Mecanismos HAMILTON
H. MABIE
Profe$$Orde Engenheria Mecinica Virginia Polytechnic In8titute Blacklburg, Virginia
FRED W. OCVIRK Ex-Profeuorde Engenharia Meclnica Cornell University Ithaca, New York
Traduçio de EDIVAL PONCIANO DE CARVALHO Engenheiro MeaJnico
RIOD SÃOPr
Dt L I V R O S, ' c . I C o S I C I I I ' í f I C o S 1 1 1 1 0 1 1
Trllduçlo lutoriz11d8 de MECHANISMS ANO DYNAMICS Of MACHINERY, Copyrlght@1967, 1963, 1975, 1978 by JohnWiley.
Third Edition Sons, New york. NY. USA
1!' lIdiçlo: 1967 2!' ediçlo: 1980
CIP-Brasil. Catalogaçio-na-fonte Sindicato Nacional dos Editores de livros, RJ.
M111 m
Mabie. Hamilton .H. Mecanismos I Hamilton H. Mabie [e] Fred W. Ocvirk; tradução de Edival Ponciano de Carvalho. -- 2. ed. - Rio de Janeiro: Livros T6cnicos e Cient(ficos. 1980. Traduçlo de: Mechanisms and dynamics of mechinery Aptndiees Bibliografia ISBN 85-216-0021-6 ,. Dinâmica das máquinas 2. Engenharia macânica I. Ocvirk, Fred W. 11. Tetulo CDD -
620.104 620.105 CDU - 621 62-23 ISBN 85-216-0021-6 IEdiçlo original: ISBN 0-411-02380-9 John Wiley & Sons, New York)
LIVROS T~CNICOS E CIENTfFICOS EDITORA S. A. Av. Venezuela, 163 20220 - Rio de Janeiro, RJ 1980 Impresso no Bresil
Prefácio da Terceira Edição (Un idade s SI )
Nesta adiçio. todas as dirrien~es se exprimem em unidades SI com os símbolos correspondentes. AI6m disso, empregou-se. nas seções sobre análise de forças. o conceito de fT1IISIIlI de preferência ao de for ça da gravidade e constante gravitacional, realçando-se. desse forma. o fato de que o qullogfllfTNI se deve usar exc lusivamente para exprimir a massa. Nos caphulos sobre engrenagens. introduziu-se o sistema métrico em paralelo com o sistema inglês. Nos Caps. 4, 5 e 6, apresentam-se os problemas em unidades inglesas e em seguida, separadamente, em unidades métricas. Sou reconhecido ao Prof. J. Y. Harrison da Universidade New South Wales, da Austrália. e a V. I. Conley e C. J. Kauffmann do Instituto Politécnico e Universidade Estadual da Virgínia por suas valloses sugestc5es.
Blacksburu. Virgínia Junho. 1978
Pref ácio d a Ter c ei ra Ed ic ,ão
Esta edição foi adiada por vários anos devido ao triste e prematuro falecimento do meu co-autor F. W. Ocvirk em 1967. As alterações principais nesta edição estão no Cap( tulo 10, "Cinemática das Máquinas" e no Cap(tulo 11, "Análise de Forças em Máquinas". No Cap(tulo 10, acrescentou-se o seguinte material: Análise de velocidades e acelerações por cálculo vetorial, solução analftica de equações da velocidade e aceleração relativas através vetorial,espaciais extensão por da números diferenciação gráfica A às análise soluçõesgráfica que uti· lizam o computador, análisedodecálculo mecanismos complexos. de velocidade e aceleração foi conservada junto com a análise por números complexos. No Cap(tulo 11, introduziu-se o seguinte assunto: Análise de forças usando componentes transversais e radiais tratadas gráfica e vetorialmente, superposição usando vetores, análise de mecanismos pelo método dos trabalhos virtuais, análise do movimento de mecanismos empregando o teorema do trabalho e da energia. Conservou-se a análise gráf ica por superposição, assim como a análise por números complexos. Introduziu-se Unidades do Sistema Métrico nesta edição, com excação dos cap( tulos relativos a engrenagens. A padronização de engrenagens no Sistema Métrico não existe atualmente. O autor agradece aos seguintes companheiros do Departamento de Engenharia Mecânica do Virginia Polytechnic Institute and State University por suas sugestões úteis na preparação desta edição: N. S. Eiss, J. P.agradece Mahaney, H. P. aos Marshall, L. deste D. Mitchell, R. sua G. Mitchiner, L. A. Padis e H. H. Robert· shaw. O autor também revisores texto por esmerada apreciação. Blacksburg, Virginia Janeiro, 1975
Sumário
1.1
Introduçlo
80 Estudo
de Mecenlll11Ol.3
1.2 1.3 1.4 1.6 1.6 1.7 1.&
MecenIImO. ~uine. 6 Movimento. 7 Cicio. Perfodo e F•• do Movimento. & P••.•• de Elementos. 9 Peçe. cedel. CI",m6tlce. 9 Inverdo.10 Trensmllllo de Movimento. 10 PROBLEMAS. 13
CAPI'rUlO 2 SISTEMAS ARTICULADOS. 16 2.1 2.2 2.3 2.4 2.6 2.8 2.7 2.&
MecerlIImO de Ouetro-Ber •.••• 16 Mec:enllmO Cunor-Menlvel •• 20 G.rfo EICOCtI. 22 Mec:enllmol de Retorno Npldo. 23 Alevence Artlculede. 26 Junt. de Oldh.m. 26 Mecerllsmol Treçedorn de Retel. 26 Perltógrefo.27
2.9 2.10 2.11 2.12 2.13
Rotores de Cdmara, 27 Junta de Hooke, 29 Juntas Universais Homocinéticas, 30 Mecanismos de Movimento Intermitente, 35 S(ntese, 39 PROBLEMAS,39
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
Came de Disco com Seguidor Radial, 46 Came de Disco com Seguidor Oscilante, 48 Came de Retorno Comandado, 50 Came CiI (ndrico, 51 Came Invertido, 51 Came de Disco com Seguidor Radial de Face Plana, 62 Came de Disco com Seguidor Radial de Rolete,67 Came de Disco com Seguidor Oscilante de Rolete, 76 CamesTridimensionais, 79 PROBLEMAS,82
4.1 4.2 4.3 4.4 4.5 4.6 4.7
Introdução li Engrenegens CiHndricas de Dentes Retos Evolventais, 93 Evolvente. Relações, 96 Particularidades de Engrenagens CiI(ndricas de Dentes Retos, 100 Caraeter(sticas da Ação Evolvental, 102 Interferência em Engrenagens Evolventais, 107 Engrenagens Intercambiáveis, 109 Número M(nimo de Dentes para Evitar Interferência, 113
4.8 4.9 4.10
DeterminaçãodedoDentes Jogo Primitivo, 118 Engrenagens Internos, 122 EngranagensCicloidais, 123 PROBLEMAS, 125
5.1 5.2 5.3 5.4
Teoria das Engrenagensde Dentes Retos Corrigidas, 130 Sistema de Distância entre Eixos Aumentada, 132 Sistema de Saliências Diferentes, 140 Engrenagensde Ação de Afastamento, 142 PROBLEMAS,146
6.1 6.2 6.3 6.4 6.5 6.6 6.7
Teoria das Engrenagens COnicas, 150 Detalhes das Engrenagens COnicas, 155 Proporções de Dente para Engre~gens COnicasde Gleason, 157 Engrenagens COnicas Angulares de Dentes Retos, 158 Engrenagens COnicasZerol, 158 Engrenagens COnicas Espirais, 160 Engrenagens Hipóides,161
6.8 6.9
Teoria das Engrenagens Helicoidais, 162 Engrenagens Helicoidais Paralelas, 167
6.10 6.11
Engrenagens Helicoidais Esconsas, 171 Parafuso Sem·Fim, 173 PROBLEMAS,177
7.1 7.2 7.3 7.4
Introdução a Trans de Engrenagens, 184 Trens de Engrenagens Planetários, 187 Aplicaçaes de Trens Planetários, 197 Montagem de Trens Planetários, 200 PROBLEMAS,204
CAPI"rULO 8 MECANISMOS
8.1 8.2 8.3 8. 4
8.5
DE COMPUTAÇÃO,
220
Computadores Digitais, 220 Computadores Analógicos, 220 Adiçlo e Subtraçlo, 221 Multipliceçlo e Divisão, 224 IntegraçlÓ,225
FunçtSes Trigonomlttricas, 230 Inversfo, 233 Quadrados, Rafzes Quadradas e Ra(zes Quadradas de Produtos, 233 8.8 Cames e Engrenagens de Computação, 235 8.9 8.1Q Sistema Articulado Gerador de Funç ão, 241 8.11 Precisfo, 242 8.12 Diagramas de Bloco , 242
8.6
8.7
9.1 9.2
Espaçamento de Pontos de Precisão, 251 Projeto de uma Art iculação de Quatro·Barras
9.3 9.4
AceleraçtSes Angulares, a253 Projeto de Articulaçlo Quatro·Barras como Gerador de Função, 259 Projeto Gráfico de Articulações a Quatro·Barras corno um Gerador de Função, 267
para Valores Instantâneos de Velocidades e
PROBLEMAS,269 PROBLEMAS - Unidades do sistema métrico dos Caps. 4, 5, 6, I AP~NDICE 1 - Tabelas de funções evolventais, XVI AP~NDICE 2 - Método aproximado para o desanho de dentes de perfil evolvental, XVII fNDICE REMISSIVO. XVIII
MECANISMOS
Est a obra é com ple menta da pel o li vro
DINAMICA DAS MÁQUINAS dos mesmo s aut ore s, ta mbém
FORÇA I Ib =4,448 N I N =0,2248 Ib
MASSA I kg =6,852 X 10-2 slugs I slug = 14,59kg Ilb =3,108 x 10- 2 slugs
COMPRIMENTO I m =3,281 pés I pé =0,3048 m I polegada =2,54 cm
edi ta do pel a L
MOMENTO
Te
DE INÉRCIA (de massa)
I kg . m 2 =0,7376 slug . pé2 I slug . pé
1,356 kg . m 2
=
FREQÜÊNCIA I ciclos/s
I Hz
=
OUTRAS CONVERSÕES
ÚTEIS
Ilb' polegada =11,298N' cm Ilb/polegada =1,751N/cm Ilb/polegada2 =,0,6894N/cm 2 Ilb/polegada3 =0,2714 N/cm3 I milhafh =1,61kmfh.
