplicaciones Separación del petróleo crudo en sus destilados. Eliminación de CO2 y H2S hidrocarburos líquidos y gaseosos. Separación de parafinas normales e isoparafinas. Eliminación de parafinas en el proceso de producción de lubricantes. Remoción de sólidos en corrientes de carga y en productos refinados. Recuperación de hidrocarburos de catalizador recirculado en plantas FCC. Recuperación de hidrógeno de corrientes gaseosas. Remoción de finos de catalizador en el proceso FCC.
Productos Livianos (denominados así por su menor densidad y su alta volatilidad)
Productos Pesados
Gas licuado (lpg)
1%Y3%
Gasolinas
21 %
Diesel
22 %
Queroseno (kerosene)
8%
Diesel marino
8%
Combustóleo o bunker
40 %
El etileno o eteno, CH2:CH2, peso molecular 28,05 grs., es el hidrocarburo olefínico o insaturado más sencillo. Es un gas incoloro e inflamable, con olor débil y agradable. Se usa mucho como materia prima en la industria química orgánica sintética. La molécula es plana y está formada por cuatro enlaces simples C-H y un enlace doble C=C, que le impide rotar excepto a altas temperaturas. Las reacciones químicas del etileno pueden ser divididas en aquellas que tienen importancia comercial y otras de interés puramente académico. Esta división es necesariamente arbitraria y las reacciones incluidas en la segunda categoría pueden llegar a pertenecer a la primera en el futuro. La primera categoría comprende en orden de importancia: Polimerización La polimerización del etileno representa el segmento más grande de la industria petroquímica con el polietileno ranqueado en el primer lugar como consumidor del etileno. El etileno (99,9 % de pureza), es polimerizado bajo específicas condiciones de temperatura y presión y con la presencia de un iniciador catalítico, generándose una reacción exotérmica.
Aplicaciones y productos principales y secundarios del etileno El etileno ocupa el segmento más importante de la industria petroquímica y es convertido en una gran cantidad de productos finales e intermedios como plásticos, resinas, fibras y elastómeros (todos ellos polímeros) y solventes, recubrimientos, plastificantes y anticongelantes. A continuación haremos una descripción de los compuestos que se obtienen industrialmente a partir del etileno: Polietileno (PE) Es un termoplástico que se caracteriza por ser resistente, flexible y poco denso. Como ejemplos de aplicación se pueden nombrar recipientes, tubos flexibles, sogas y películas. Hay dos clases de Polietileno; el de alta densidad (0,941-0,970 grs/ml) que se usa para tuberías y desagües, especialmente para formas corrugadas de gran diámetro. Y el de baja densidad (0,910-0,940 grs/ml) que se utiliza en la fabricación de películas, cables, alambres y recubrimientos de papel. Policloruro de vinilo Se obtiene por adición a partir del cloruro de etileno. Sus principales características son ser resistente, algo elástico y poco desgastable; es por esto que se utiliza en revestimientos de suelos, paredes y tanques, caños y juntas. POLIESTI IENO (PS) Se obtiene a partir de estireno o fenileteno. Se caracteriza por ser transparente y rígido por lo que se lo puede utilizar en inyección, extrusión y piezas termoformadas (envases desechabas, interiores de heladera) y también en aislamientos (expandido).
Poliacrilonitrilo Se utiliza como monómero el acrilonitrilo o cianoeteno. Es un compuesto fuerte, fácil de teñir y puede hilarse. Estas características lo hacen apto para la fabricación de fibras textiles (orlon, cashmilon, Dralon). Politetrafloruroeteno (teflón, fluon) Se fabrica a partir de tetrafluoroeteno. Es un polímero muy inerte, no adhesivo y autolubricante, además de su gran resistencia a altas temperaturas. Como ejemplos de su aplicación se pueden nombrar juntas, bujes, y revestimientos de utensilios de cocina. Oxido de etileno Es un gas incoloro o un líquido incoloro, movible e inflamable. Se usa mucho como intermedio químico en la fabricación de glicol etilénico, glicoles polietilénicos y sus derivados, etanolaminas, cianhidrina etilénica y detergentes no iónicos. Se usa también como fumigante. De sus derivados es el óxido propilénico el más importante de los óxidos de alquilenos, y el óxido de estireno el más importante de los derivados aromáticos.