Introdução
O estudo de mecanismos l' muito importante. Com o enorme avanço realizado no projeto de instrumentos, controles automáticos e equipamento automatizado, o estudo de mecanismos tomou novo significado. Mecanismos pode ser definido como a parte de projeto de máquinas 1.1 Introdução ao Estudo de Meca nismos.
com o projeto cinemático de sistemas articulados, carnes, engrenagens erelacionadas trens de engrenagens. O projeto cinemático se baseia nos reqQisitos relativos ao movimento, diferindo do projeto baseado em requisitos de resistência. Será apresentado um exemplo de cada mecanismo, acima mencionado, a fim de proporcionar uma descrição compreensiva dos componentes a serem estudados. A Fig. 1.1 representa o esboço de um mecanismo conhecido por mecanismo cursor manivela. A peça 1 é o suporte e é estacionária, a peça 2 é a manivela, a peça 3 é a biela e a peça 4 o cursor. Uma aplicação comum deste mecanismo aparece no motor de combustão interna onde a peça 4 é o pistão (Fig. 1.2). A figura 1.3 mostra o esboço de uma carne com seguidor. A carne gira a uma velocidade angular constante e o seguidor se movimenta para cima e para baixo, em movimento alternativo. A elevação do seguidor é comandada pelo excêntrico e o retorno, por ação da grav idade ou de uma mola. As carnes são usadas em muitas máquinas e um dos empregos mais comuns aparece no motor de auto~óvel onde são empregadas duas carnes em cada cilindro para acionar as válvulas de admissão e de escapamento, também mostradas na Fig. 1.2. Uma carne tridimensional é apresentada na Fig. 1.4. Neste mecanismo, o movimento do seguidor depende não somente da rotação da carne mas também de seu movimento axial.
As engrenagens são usadas em muitas aplicações para transmitir movimento entre eixos com uma razão de velocidades angulares constante. A Fig. 1.5 mostra algumas engrenagens comumente empregadas.
Em alguns casos, a redução desejada na velocidade angular é muito grande para ser obtida com somente duas engrenagens. Quando isto oco rre, algumas engrenagens devem ser acopladas para 'formar o que se denomina de trem de engrenagens. Na Fig. 1.6 vê-se um trem de engrenagens onde a velocidade é reduzida da engrenagem I para a engrenagem 2 e novamente da engrenagem 2 para a 4. A engrenagem 1 é a matriz e as engrenagens 2 e 3 estão montadas em um mesm o eixo. Em muitos trens de engrenagens é necessário que se possa deslocar as engrenagens acoplando- as ou desacoplando-as para obtenção de diversas combinações de velocidades. Um
bom exemplo disto é o sistema de transmissão de automóveis onde são obtidas três velocidades à frente e uma a ré, com o deslocamento de du as engrenagens.
Em dispositivos tais como instrumentos e controles automáticos a obtenção do movimento correto é de suma importância. A potência transmitida pelos ele mentos pode ser tão pequena chegando a ser desprezível, o que permite que os componentes sejam dimensionados inicialmente apenas por seu aspecto cinemático passando a ter importância secundária o problema da resistência das peças. Há outras máquinas, entretanto, onde a análise cinemática é somente uma fase
do projeto. Depois que for determinado como as diversas peças da máquina funcionarão para a realização do trabalho desejado, as for ças que atuam nessas
peças devem ser analisadas, permitindo em seguida o dimensionamento de seus elementos. Uma máquina operatriz é um bom exe mplo: sua resistência.e sua rigidez são mais pro blemáticas do que os mov imentos desejados.
Engrenagens cih'ndricas de dentes retos
Engrenagens "espinha de peixe" ou cll(ndricas helicoidais duplas
Engrenagens
Engrenagens
c6nic:as
helicoidais em eixos peralelos
Parafuso semfim e coroa
Engrenagens helicoidais em eixos .-I .O S
É importante, nesta altura, definir os termos empregados no estudo de mecanismos, o que será feito nos parágrafos seguintes. 1.2 Mecanismo, Máquina. No estudo de mecanismos estes termos serão empregados repetidamente e são definidos da seguinte maneira: Mecanismo é uma combinação de corpos rígidos ou resistentes de tal mod o compostos e ligados que se movem entre si com movimento relativo definido. Um exe mplo é o sistema cursor-manivela de um mot or de combustão interna mostrado esquematicamente na Fig. 1.1. Máquina é um mecanismo, ou conjunto de mecanismos, que transmite força de
uma fonte de pointerna. tência para a resistência a ser superada. de combustão
Um exemplo é o mo tor
Tratando-se de estudo de mecanismos, é necessár io definir os vários tipos de movimento produzidos por estes mecanismos. Movimento plano. TRANSLAÇÃO. Um corpo tem movimento de translação quando uma reta, definida por dois pontos quaisquer desse corpo, fica constantemente paralela a si mesma. I. Translação retilínea. Todos os pontos do corpo têm como trajetória retas paralelas. Quando o corpo se move desta forma, de um lado para o outro, diz-se que tem movimento alternativo. Isto está ilustrado na Fig. 1.7, onde a peça 4 desliza altemadamente entre os limites B' e B". 2. Translação curvilínea. As trajetórias dos pontos são curvas idênticas, paralelas a um plano fixo~ 1.3 Movimento.
A Fig. 1.8 mostra o mecanismo que era usado na ligação das rodas motrizes de uma locomotiva a vapor. Neste mecanismo a barra 3 tem translação curvilínea
e todos os seus pontos determinam trajetórias cicloidais durante o movimento de rolamento das rodas 2 e 4 sobre o trilho I. A peça 5 semove em translação retilínea.
ROT AÇÃO. Se cada ponto de um corpo rígido, em movimento plano, permanece a um a distância constante de um eixo fixo, normal ao plano do movimento, diz-se que esse corpo tem movimento de rotação. Se o corpo gira de um lado para o outro dentro de um de terminado ângulo, o movimento é de oscilação. Isto é mostrado na Fig. 1.9onde a manivela 2 gira e a barra 4 oscila entre as posições B' e B". ROTAÇÃO E TRANSLAÇÃO. Muitos corpos têm movimento que é uma combinação de rotação e translação. A biela 3 na Fig. 1.7, as rodas 2 e 4 na Fig. 1.8 e a barra 3 na Fig. 1.9 são exemplos deste tipo de movimento.
Movimento helicoidal. Quando um corpo rígido se move de modo que se us pontos tenham movimento de rotação em torno de um eixo fixo e ao mesmo tempo possua uma translação paralela a esse eixo, diz-se que o corpo tem movimento helicoidal. Um ex emplo deste movimento é o de uma porca sendo atarraxada a um parafuso. Movimento esférico. Quando um corpo rígido se move de mo do que todos os seus pontos girem em torno de um ponto fixo, mantendo uma distância constante desse ponto, diz-se que o corpo tem movimento esférico. 1.4 Ciclo, Período e Fase do Movimento. Quando as peças de um mecanismo, partindo de uma posição inicial, tiverem passado por todas as posições interme
diárias possíveis e retomarem à mesma posição inicial, essas peças terão completado um ciclo do movimento. O tempo necessário para completar um ciclo é chamado
período. As posições relativas de um mecanismo em um determinado instante,
durante um ciclo, constituem uma fase. São as formas geométricas pelas quais dois membros de um mecanismo são articulados de modo que o movimento relativo entre estes dois membros seja coerente. Se o contato entre os dois membros for uma superfície 1.5 Pares de Ele mentos.
par inferior. tal um for eixorealizado e um mancal, denominada Se ocomo contato segundoessa um articulação ponto ou aoé longo de uma delinha tal como em um rolamento de esferas ou entre dois dentes de engrenagens em contato, essa articulação é chamada de par superior. Um par que permite somente rotação relativa é chamado de par rotativo e o que permite somente deslizamento é um pa r deslizante. Um par rotativo pode ser onferior ou superior dependendo da articulação empregada, se um eixo e um mancal ou rolamento de esferas. Um exemplo ~ªr dçsJizante inferior é o existente entre o pistão e as paredes do cilíndro de ym ffiQtºf. _
Uma peça é um corpo rígido que tem doii"ou mais pa res de elementos pelos quais pode ser articulada a outros corpos para transmitir força ou movimento. Geralmente uma peça é um elemento rígido que pode ser articulada em cada extremidade a dois ou mais outros elementos. Isto pode ser estendido de modo a incluir três, quatro ou mais articulações. As Figs. 1.10a, b e c mostram esses arranjos. Talvez o caso extremo de uma peça com articulações múltiplas seja a biela mestra de um mot or radial de nove cilindros apresentada na Fig. 1.10d. 1.6 Peça, Cadeia Cinemática.
Um exemplo bem conhecido de uma peça com três articulações é a alavanca mostrada nas Figs. 1.Ua e b. Esta peça é usada geralmente para redução de
movimento podemínimo ser dimensionada umamovimentos. determinada relação de deslocamentos come um de distorção para desses
Quandodeum número de peçasSeforasligado de pares, odesistema resultante é chamado cadeia cinemática. peças através forem articuladas tal maneira que não seja possível haver movimento, esse sis tema será denomin.ado de estrutura. Obtém-se uma cadeia restrita quando as peças forem ligadas de modo que o movimento relativo entre as peças seja sempre o mesmo, independendo do número de ciclos realizados. É possível também a articulação de peças de modo a resultar uma cadeia livre, o que significa que o tipo de mo vimento irá variar dependendo do atrito existente nas articulações. Se fixarmos uma das peças de uma cadeia restrita, o resultado será um mecanismo. 1.7 Inversão. Em um meca nismo, se for liberada uma peça que src inalmente era fixa e outra peça passar a ser fixa, diz-se que esse mec anismo está invertido. A inversão de um mecanismo não altera o movimento relativo entre suas peç as, entretanto modifica seus movimentos absolutos. 1.8 Transmissão de Movimento. No estudo de mecanismos é necessário inv~s· tigar o método pelo qual o movimento pode ser transmitido de um membro para outro. Pode-se transmitir movimento de três maneiras: (a) contato direto entre dois corpos tal como entre um excêntrico e um seguidor ou entre duas engrenagens, (b) através de um elemento intermediário ou uma biela e (c) por uma ligação flexível, como uma correia ou uma corrente. Pode-se determinar a razão de velocidades angulares para o caso de dois corpos em contato. A Fig. 1.12 mostra a carne 2 e o seguidor 3 em contato no ponto P. A carne gira no sen tido horário e a velocidade do ponto P considerado como um ponto da peça 2 é representada pelo vetor PM :z. A linha NN' é a normal às duas superfícies no ponto P e é con hecida por normal comum, linha de transmissão ou linha de ação. A tangente comum é representada por TT'. O vetor PM :z é decom· posto em duas componentes Pn ao longo da normal comum e Pt2• ao longo da tangente comum. A carne e o seguidor são corpos rígidos e devem permanecer em contato, por isso, a componente da velocidade de P, considerado como um ponto
da peça 3, deve ser igual à componente normal da velocidade de P considerado
como pertencente à peça 2. Portanto, conhecendo-se a direção do vetor velocidade P como pertencente à peça 3 e sabendo-se que ela é perpendicular ao raio 03P e conhecendo-se também sua componente normal, é possível a determinação do vetor velocidade PM 3, conforme mostrado na Fig. 1.12. A partir desse vetor, pode·se determinar a velocidade angular do seguidor através da relação V = Rw, onde V é a velocidade linear de um ponto que se mo ve ao longo de uma trajetória de raio
R
e w é a velocidade angular do raio
--------
-------
R.
f
Nos mecanismos em que há contato direto, é necessário determinar-se a velocidade de deslizamento. Da figura pode-se ver que a velocidade de deslizamento é a diferença vetorial entre as componentes tangenciais das velocidades dos pontos em contato. Esta diferença é dada pela distância /2/3porque a componente Pt 3 tem direção contrária à de Pt 2. Se /2 e /3 estiverem do mesmo lado de P, a velocidade relativa será dada pela diferença dos segmentos Pt J e Pt2• Se o ponto-º~ºº.!~9 estiver na linha de cent~os~os,,~tºxesPMz-~~~h.serª()jgllais e, e_Il1.~ºIl§e9üência, terão a mesma direção. Portanto, as componentes tangenciais serão iguais e a velocidade de deslizamento será nula. As duas peças terão portanto um movimento de rolamento puro. AssiJ!l.j:l()d~=.§~jzerqlle a <::ollcliçãopara que e;x;istarolamel1to. puro é que o ponto de contato permaneça_.sQbre~_JiJ1hª-º~entms. Para o mecanismo da Fig. 1.12, o movimento entre a carne e o seguidor será uma combinação de rolamento e deslizamento. O rolamento puro somente poderá ocorrer quando o ponto de contato P cair so bre a linha de centros. Enquanto, o contato nesse ponto poderá não ser possível devido às proporções do mecanismo. Não poderá ocorrer deslizamento puro entre a carne 2 e o seguidor 3. Para tal acontecer, um ponto de uma das peças, dentro dos limites de seu cQ.rso,de:veentrar em contato com todos os po ntos sucessivos da superfície ativa da outrn l'eª. É possivel se determinar uma relação de modo que a razão de vel ocidades
angulares de duas peças em contato acima. direto A possa calculada necessidade da construção geométrica delineada partirserdos centros sem 02 ea03 baixam-se
perpendiculares à normal comum cruzando-a nos pontos e e f, respectivamente. As se guintes relações são obtidas da Fig. 1.12: w2
=
PM2 O P 2
e w3
_ -
PM3 O P 3
Com a normal comum cruzando a linha de centros no ponto 02Ke e 03Kf são semelhantes também: portanto,
K,
os triângulos
Assim, para um par de superficeis curvas em contato direto, as velocidades angulares são inversamente proporcionais aos segmentos determinados na linha de centros por sua interseção com a normal comum. Conclui-se então que para
haver uma razão de velocidades angulares constante a normal comum deve cruzar a linha de centros em um ponto fixo.
-
K _--- --- --- --- --
-
É possível também a obtenção das relações acima para a transmissão de movi-
mento através de uma peça intermediária ou biela e para a transmissão de movimento por elemento flexível. As Figs. 1.13 e 1.14 mostram os dois casos, respectivamente, onde a velocidade é dada por:
1.1 (a) Se w2 = 20 rad/min, calcular a velocidade angular da peça 3 para os dois casos mostrados na Fig. 1.15. (b) Calcular os ângulos máximo e mínimo entre o seguidor e a horizontal. 1.2 Desenhar em de escala o mecanismo Problema e determinar graficamente a velocidade deslizamento entre do as peças 2 e 3.1.1Usar um módulo de velocidades de 1 em =10 cm/min. 1.3 Se w 2 =20 rad/min para o mecanismo apresentado na Fig. 1.15, usando uma construção gráfica, determinar as velocidades· angulares da peça 3 para uma volta completa da came, empregando acréscimos de 60" a partir da posição em que w3 = O. Plotar w3 em função do ângulo de rotação 8 da came. Usar os módulos de Icm = I rad/min para w3 e Icm = 5° para 8.
1.4 Provar que, para o mecanismo mostrado na Fig. 1.13, as velocidades angulares das peças conduzida e condutora são inversamente proporcionais aos
segmentos determinados na linha de centros por sua interseção com a linha de transmissão.
. 1.5 Provar que, para as polias e correia mostradas na Fig. 1.14, as velocidades angulares das polias são inversamente proporcionais aos segmentos determinados na linha de centros por sua interseção com a linha de transmissão. 1.6 No mecanismo da Fig. 1.13, a manivela 2 tem 1,90 cm de comprimento e gira a uma velocidade angular constante de 15rad/s. A barra 3 tem 3,SOcm de comprimento e a barra 4 tem 2,50em de comprimento. A distância entre os centros 02 e 04 é de 5,IOem. Determinar, graficamente, a velocidade angular da peça 4 quando a manivela 2 tiver girado de 45° no sentido anti-horário, a partir da hori-
zontal. Dizer se w4 é constante ou não.
1.7 Uma polia de 10 em de diâmetro aciona outra de 20 cm de diâmetro através de uma cor reia. Se a velocidade angular da polia condutora é de 65 rad/s e a distância entre os centros das polias é de 40 cm, determinar, graficamente, a velocidade angular da polia conduzida. Sua velocidade será constante?
Sistemas Articulados
..... . • ...... .. •
•
Um dos mecanismos mais simples e mais úteis é o mecanismo de quatro barras ou qua drilátero articulado, mostrado na Fig. 2.1. A peça I é o suporte, geralmente estacionária. A manivela 2 é a pe ça acionadora que pode girar ou apenas oscilar. Em ambos os casos a peça 4 irá 2.1 Mecanismo de Qu atro Barras.
oscilar. Se a peça 2 gira, o mecanismo transforma movimento de rotação em oscilação. Se a manivela oscila, o mecanismo então multiplica o movimento de oscilação.
Enquanto a peça 2 gira, não há perigo de travamento do mecanismo. Entretanto se a manivela 2 oscila, deve- se tomar cuidado no dimensionamento dos
comprimentos das peças para evitar pontos mortos de modo que o mecanismo não pare em suas posições extremas. Estes pontos mortos ocorrerão quando a linha de ação da força acionadora tiver a mesma direção da peça 4, co nforme está indicado na Fig. 2.2.