Tipos de Polietileno En general hay dos tipos de polietileno: De baja densidad (LDPE) De alta densidad (HDPE). El de baja densidad tiene una estructura de cadena enramada, mientras que el polietileno de alta densidad tiene esencialmente una estructura de cadena recta. El polietileno de baja densidad fue producido comercialmente por primera vez en el Reino Unido en 1939 mediante reactores autoclave ( o tubular) necesitando presiones de 14.500 psi ( 100 Mpa) y una temperatura de unos 300 ºC. El polietileno de alta densidad fue producido comercialmente por primera vez en 1956-1959 mediante los proceso de Philips y Ziegler utilizando un catalizador especial. En estos procesos la presión y temperatura para la reacción de conversión del etileno en polietileno fueron considerablemente más bajas. Por ejemplo, el proceso Philips opera de 100 a 150 ºC y 290 a 580 psi ( 2 a 4 MPa) de presión. Sobre 1976 se desarrolló un nuevo proceso simplificado a baja presión para la producción de polietileno, el cual utiliza una presión de 100 a 300 psi ( 0,7 a 2 Mpa) y una temperatura de unos 100 ºC. El polietileno producido puede describirse como un polietileno lineal de baja densidad (LLDPE) y tiene una estructura de cadena lineal con ramificaciones laterales cortas, inclinadas
El polietileno es un polímero simple cuya estructura química es la cadena repetitiva (CH2-CH2)n. Es un plástico barato e inerte, cuyas propiedades químicas son las de un alcano de alto peso molecular. Existen dos tipos de polietileno en el mercado: polietileno de alta densidad y polietileno de baja densidad . Se diferencian en que el primero tiene estructura lineal, con lo cual es más rígido y denso, y el segundo tiene estructura ramificada. Esto marca cierta diferencia en las aplicaciones: Polietileno de baja densidad Polietileno de alta densidad Bolsas de todo tipo Bolsas para supermercado Envases alimenticios Envases de todo tipo Films Tambores Películas para el agro Rubro automotriz Tuberías para riego Tuberías También se suele encontrar un término intermedio que es el polietileno de baja densidad lineal, que siendo lineal posee ramificaciones cortas.
El presente trabajo se basará en el proceso para fabricar polietileno de alta densidad a partir del etanol (producto de la caña de azúcar). El hecho de que la materia prima del proceso sea etanol, y no gas natural tal como se puede observar en el árbol petroquímico, da el nombre a este producto de polietileno verde. Esto se debe a que la materia prima es renovable, lo que le da también esa característica al producto, sin esta virtud tener relación alguna con la biodegradabilidad del mismo. El proceso de fabricación del polietileno verde es reciente y novedoso, a tal punto que una empresa brasilera denominada Braskem montó la primera planta de este producto en San Pablo e inició su funcionamiento el 24 de Septiembre del 2010. La inversión total fue de unos 250 millones de dólares y la capacidad de producción es de unas 200.000 toneladas al año de etileno en la nueva planta, que luego se procesarían en otra unidad para llegar a la misma capacidad para el producto final. Propiedades del Polietileno A continuación, para profundizar el análisis de las características del producto en cuestión, se puede observar una tabla de propiedades físicas generales del polietileno sólido:
Magnitud Peso molecular medio Viscosidad intrínseca ( en tetranidronaftaleno a 75 ºC),dlts/gr Punto de Fusión, ºC Densidad (g/cm3) a 20 ºC a 50 ºC a 80 ºC a 110 ºC Coeficiente de dilatación lineal entre 0 y 40 ºC, por ºC Aumento de volumen por calentamiento desde 20 a 110 ºC, Compresibilidad a 20 ºC, por atm. Calor específico a 20 ºC a 50 ºC a 80 ºC Índice de refracción Módulo de Young ( 0-5% de extensión), Kg/cm2 Resistencia a la tracción a 20 ºC., Kg/cm2 Resistencia al choque ( barra con muesca de 0,5 plg. en cuadro),Kgm Dureza Brinell ( bola de 2 mm de diám., 3 Kg Conductividad térmica, cal/ (seg.) (cm2) ( ºC/cm Alargamiento en la ruptura
Valor 25.000 1 110 0,92 0,9 0,87 0,81 0,0002 14 5,5 x 10-5 0,55 0,7 0,9 1,52 1.600 150 2,07 2 0,0007 500
Se debe tener en cuenta que el peso molecular es un factor importante para establecer estos números. Muchas de estas propiedades se pueden modificar si se modifica el mismo (resistencia a la tracción, resistencia al choque, alargamiento en ruptura). Lo mismo sucede si el material tiene historial térmico. Sin embargo, esta tabla sirve como base numérica informativa. Se puede observar que el polietileno es un material traslucido, de peso ligero, resistente, poco conductivo y flexible. En cuanto a lo que es la solubilidad del polietileno, se podría decir que es prácticamente insoluble en los disolventes con excepción de las muestras de peso molecular bajo a menos de 60°C. A altas temperaturas, en cambio, es soluble en líquidos halogenados pero sigue sin serlo en moléculas polares como alcoholes. La permeabilidad de este material aumenta con la temperatura, pero en términos generales es poco permeable al vapor de agua, y más permeable a vapores orgánicos y al oxígeno. Una característica que hace interesante al uso de este material es que es reciclable, al igual que otros termoplásticos:
Origen del Polietileno Las razones por las cuales surge la idea de utilizar a la caña de azúcar como materia prima son las siguientes: Alta productividad del cultivo: la caña de azúcar es el cultivo con mayor productividad para la elaboración del etanol, lo que se ve en el siguiente gráfico:
El mismo representa cuantas unidades de energía equivalente se forman a partir de una unidad de combustible fósil, siendo 1.4 para los cereales, 2 para la remolacha y 9,3 para la caña de azúcar La gran superficie cultivable en Brasil: este país de clima tropical tiene un 22 % de parte cultivable de caña de azúcar del mundo, debido a la gran intensidad de precipitaciones que se presenta en estas zonas.