Se o mecanismo de quatro barras for projetado de modo que a peça 2 possa girar completamente mas a peça 4 sej a a acionadora, ocorrerão pontos mortos e será nec essário o uso de um volante para evitar a parada nesses pontos mortos. Além dos possíveis pontos mortos em um mecanismo de qua tro barras, é necessário considerar- se o ângulo de transmissão que é o existente entre a peça de ligação 3 e a peça 4, con forme mostrado na Fig. 2.3a como ângulo y .
.•.. z
11
rl
.
.•..
.•...•..
~ .1 1
/
Pode-se deduzir uma equação para o ângulo de transmissão aplicando a Lei dos Co-senos aos triângulos A0204 e AB04:
Em geral, o ângulo de transmissão máximo não deve ser maior do que 140" e o mínimo não deve ser inferior a 40" se o mecanismo for empregado para transmitir grandes forças. Se o ângulo de transmissão se tornar menor do que 40° , o mecanismo tenderá a parar devido ao atrito nas articulações; também as peças 3 e 4 tenderão a ficar alinhadas e podem bloquear o mecanismo. É muito importante verificar os ângulos de transmissão quando o mecanismo for projetado para trabalhar próximo às configurações correspondentes aos pontos mortos. A Fig. 2.3b y", 2respectivamente, mostraumosmecanismo ângulos dede transmissão mínimo máximo, y' aepeça para quatro barras. Nestee mecanismo, gira e a peça 4 oscila.
quatro barras pode outras comoas apeças mostrada o mecanismo na Fig. 2.4. Na Fig.de2.4a o mecanismo estátomar cruzado, istoformas é, quando 2e4 giram, o fazem em sentido opostos. Este mecanismo tem o mesmo tipo de movimento que o da Fig. 2.1. Na Fig. 2.4b as peças opostas têm o mesmo comprimento e, portanto, sempre permanecem paralelas; as peças 2 e 4 têm movimento de rotação. Este tipo de mecanismo é característico das rodas motrizes de ·uma locomotiva a vapor. A Fig. 2.4c mostra outro arranjo no qual a peça motriz e a conduzida giram continuamente. Esta forma de quadrilátero articulado é a base para o mecanismo de manivela
dupla seráa uma abordado item relativo a mecanismos de retorno rápido.e corrediça, Se a peça 2que girar rotaçãono constante, a peça 4 terá uma velocidade
angular não uniforme. A fim de se evitar o travamento do mecanismo, deve se manter certas relações entre os comprimentos das peças: 02A
e
(02A - 0 204) (04B - 0~04)
04B >0204
+
+
AB > 04B 02A
> AB
B' e 0deve 2A" ser B", A segunda e ea do terceira originam doslados triângulos respectivamente, fato relações de que asesoma de dois de em 04A' triângulo maior que o terceiro lado.
A Fig. 2.41 mostra um arranjo onde a peça 4 da Fig. 2.1 foi s ubstituída por um bloco deslizante. O movimento dos dois mecanismos é idêntico. O mecanismo de quatro barras é muitas vezes denominado de manivela-balancim quando a peça 2 gira e a peça 4 oscila conforme mostrado na Fig. 2.4a. Do mesmo modo, o termo manivela dupla significa que ambas as peças 2 e 4 têm movimento de rotação como a Fig. 2.4b e c. O termo balancim duplo indica que as peças 2 e 4 têm movimento de oscilação, mostrado na Fig. 2.2. Pode-se aplicar a Lei de Grashoff como uma maneira de de terminar se o mecanismo irá operar como manivela balancim, manivela dupla ou balancim duplo. Esta leP estabelece que se ª - .s ,º m .a .. dos comprimentos da maior e da men or peça fuJ:menor do qUR a soma dos comprimentos das outras duas, o mecanismo formará : I. Dois mecanismos tipo manivela balancim, diferentes, quando a menor peça for a manivela e qualquer das peças adjacentes for a peça fixa. 2. Um mecanismo manivela dupla quando a menor peça for a fixa. 3. Um balancim duplo quando a peça oposta à menor for a peça fixa.
Também, se a soma dos comprimentos da maior e da menor for maior do que a soma dos co mprimentos das outras duas, somente resultarão balancins duplos. Também, se a soma da maior e da menor peça for igual à soma das outras duas, os quatro mecanismos possíveis são similares aos dos casos I, 2 e 3 acima. Entre tanto, neste último caso a linha de centros do mecanismo pode ficar alinhada com as peças de m odo que a manivela conduzida possa mudar o sentido de rotação "a 2.4b não ser algo seja feito evitá-Io. mecanismo é apresentado na Fig. onde as que peças podem ficarpara alinhadas comTal a linha de centros posição, 0204. Nesta o sentido de rotação da peça 4 pode mudar a não ser que a inércia desta peça a leve a ultrapassar este ponto. 2,2 Mecanismo Cursor-Manivela, Este mecanismo é amplamente utilizado e encontra sua maior aplicação no motor de combustão interna. A Fig. 2.5a mostra um esboço em que a pe ça 1 é o bloco do motor (considerado fixo), a peça 2 é a manivela, a peça 3 a biela e a peça 4 o ê mbolo. Sobre a peça 4 atua a pressão dos gases, no motor de combustão interna. A força é transmitida à manivela,
através biela. extrema Pode-se do vercurso que do haverá mortos durantedo omecanismo ciclo, um em cadada posição êmbodois lo. pontos Para evitar a parada nesses pontos mortos é necessário o emprego de um volante solidário à manivela. Este mecanismo também é usado em compressores de ar onde um motor elétrico aciona a manivela que por sua vez impulsiona o êmbolo que comprime o ar. Considerando o mecanismo cursor-manivela, é necessário calcular o deslocamento do cursor e sua velocidade e aceleração correspondentes. As equações de deslocamento, velocidade e aceleração são obtidas usando-se a Fig. 2.5b. < /J
x =R
L- R cos (J -
= R(l+- cos ( J ) =R(1-
cos
(J )
Lcos - cos < / J )
+ l.(l l - (R/L)2 + L[l--J
sen2(J]
A fim de simplificar a expressão acima, o radical pode ser aproximado substituindo-o de acordo com a série
onde
B
=(R/L)
sen
(J .
Em geral, o uso dos doi s primeiros termos da série já possibilita uma precisão suficiente. Portanto,
J
(R )2
- -,
(R )2
1 L sen 1- Lsen2(J = 1 - 2
V =
A
=
dxt = R[w d 2
ddt 2x
=
(J
sen R(J + 2]L sen
R W2
[ cos (J
R cos 2(J ] +L
~
~
2(J
1
.
(b)
(a)
~
1
. (e)
É possível fixar-se outra peça, sem ser a peça 1, no mecanismo curso r manivela e assim obterem-se três inv ersões, que são mostradas na Fig. 2.6. Na Fig. 2.6a
fixa-se a manivela e todas as demais peças podem se mover. Este mecanismo era usado em antigos motores de avi ão e eram conhecidos como motores rotativos porque a manivela era estacionária e os cilindros giravam em torno da manivela. Uma aplicação mais moderna desta inversão aparece no mecanismo Whitworth que
será apresentado no item re lativo a mecanismos de retorno rápido. A Fig. 2.6b mostra uma inversão onde a biela é a pe ça fixa. Esta inversão é empregada em máquinas a vapor auxiliares e é também a base do mecanismo de plaina limadora, a ser apresentada mais adiante. A terceira inversão, onde o curso r é a peça fixa, é usadas, às vezes, em bombas de água manuais. Pode se conseguir uma variação'do mecanismo cursor-manivela aumentado-se o diâmetro do moente até que um el e fique maior edo que o munhão da manivelà. Este moente aumentado constitui excêntrico substitui a manivela do mecanismo original. A Fig. 2.7 mostra um desenho em que o ponto A é o centro do excêntrico e o ponto D o seu centro de rotação. O movimento deste mecanismo equivale ao de um mecanismo cursor-manivela com uma manivela de comprimento DA. Uma desvantagem séria deste mecanismo, entretanto, é o problema da lubrificação adequada entre o excêntrico e a biela. Isto limita a potência que pode ser transmitida.
2.3 Garfo Escocês. Este mecanismo é capaz de gerar movimento harmônico simples. Antigamente era empregado em bombas a vapor, mas agora é usado como um mecanismo de uma mesa vibradora e como gerador de seno e co-seno para mecanismos de cômputo. A Fig. 2.8a apresenta um esboço desse mecanismo e a Fig. 2.8b mostra como é gerado o movimento harmônico simples. O raio r a uma velocidade angular constante wr e a projeção do ponto P sobre o eixo x (ou eixo y) se desloca com movimento harmônico simples. O deslocamento, medido da direita para a esquerda, a partir da interseção da trajetória de
dx
V = {[t = rW r
sen
w rt
= rW r
sen
(} r
P
com o eixo x é
Outro mecanismo capaz de gerar movimento harmônico simples é a carne circular com segu idor radial de face plana, que será apresentado no próximo capítulo.
Mecanismos de Retorno Rápido. Estes mecanismos são usados em máquinas opera trizes para dar lhes um curso de cor te lento e um curso de retorno rápido para uma velocidade angular constante da manivela motriz. Em geral são sistemas articulados simples tais como o mecanismo de quatro barras e o mecanismo cursormanivela. Pode-se usar também uma inversão do mecanismo cursor-manivela combinado com o mecanismo cursor manivela convencional. No projeto de mecanismos de retorno rápido, a razão entre os ângulos descritos pela manivela motriz durante o curso de corte e o curso de ret orno é de suma importância e (, conhecido como razão de tempos. Esta razão deve ser maior do qu e a unidade e seu valor deve ser o maior possível para que haja um reto rno rápido da ferramenta de corte. Como um exemplo, no mecanismo da Fig . 2.11, r x é o ângulo descrito pela manivela durante o curso de corte e p é o correspondente ao cur so de ret orno. Supondo se que a manivela opera a uma veloCidade de rotação constante, a razão de tempos é, portanto, r x / P que é muito maior do que a unidade. Há diversos tipos de mecanismos de retorno rápido que são descritos a seguir: Mecanismo de manivela dupla e cursor. Este mecanismo é derivado do mecanismo de quatro barras e está mostrado na Fig . 2.9. Para uma velocidade angular constante da peça 2, a peça 4 rodará com velocidade de rotação não uniforme. O cursor 6 irá subir com velocidade aproximadamente constante durante a maior parte do avanço para dar um curso de avanço lento e um retorno rápido quando a 2.4
manivela 2 girar no sentido anti-horário. Mecanismo Whitworth. É uma variação da primeira inversão do mec anismo cursor-manivela em que a manivela é a peça fixa. A Fig. 2.10 mostra um esboço do mecanismo e as peças 2 e 4 fazem voltas completas. Mecanismo de plaina limadora. Este mecanismo é uma variação da segunda inversão do mec anismo cursor-manivela em que a biela é a peç a fixa. A Fig. 2.11 apresenta este mecanismo onde a peça 2 gira e a peça 4 oscila. Se a distância 2 4 for diminuída até fica r menor que a manivela, este mecanismo se transformará no Whitworth.
°°
C U l"ID
~
\ \
\ \ \ \ \ \ \ \
de
corte
Manivela deslocada. O mecanismo curso r-manivela pode ter a manivela deslo-
cada conforme mostrado na Fig. 2.12. Isto possibilitará um movimento de retomo rápido. Entretanto, o efeito do retomo rápido é muito pequeno e o mecanismo deve ser empregado somente onde o espaço for limitado e o mecanismo tiver que ser simples. •
2.5 Alavanca Articulada. Este mecanismo tem muitas aplicações onde se necessita vencer uma grande resistência com uma peq uena força motriz. A Fig. 2.13 À mostra o esboço do mecanismo; as peças 4 e 5 têm o mesmo comprimento. medida que os ângulos I X diminuem e as peças 4 e 5 se tomam quase alinhadas, a força F necessária para superar uma dada resistência P decresce conforme indicado pela seguinte relação F
P =2 tglX.
Pode-se ver que para uma determinada força F quando I X tende a zero, P tende para infinito. Um britador utiliza este mecanismo para vencer um grande resistência com uma pequena força. Este mecanismo pode ser usado estática ou dinamicamente, como se vê em muitos dispositivos de fixação de peças.
Este mecanismo possibilita um meio de ligarem-se dois eixos paralelos que possuam um pequeno desalinhamento, de mo do que possa haver transmissão de velocidade angular constante entre o eixo motriz e o conduzido. A Fig. 2.14 mostra um esboço desta junta. Este mecanismo é uma inversão do garfo escocês. 2.6 Junta de Olclham.
2.7 Mecanismos Traçadores de Retas. Como o nome indica, estes mecanismos são projetados de modo que um pon to de uma das peças se mova em linha reta. Dependendo do mecanismo, esta linha reta pod erá ser aproximada ou teoricamente exata. Um exemplo de um mecanismo traçador de retas aproximadas l.'o mecanismo de Watt, mostrado na Fig. 2. 15. O ponto P está localizado de tal modo que os segmentos AP e BP são inversamente proporcionais aos comprimentos 02A e O4B. Portanto, se as peças 2 e 4 tiverem o mesmo comprimento, o ponto P deverá estar no meio da pe ça 3. O ponto P descreverá uma trajetória na forma de um 8. Parte desta trajetória se aproximará muito de uma linha reta.
O mecanismo Peaucellier é um que pode gerar uma linha reta exat a. A Fig. 2.16 mostra um esboço onde as peças 3 e 4 são iguàis. As péças 5, 6, 7 e 8 também são iguais e a peça 2 tem seu comprimento igual à distância 0204' O ponto P descreverá um a trajetória que é u ma linha reta exata. . Os mecanismos traçadores de reta têm muitas aplicações; entre estas, os meca-
nismos de indicadores de motores e de dis juntores elétricos são duas aplicações notáveis.
2.8 Pantógrafo. Este mecanismo é us ado como um dispositivo de copiar. Quando um ponto do mecanismo seguir uma determinada trajetória, outro ponto do mecanismo, porém de outra peça, descreverá uma trajetória semelhante à anterior,
em uma As es cala escolhida. A Fig. 2.17 apresenta esboço do mecanismo. peçaspreviamente 2, 3,4 e 5 formam um paralelogramo e o ponto umP está situado numa extensão da peça 4. O ponto Q está localizado sobre a peça 5, na interseção com a linha que liga O a P. Quando o ponto P descrever'uma curva, o ponto Q traçará uma trajetória semelhante, em es cala reduzida.
-----
Este mecanismo encontra muita aplicação em instrumentos copiadores, particularmente em máquinas de gravação ou máquinas copiadoras. Um emprego desta máquina é a confecção de matrizes ou moldes. O ponto P serve como um ponteiro e segue o perfil de um gabarito enquanto a ferramenta colocada no ponto Q usina a matriz, em uma escala menor. 2.9 Rotores de Câmara. Este mecanismo
se apresenta sob diversas formas, que podem se enquadrar em duas classificações. O primeiro tipo consiste de dois lóbulos que operam dentro de um a câmara. O so prador Roots, mostrado na Fig. 2.18, é um ex emplo deste tipo. Os rotores são ciclóides e são acionados por um par de engrenagens iguais, acopladas, situadas atrás da câmara. Em uma apli-
cação moderna o soprador. Roots possui três lóbulos em cada rotor: é usado em superalimentadores de baixa pressão para motores Diesel.
o outro
tipo de rotores de câmara tem somente um rotor situado excentricamente dentro da câmara e geralmente é uma variação do mecanismo cursor-manivela. A Fig. 2.19 mostra um mecanismo deste tipo projetado originalmertte para uma máquina a vapor, mas sua aplicação atual é em bombas.
Outro exemplo do segundo tipo de rotores de câmara está apresentado na Fig. 2.20 que ilustra o princípio do motor Wallkel. Neste mecanismo. os gases em expansão atuam sobre o rotor que gira exentricamente e transmite torque ao eixo de s aída por intermédio do excêntrico que faz parte do eixo. A defasagem entre as rotações do rotor e do excêntrico é assegurada por um par de engrenagens composto de uma engrenagem de dentes internos e outra de dentes externos (não mostradas na figura), de modo que o movimento orbital do rotor é controlado
adequadamente.
2.10 Junta de Hooke. Esta ju nta é usada para interligar dois eixos qu e se
cruzam. Também conhecida por junta universal, encontra larga aplicação em veículos automóveis. Um esboço desta junta está mostrado na Fig. 2.21 e um modelo comercial é apresentado na Fig. 2.21. Na Fig. 2.21, a peça 2 é a motriz e a 4 é a conduzida. A peca 3 é uma cruzeta Que li~a os dois garfos Pode-se ver 2 que,
embora os dois eixos completem uma volta durante o mesmo tempo, a razão das velocidades angulares dos dois eixos não será constante, varia!t4º GOITlO uma função qQ~I1g11JQ-'J~ntrç os eixos e do ângulo de rotação e do eixo motriz. A relação é dada por cos f 3 -I -.senz-p-se-n-1-·O
Fig. 2.22 Junta universal tipo Hookc (Cortesia de Mechanics Universal Joint Division. Borg-Warner Corp.)
Uma representação gráfica desta equação em coordenadas polares para um quarto de volta do eixo motriz, mostrada na Fig. 2.23, indica claramente o efeito de um grande ângulo f 3 entre os eix os. É possível a ligação entre dois eixos por intermédio de duas juntas de Hooke e um eixo intermediário. de modo que a razào de velocidades não uniforme do primeiro acoplamento será anulada pela segunda junta. A Fig. 2.24 indica esta aplicação quando os dois eixos 2 e 4, que serão ligados, não são coplanares. A ligação deve ser realizada de tal modo que o eixo motriz 2 e o conduzido 4 façam ângulos iguais P com o eixo intermediário 3. Também os garfos do eixo 3 devem ser posicionados de modo que um garfo fique no plano determinado pelos eixos 2 e 3 e o outro fique no plano dos eixos 3 e 4. Se os dois eixos a serem ligados estiverem no me smo plano. entào os garfos du ei xo intermediário serão paralelos. Uma aplicação deste último caso é o sistema Hotchkiss de transmissão, usado na maioria dos veículos atualmente. 2.11 Juntas Universais Homocinéticas. Engenheiros pesquisaram durante muitos anos uma junta universal capaz de transmitir movimento a uma razão de
velocidades angulares constante.