De este porcentaje, esta cultivado el 85 %, y se utilizaría solo el 5% para el etanol del polietileno verde, lo que representa que hay flexibilidad frente a la posibilidad de un aumento brusco de la demanda. No provoca deficiencia alimentaria: se suele decir que, en países con grandes problemas sociales de pobreza como Brasil o Argentina, utilizar a materias primas alimenticias para producir energía es poco ético como proyecto. Sin embargo, una consecuencia evidente de las dos ventajas anteriores es que este cultivo no provoca perjuicios en ese sentido, a diferencia del resto. Contribuye a la mejora del medio ambiente: el proceso de fabricación del polietileno verde captura 2-2,5 kg de CO2 por tonelada de producto (debido al balance entre la fotosíntesis de la planta y las pérdidas del proceso), mientras que de la forma tradicional esta cantidad de CO2 se emite provocando efectos negativos al medio ambiente como efecto invernadero y calentamiento global. Proceso de obtención del Polietileno Hemos visto dos procesos de obtención del producto en cuestión: Tradicional ( a partir del gas natural) Sustentable ( a partir de la caña de azúcar)
Tradicional:
Para obtener polietileno a partir del gas natural, la primera operación es la separación de las distintas moléculas, seguidas por un cracking de las distintas moléculas de etano. Dicho proceso puede ser térmico (por ser sometido a alta temperatura y presión) o catalítico (por aplicación de calor y catalizadores) De esta forma, se obtienen las distintas olefinas: etileno, propileno, butileno, butadieno y gas de pirólisis. El polietileno se obtiene finalmente en sus tres formas comerciales por la polimerización del etileno. Este proceso final es similar al del polietileno sustentable y será ampliado en esa sección.
Árbol Petroquímico
Sustentable: La elaboración del polietileno en forma sustentable tiene los siguientes pasos: Extracción de sacarosa de la caña de azúcar. Obtención de etanol a partir del jugo. Deshidratación de etanol para formar etileno. Polimerización del etileno. Conformado de productos finales Productividad de planta de polietileno verde: Habiendo analizado el ciclo productivo del polietileno verde, es importante conocer en números el grado de utilización de los recursos implicado.
Como se observa en el diagrama anterior, una hectárea de terreno produce 3,08 toneladas de polietileno verde anuales (MT: measurement ton). Esto significa que para producir las 200.000 toneladas anuales, bastará solo con 65.000 hectáreas productoras de caña. Este número es bajo para un país extensivo como Brasil.
El polipropileno es un termoplástico semicristalino, que se produce polimerizando propileno en presencia de un catalizador estéreo específico. El polipropileno tiene múltiples aplicaciones, por lo que es considerado como uno de los productos termoplásticos de mayor desarrollo en el futuro. Es un producto inerte, totalmente reciclable, su incineración no tiene ningún efecto contaminante, y su tecnología de producción es la de menor impacto ambiental. Esta es una característica atractiva frente a materiales alternativos. La polimerización catalítica del propileno fue descubierta por el italiano Giulio Natta en 1954 y marcó un notable hito tanto por su interés científico, como por sus importantes aplicaciones en el ámbito industrial. Empleando catalizadores selectivos, se obtuvo un polímero cristalino formado por la alineación ordenada de moléculas de propileno monómero. Los altos rendimientos de reacción permitieron su rápida explotación comercial. Aunque el polipropileno fue dado a conocer a través de patentes y publicaciones en 1954, su desarrollo comercial comenzó en 1957 y fue debido a la empresa italiana Montecatini. Pocos años más tarde, otras empresas, entre ellas I.C.I. y Shell fabricaban también dicha poliolefina.