Diversas juntas, aplicando
o princípio de Hooke,
foram propostas e uma delas, surgida em 1870, possuía um eixo intermediário de comprimento nulo. Entretanto, pelo que se conhece, juntas deste tipo nunca tiveram emprego comercial.
Com o desenvolvimento da tração dianteira para veículos automóveis, aumentou a necessidade de uma junta universal que fosse capaz de transmitir movimento com uma razão de velocidades angulares constante. É verdade que poderiam ser usados duas juntas de Hooke e um eixo intermediário, porém, isto não seria completamente satisfatório. Em uma transmissão do tipo empregado nos veículos de
tração p é, de às vez es, ràzão muito de grande, as condições modificantes dianteira, tornam-na onde quaseo ângulo impossível obter velocidades constante. A
necessidade de uma junta homocinética foi satisfeita pela introdução, nos EUA, das juntas Weiss e Rzeppa e na França, '<.iajunta Tracta. A junta Weiss foi patenteada pela primeira vez em 1925, a Rzeppa em 1928 e a Tracta em 1933. O funcionamento destas juntas não é baseado no mesmo princípio da junta de Hooke.
Uma junta Bendix-Weiss está apr esentada na Fig. 2.25. Conforme mostrado na figura, as ranhuras que são simétricas em relação à linha de centros dos eixos, são formadas nas superfícies dos dentes dos garfos. Quatro esferas são colocadas entre esses dentes no ponto onde os eixos das ranhuras de um gar fo cruzam os eixos das ranhuras do outro garfo. A transmissão de potência é feita do eixo motriz para o conduzido, atravésdasdessas Uma quinta -umasentalhe, proporciona a montagem peças esferas. em um conjunto assimesfera, como com suporta forças axiais. Em funcionamento, as esferas mudarão automaticamente suas posições à medida que o ângulo entre os eixos variar, de modo que o plano que contém os centros das esferas sempre esteja na bissetriz do ângulo formado pelos dois eixos. Pode-se provar 3 que desta condição resultará uma razão de velocidades angulares constante. A Fig. 2.28 mostra uma fotografia da junta Bendix- Weiss. Uma junta Rzeppa, tipo sino, está mostrada na Fig. 2.26. Esta junta consiste de um alojamento esférico e um a pista interna dotados de ranhuras. Seis esferas de aço são colocadas nessas ranhuras e transmitem o torque do eixo motriz para o conduzido. As ranhuras são concêntricas em relação ao ponto O, cruzamento das linhas de centro dos eixos. As seis esferas são conduzidas por uma gaiola cuja posição é controlada por uma haste. Uma extremidade desta haste se encaixa num alojamento colocado na extremidade do eixo B e a outra desliza num furo situado na extremidade do eixo A. Um alargamento esférico no corpo da haste se articula com a gaiola. Se o eixo Bfor defletido em relação ao eixo A, deverá girar em torno de O, porque o conjunto tem este ponto como centro de rotação. Através do movimento do eixo B a haste será acionada comandando a gaiola e portanto as esfe~as,
em um giro de aproximadamente metade do ângulo descrito pelo eixo B. Embora seja possível demonstrar geometricamente que o ângulo entre os eixos~m como bissetor o plano que passa pelos centros das esferas para um e somente um ângulo (diferente de zero) entre os eixos. dependendo das proporções do mecanismo-guia, os erros serão tão pequenos, para outros ângulos até 40° mais ou menos, que serão considerados desprezíveis. POl:tanto. para todos os fins práticos, o plano dos centros das esferas é o bissetor do ângulo entre os doís eixos e a junta transmite movimento com uma razão de velocidades angulares constante. A Fig. 2.28 apresenta uma fotografia da junta Rzeppa.
Uma junta Tracta, mostrada na Fig. 2. 29, consiste de quatro peças: dois eixos com as extremidades em forma de garfo e duas peças hemisféricas, uma delas tem uma corrediça e a outra uma ranhura para receber a corrediça. Além disso, no lado hemisférico de cada peça há uma ranhura que permite a ligação com o garfo de cada eixo. Os dentes dos ga rfos abrangem um ân gulo maior do que 180 de modo a serem autobloqueantes quando montados. A corrediça e a ranhura que recebe a corrediça fazem 900 com as ranhuras onde se encaixam os garfos. Através do encaixe entre a corrediça e a ranhura das peças hemisféricas, quando a junta está montada, os eixos das peças hemisféricas devem sempre permanecer no mesmo 0
plano. Com a junta montada, os garfos ficam livres para girar em torno dos eixos das peças hemisféricas, que estão no plano da corrediça e da ranhura. Em aplicações industriais a junta é mantida em alinhamento adequado por meio de dois alojamentos esféricos não mostrados na figura. Com a junta montada, estes alojamentos proporcionam uma cobertura das peças da junta, articulúvei e que suporta os eixos de modo que suas linhas de centro sempre se cruzem em um
ponto equidistante dos centros das peças hemisféricas. Com este alinhamento a junta Tracta transmitirei movimento com razão de velocidades constante. A Fig. 2.28 apresenta uma fotografia desta junta. 2.12 Mecanismos de Mo vimento Intermitente. Há muitos exemplos onde é necessário transformar movimento contínuo em intermitente. Um dus primeiros exemplos é o mecanismo de comando do movimento da mesa de uma máquina operatriz a fim de apresentar uma nova peça diante da ferramenta para usinagem. Há diversas maneiras de se co nseguir este tipo de movimento. Roda de genebra. Este mecanismo é muito útil na geração de movimento intermitente porque diminui o choque de acoplamento. A Fig. 2.29 mostra um esboço onde o prato I,que gira continuamente, possui um pino acionador P que se encaixa em um su lco na peça conduzida 2. Na figura, a peça 2 gira de um qua rto de volta para cada volta do prato I. O sulco da peça 2 deve ser tangente à trajetória do ponto P no instante do acoplamento para reduzir o choque. Isto significa que o ângulo 01 PO 2 será um ângulo reto. Pode-se ver também que o ângulo p é a metade
pdoé ângulo 45°. descrito pela peça 2 durante a mudança de estação. No cas o, o ângulo
É necessário um dispositivo de fixação para não deixar a peça 2 girar a não ser quando acionada pelo pino P. Uma das maneiras mais simples de se c onseguir
isso é montando um disco de fixação sobre a peça I. A superfície convexa do disco
coincide com a côncava da peça 2 exceto durante o período de troca de estação. É necessário cortar uma parte do disco de fixação para permitir o movimento da peça 2 quando estiver sendo acionada pela peça I. Esse corte, no disco de fixação, corresponde a um arco de valor igual a duas vezes o ângulo IX. Se um dos sulcos da peça 2 for fechado, então o prato I dará somente um número limitado de voltas antes que o pino P esbarre no sulco fechado, interrompendo o movimento. Mecanismo de catraca. Este mecanismo é empregado para gerar movimento circular intermitente a partir de uma peça oscilante ou alternativa. A Fig. 2.30 apresenta os detalhes. A roda dentada 4 recebe movimento intermitente através do braço 2 e do dente acionador 3. Um dente-retém, 5 impedirá a rotação da roda 4 quando o braço 2 girar no sentido horário preparando-se para outro curso. A linha de ação PN, entre o dente 3 e os de ntes da roda 4, deve passar entre os centros O e A como indica a figura a fim de que o dente 3 permaneça em contato com a roda dentada. A linha de ação (não mostrada) entre o dente-retém 5 e a roda dentada deve passar em entrecontadores. os centros O e cularmente
B.
Este mecanismo tem muitas aplicações, parti-
Engrenamento intermitente. Este mecanismo encontra aplicação em acionamentos onde as cargas são leves e o choque for de importância secundária. A roda motriz possui um dente e a conduzida um número de vãos de dentes para a obtenção do movimento intermitente desejado. A Fig. 2.31 apresenta este mecanismo. Um dispositivo de freiamento deve ser empregado na roda 2 para evitar sua, rotação quando o dente da en grenagem 1 não estiver acoplado com a peça 2. Um modo de fixar a peça 2 é mostrado na figura: a superfície convexa da roda 1 coincide com a superfície côncava entre os vã os de dentes da peça 2.
Mecanismo de escape. Neste tipo de mecanismo uma roda dentada, sujeita a um torque, tem movimento de rotação intermitente por ação de um pêndulo.
Devido a ist o, o mecanismo pode ser empregado como um marcador de tempo e deste modo encontra sua maior aplicação em relógios. Uma segunda aplicação é o seu uso como um comando para controlar deslocamento, torque ou velocidade.
Há muitos tipos de escapes, porém, o que é usado em relógios devido à sua grande precisão é o escape com roda de balanço, mostrado na Fig. 2.32. A roda de balanço e a mola de cabelo constituem um pêndulo torsional com um período fixo (tempo de oscilação de um ciclo). A roda_~ es~~_~acionadapor uma mola mestrª~J!m. de engr~nagens (não mostrado) e possÜrmovimentó intermiteIlte _trem no ~~Iltido_borÍlriocornandado pela _alayaDca. Para cada oscilação completa da roda de balanço, a âncora libera a roda de escape para girar de um ângulo correspondente a um dente. A roda de escape, portanto, conta o número de vezes que a roda de balanço oscila e também, através da âncora, fornece energia à roda de balanço para compensar perdas por atrito e de resistência do ar. A fim de estudar o movimento deste mecanismo durante um ciclo, consideremos a âncora mantida encostada no pino-batente_ da esquerda pelo dente A da roda de escape atu ando sobre a lingüeta da esquerda. A roda de balanço gira no sentido anti-horário de modo que o rubi se choca com a âncora girando-a no sentido horário. O movimento da âncora faz com que a lingüeta da esquerda libere o dente A da roda de escape. Esta roda então gira no sentido horário e a parte superior do dente A impulsiona a lingüeta da esquerda, ao deslizar por baixo desta. Com este impulso a âncora começa agora a acionar o rubi, dando assim energia à roda de balanço para manter o seu movimento. Depois que a roda de escape girar um peq ueno ângulo, voltará ao repouso novamente quando o dente B topar com a lingüeta da direita que tinha sido baixada devido à rotação da âncora. Esta âncora bate no pino da dir eita e pára, mas a roda de balanço continua girando até que sua energia seja absorvida pela mola de cabelo, por atrito no mancal e pela resistência do ar.
~~Jºtªçªº
Roda de balanço e mola de cabelo (não mostrada)
'1 / /
Roda de escape (acionada pela mola mestra e trem de engrenagens)
A força do dente B da roda de escape sobre a lingüeta da di reita mantém a âncora bloqueada, de encontro ao pino-batente da direita. A roda de balanço completa a sua oscilação e inverte o sentido, retomando com movimento no sentido horário. O rubi agora bate no lad o esquerdo do entalhe da âncora impulsionando-a no sentido anti-horário. Esta ação libera o de nte B, que por sua vez impulsiona a âncora através da lingüeta da direita. Depois de girar um pequeno ângulo a roda de escape voltará ao repouso novamente quando o dente seguinte topar com a lingüeta da esquerda. O escape de ro da de balanço é também conhecido como escape de âncora independente porque a roda de balanço fica livre de seu contato com a âncora durante a maior parte de sua oscilação. Devido a esta liberdade relativa da rod a de balanço, o escape tem uma precisão de ± 1% . Para informação adicional sobre mecanismos de escape e suas aplicações deve-se consultar uma das muitas referências sobre o assunt0 4•
2." ed. Pitman. 1948. T. K. Stecle. "Clock4 A. L. Rawlings. The Science of Clocks and Watches. Escapement Mechanisms". Product Engineering. Janeiro, 1957. pg. 179.
2.13 Síntese. Nos sistemas articulados, estudados neste capítulo, eram dadas as dimensões do mecanismo e o problema consistia em analisar o movimento produzido pelo sistema. Um assunto completamente diferente, entretanto, é tentar dimensionar um mecanismo para dar esse movimento. Este procedimento é conhecido por síntese de mecanismos. Indubitavelmente muitos problemas de síntese têm sido resolvidos por tentativas, mas foi somente nos anos recentes que foram desenvolvidas soluções racionais. Muitos métodos de síntese foram propostos, gráficos e analíticos, e somente o seu estudo já seria uma matéria. No capítulo 9, Introdução à Síntese, são apresentados diversos métodos para ilustrar os princípios envolvidos.
2.1 No mecanismo de quatro barras, mostrado na Fig. 2.1, faça
O2 O 4
50mm,
=
= 62mm, AB 02A mecanismos 04B igual 38mme edetermine a 44mm, 19mm. os três em = escala para cada um69mm se as epeças 2 e Desenhe 4 giram ou oscilam. No caso de oscilação determine as posições-limite. 2.2 No mecanismo de quatro barras, mostrado na Fig. 2.1, a peça 2 gira e a peça 4 oscila segundo um ângulo de 75°. A peça 4 tem 114mm de comprimento e quando está em uma posição extrema, a distância 02B 1..'de J02mm e na outra posição extrema é de 229mm. Determine os comprimentos das peças 2 e 3 e desenhe o mecanismo em escala, como verificação. Determine os valores máximo e minimo do ângulo de transmissão.
02A = 2.3 Se nAB o mecanismo manivela dupla, Fig. 2.4c, máximo = 102mm e de O 4B = 127mm, 76,2mm, qual mostrado deve ser o na comprimento de 0204 para um funcionamento adequado do mecanismo? =
O.A = 2~
m m --r
AB=75mm R = 75mm
E
E N
1_ 10
2.4 No mecanismo de quatro barras, mostrado na Fig. 2. 33, a guia é fixa e sua linha de centro é um arco circular de raio R. Desenhe o mecanismo em escala e, por construção gráfica, determine a velocidade angular do bloco 4, para a fase mostrada. A velocidade angular 0)2 é 1 rad/s. Indique o sentido de 0)4' 2.5 Considerando o mecanismo cursor-manivela, mostrado na Fig. 2.5h, deduza as equações para o deslocamento, a velocidade e a aceler.ação do cursor em função de R , L, O , O) e 4 > . Não faça aproximações. Considere O) constante. 2.6 A equação aproximada para o deslocamento do cu rsor, no mecanismo cursor-manivela, é x = R ( I- cos O ) + (R 2/2 L) sen2 0, sendo O = wt porque w é constante. Deduza as equações para a velocidade e a ac eleração do cur sor se O) não for constante. 2.7 Escreva um programa de computador para calcular o deslocamento, a velocidade e a aceleração do cursor do. mecanismo cursor-manivela mostrado na Fig. 2.5. Use a equação exata e a ap roximada. Faça R = 50mm, L = 100mm, 2 400 rpm. Calcule o deslocamento, a velocidade e a aceleração, para uma "2 = volta da manivela, com intervalos de 10" para o ângulo O .. 2.8 Um mecanismo cursor-manivela tem uma manivela de comprimento R = 50mm e op era a 250 rad/s. Calcule os valores máximos da velocidade e da aceleração e determine os ângulos da manivela em que ocorrem esses máximos. Use bielas de comprimentos 200, 230 e 250mm. Utilize as equações aproximadas e considere O) constante. 2.9 Escreva um programa de computador para comparar o movimento harmônico simples do Garfo Escocês (Fig. 2.8) como movimento do cursor do mecanismo cursor-manivela. Use" = I 800 rpm, R = 50mm e L = 100mm para o cursor-manivela e r = 50mm Garfode Escocês. Calcule a velocidade e a aceleração parapara cadao valor O , variando-o de Ooa deslocamento, 360" no sentido anti-horário. Empregue as equações aproximadas para o mecanismo cursormanivela e considere w constante. 2.10 No mecanismo da Fig. 2.34, despreze o efeito da biela (considere infinito o comprimento da biela) e determine uma expressão para o movimento relativo entre os dois cursores. Esta relação deve ser uma função do tempo e constar de um único termo trigonométrico.
I
I
~6
j I
O,A = 75mm O,B = 125mm
2.11 Se peça 2 do Garfo Escocês, mostrado na Fig. 2.8a gira a 100 rpm, determine a velocidade máxima e a aceleração máxima da peça 4 para um curso de lOmm. 2.12 A Fig. 2.35 apresenta um mecanismo Garfo Escocês modificado, no qual a linha de centro da guia é um arco circular de raio r. O raio da manivela é R. Deduza uma expressão para o deslocamento x do garfo (peça 4) em função de lJ, R e r. Indique o deslocamento no desenho.
4
m m 1
2.13 Considerando o mecanismo de retorno rápido de manivela dupla e cursor mostrado na Fig. 2.9, determine a velocidade do cursor 6 para uma volta completa da manivela 2, usando intervalos de 45° para o ângulo de rotação desta manivela. A velocidade de rotação da peça 2 é de 100 rpm. Use a escala 1:3 para o desenho e faça 0204 = 76mm, 02A = 114mm, AB = 140mm, BC = 216mm, 04B = 152mm, 04C = 152mm e CD = 470mm. Determine w4 graficamente usando o princípio da transmissão de movimento e então calcule a velocidade do cursor 6 empregando a equação do mecanismo cursor-manivela. 2.14 Utilizando as dimensões do mecanismo do problema 2.13, determine graficamente o comprimento do curso da peça 6 e a razão entre os tempos de avanço e de retorno (razão de tempo). Use a escala de 1:4 para o desenho. 2.15 Para o mecanismo Whitwortk mostrado na Fig. 2.10, determine o comprimento do cursor da peça 6 e a razão entre os tempos de avanço e de retorno. Use a escala de 1:4 para o desenho. Faça 0204 =64mm, 02A =127mm, 04B = = 127mm e BC = 457mm. 2.16 Para o mecanismo cursor-manivela, mostrado na Fig. 2.11, determine graficamente o comprimento do curso e a razão entre os tempos ~deavanço e de retorno. Use a escala de 1:4 para o desenho. Faça 0204 =406mm, 02A =
= 152mm, 04B = 660mm, igual a 635mm.