Hoy en día el polipropileno es uno de los termoplásticos más vendidos en el mundo, con una demanda anual estimada de 40 millones de toneladas. Sus incrementos anuales de consumo han sido próximos al 10% durante las últimas décadas, confirmando su grado de aceptación en los mercados. La buena acogida que ha tenido ha estado directamente relacionada con su versatilidad, sus buenas propiedades físicas y la competitividad económica de sus procesos de producción. Varios puntos fuertes lo confirman como material idóneo para muchas aplicaciones: Baja densidad Alta dureza y resistente a la abrasión Alta rigidez Buena resistencia al calor Excelente resistencia química Excelente versatilidad Por la excelente relación entre sus prestaciones y su precio, el polipropileno ha sustituido gradualmente a materiales como el vidrio, los metales o la madera, así como polímeros de amplio uso general (ABS y PVC).
Aunque los procesos comerciales de obtención del polipropileno son variados, se les puede clasificar, dependiendo del medio de reacción y de la temperatura de operación, en tres tipos: Procesos en solución ,Procesos en suspensión y Procesos en fase gas En la actualidad muchas de las nuevas unidades de producción incorporan procesos híbridos, en los que se combina un reactor que opera en suspensión con otro que opera en fase gas. Los procesos en solución, prácticamente en desuso, son aquellos en los que la polimerización tiene lugar en el seno de un disolvente hidrocarbonado a una temperatura de fusión superior a la del polímero. Entre sus ventajas han contado con la fácil transición entre grados, gracias a la pequeña dimensión de los reactores empleados. Los procesos en suspensión (slurry), están configurados para que la reacción tenga lugar en un hidrocarburo líquido, en el que el polipropileno es prácticamente insoluble, y a una temperatura inferior a la de fusión del polímero. Dentro de este tipo de procesos existen marcadas diferencias en la configuración de los reactores (de tipo bucle o autoclave) y en el tipo de diluyente utilizado, lo que afecta a las características de la operación y al rango de productos que se puede fabricar. Los procesos en fase gas están caracterizados por la ausencia de disolvente en el reactor de polimerización. Tienen la ventaja de poderse emplear con facilidad en la producción de copolímeros con un alto contenido en etileno (en otros procesos se pueden presentar problemas al agregar altas concentraciones de etileno, puesto que se hace aumentar la solubilidad del polímero en el medio de reacción).
Destilación del Propileno Unos de los métodos más utilizados para obtener el Propileno es la destilación a partir de G.L.P. (Gas Licuado de Petróleo) con una proporción mayoritaria de componentes livianos (Propano, Propileno, etc).
El proceso de destilación se compone de una serie de pasos que van eliminando los diferentes componentes no deseados hasta obtener Propileno. Primero, se “dulcifica” la mezcla en la Merichem en la cual de separan
componentes tales como Anhídrido carbónico o Mercaptanos. Luego, se separan los componentes livianos en una columna de destilación “Deetanizadora”, tales como Metano, Etano o Nitrógeno.
Después de esto llega el paso más complejo, que es el de separar el Propileno del Propano, los cuales poseen un peso específico muy similar, por lo tanto se necesita una columna de destilación “Splitter” muy larga con gran cantidad
de platos y con un sistema muy complejo de reflujo de condensado. Para finalizar, se eliminan los últimos componentes residuales, como Arsina, y se obtiene el Propileno listo para polimerizar.
PLICACIONES DEL POLIPROPILENO A partir de los procesos industriales se pueden preparar un sin fin de productos de polipropileno diferentes, cuyas propiedades varían según la longitud de las cadenas del polímero (peso molecular), de su polidispersidad, de los comonómeros eventualmente incorporados, etc. Estas características básicas definen las propiedades mecánicas del material y sus aplicaciones finales. Literalmente se habla de diferentes tipos o grados de polipropileno. Por todo esto, la gran diversidad de productos producidos con esta poliolefina le permite tener aplicaciones tan variadas como: Autopartes Baldes, recipientes, botellas Muebles Juguetes Películas para envases de alimentos Fibras y filamentos Bolsas y bolsones Fondo de alfombras Pañales, toallas higiénicas, ropa
Los distintos tipos de reacción es de polimerización del polipropileno se clasifican según las condiciones de operación en solución, suspensión y gas. Procesos en solución: En este proceso la polimerización tiene lugar en el seno de un disolvente hidrocarbonado a una temperatura de fusión superior a la del polímero. El proceso se encuentra prácticamente en desuso. Entre sus ventajas se encuentra la fácil transición entre grados, gracias a la pequeña dimensión de los reactores empleados. MASA