BC = 305mm
e a distância de 04 à trajetória de C
Projete um mecanismo Whitworth que tenha um comprimento de curso de 3üSmm e uma razão de tempos de 11/7. Use a escala de 1:4 para o desenho. 2.18 Projete um mecanismo de plaina limadora que tenha um comprimento de curso de 3ü Smm e uma razão de tempos de 11/7. Use a esc ala de 1:4 para o desenho. 2.19 Para o mecanismo de retorno rápido, apresentado na Fig. 2~36, deduza 2.17
uma expressão para o deslocamento x do cursor S em função unicamente do ângulo () da peça motriz 2 e das distâncias constantes mostradas na figura.
L O,A = 18,8mm
O.B =87,5mm
2.20 A Fig. 2.37 representa um mecanismo de retorno rápido no qual a peça 2 é a motriz. A peça 5 s e desloca para a direita durante o curso de trabalho e para a esquerda durante o curso de retorno rápido. Desenhe o mecanismo em escala e determine graficamente (a) a razão de velocidades angulares W4/W2 para a fase mostrada na figura, e (b) a razão de tempos do mecanismo. 2.21 De duza as equações de des locamento, velocidade e aceleração para o mecanismo de manivela Fig. 2.12. As equações devem ter forma semelhante às da sdeslocada equaçõesmostrado 2.2, 2.3 ena 2.4.
.JL"r
f..-+
C8ntroda manivela
'o_o I o_o_--J~P 20 0 mm 125mm.
-+-curlO
= 300 mm-1
I
ffi-
"
.1
fia. 1.38
2.22 Calcule os comprimentos da manivela e da biela para um mecanismo de manivela deslocada que satisfaça às condições apresentadas na Fig. 2.38. 2.23 Para o mecanismo de manivela deslocada, mostrado na Fig. 2.39, calcule (a) o comprimento do curso do bloco 4, (b) a distância 02B quando o bloco estiver na posição extrema esquerda e (c) a razão de tempos. 02A = 75mm AB= 175mm
.L... 1
50mm
.
_
2.24 Considerando somente as peças 4, 5 e 6 do mecanismo de ala vanca artir culado, mostrado na Fig. 2.13, escreva um programa de computador para mostrar as forças desenvolvidas neste mecanismo. Considere F uma força constante de 45 N. Sugestão: Use a equação 2.8 e varie I X de 10" até perto de 0° . 2.25 Plote a trajetória do pon to P do mecanismo traçador de retas de Watt, mostrado na Fi g. 2.1 5. Faça 02A = 5lmm, 04B = 76mm, AP = 38mm, BP = = 25mm e as peças 2 e 4 perpendiculares à peça 3. 2.26 Considerando a Fig. 2.15, determine graficamente as dimensões do mecanismo traçador de retas de Watt para que o trecho reto da trajetória do ponto P tenha um comprimento de aproximadamente I27mm. 2.27 Prove que o ponto P do mecanismo Peaucellier, mostrado na Fig. 2.16,
traça uma linha reta verdadeira.
2.28 Prove que os pontos P e Q do pantógrafo mostrado na Fig. 2.17 se deslo-
cam em trajetórias semelhantes. 2.29 No pantógra[o representado .na Fig. 2.40, o ponto Q traça um segmento de reta de 76mm enquanto P traça um segmento de 203mm. Se o valor máximo da distância OP for 394mm, projete um pantógrafo para dar o movimento desejado usando uma escala de 1:3 para o desenho. Desenhe o mecanismo nas suas duas posições extremas e determine os comprimentos das peças.
2.30 Uma junta de Hooke liga dois eixos a 135° ( f J = 45°) conforme mostrado na Fig. 2.21. Calcule as velocidades angulares máxima e mínima do eixo conduzido, para uma rotação constante do eixo motriz de 100 rpm. 2.31 Deduza as equações de deslocamento e velocidade angulares da peça conduzida de um mecanismo Roda de Genebra (Fig. 2.29). O movimento se inicia quando o pino acionador entra no sul co da peça conduzida e cessa quando o pino sai desse sulco. Determine fJ = f(rx), dfJ/a rx = f(rx) e use (df J/ drx) (drx /d. ) = dfJ/d. para determinar uma equação para a velocidade angular da peça conduzida. 2.32 Usando as equações deduzidas no problema 2.31, escreva um programa de computador e calcule os valores de fI e w2 para r x variando de 60° a 0° em intervalos de 100. Faça r x = 600no primeiro ponto de contato, 0IP = 45mm, 1 2 = 89mm
°°
e nl
= 1 000
rpm (constante). 2.33 Desenhe um mecanismo Roda de Genebra para satisfazer às seguintes condições: a peça motriz gira continuamente enquanto a conduzida gira intermitentemente, completando um quarto de volta para cada volta da motriz. A distância entre os centros das peças motriz e conduzida é de 89mm. O diâmetro do pino acionador é de 9,5mm. Os diâmetros dos eixos das peç as motriz e conduzida são 16mm e 25mm, com rasgos de chavetas de 4,8 x 4,8mm e 6,4 x 6,4mm, respectivamente. Desenhe o cubo de cada peça. O cubo da peça mot riz deve aparecer por trás do prato. Os di âmetros dos cubos são 1,75 vezes os di âmetros dos furos. Determine os ângulos r x e f J
Carnes
..:
....
0 0 0
o o
o
••••••
As carnes desempenham um papel muito importante na maquinaria moderna e são extensivamente usadas em motores de combustão interna, máquinas operatrizes, computadores mecânicos, instrumentos e muitas outras aplicações. Uma carne pode ser projetada de duas maneiras: (a) partindo-se-dQffiOvimentodes.ejildo para o seguidor.J)IQjelar,l. carne para dar este movimento, ou (b)p,-\tl~~ Jorma 4,! carne. determinar que características de deslocamento, velocidade e aceleração serão __ ºJ'Jidª~pelo .çQlltqmº da .çª-J:!le. O primeiro método é um bom exemplo de síntese. De fato, projetar um mecanismo de carnes para o movimento desejado é uma aplicação de síntese que sempre poderá ser resolvida. Entretanto, depois de projetada a carne pode ser difícil a sua fabricação. Esta dificuldade de fabricação é eliminada no segundo método fazendo a carne simétrica e usando para o contorno, formas que possam ser geradas.' Este é o tipo usado na indústria automobilística onde as carnes devem ser produzidas com precisão e a baixo custo. . Somente será abordado o projeto de carnes com movimento específico. Para os tipos empregados em automóveis onde o contorno é especificado, o leitor poderá consultar a referência abaixol. As carnes com movimento especificado podem ser projetadas e;raficamente e em certos casos, analiticamente. Será abordado em primeiro lugar o método gráfico.
3.1 (ame de Disco com Seguidor Radial. A Fig. 3.1 mostra uma carne de disco com um seguidor radial de face plana. Quando a carne gira com velocidade angular constante na direção indicada, o seguidor se desloca para cima de uma distância aproximadamente de 20mm, de acordo com a escala marcada na haste, durante meia-volta da carne. O movimento de retorno é o mesmo. A fim de determinar graficamente o contorno da carne, será necessário inverter o mecanismo e manter a carne estacionária enquanto o seguidor gira ao seu redor. Isto não afetará o movimento relativo entre a carne e o seguidor e o procedimento é o seguinte: 1. Girar o seguidor em torno do centro da carne no sentido oposto ao da rotação da carne. 2. Deslocar o seguidor radialmente de acordo com o indicado na escala para cada ângulo de rotação. 3. Des enhar o contorno da carne tangente ao pol ígono formado pelas várias posições da face do seguidor. Infelizmente, para este último passo, não há um processo gráfico para determinar o ponto de contato entre a carne e o seg uidor. Este ponto deve ser determinado a olho empregando-se a curva francesa. O comprimento da face do seguidor deve ser determinado por tentativas. Ocasionalmente pode ser escolhida uma escala de de slocamentos combinada com o raio mínimo da carne de modo a se obter um contorno com uma pont a ou aresta. Esta aresta pode ser eliminada modificando-se a escala de de slocamentos ou aumentando-se o raio mínimo da carne.
6
FIg. 3.1 Carne de disco com seguidor radial de face plana.
9
3
Deslocamento
Fig. 3.2 (a) Carne de disco com seguidor radial de rolete. (b) Carne de disco com seguidor deslocado.
de rolete.
A Fig. 3.2a mostra o mesmo tipo de carne com um seguidor de rolete. Com este tipo de se guidor o centro do role te se deslocará com o movimento desejado. Os princípios de construção são idênticos aos do seguidor de face plana com exceção de que o contorno da carne é tangente às várias posições do rolete. Na Fig. 3.2a pode-se ver, também, que a linha de ação entre a carne e o seguidor não pode estar ao longo do eixo do seguidor, exceto quando este estiver em repouso (sem movimento de subida ou ouquebra retorno).de sua Isto haste. produzOuma forçaexistente lateral no seguidor causar uma deOexão ângulo entre a linhae pode de ação e a linha de centros do seguidor é conhecido por ângulo de pressão e seu valor máximo deve ser o menor possível, especialmente em mecanismos de pequeno porte. Atualmente, esse valor máximo é de 30°. Embora seja possível medir o ângulo de pressão máximo na construção gráfica de uma carne, muitas vezes é difícil determiná-lo analiticacamente. Por esta razão será apresentado, mais adiante, um nomograma para determinação do ângulo de pressão máxima em projetos analíticos de carnes. O ângulo de pressão é constante para qualquer seguidor radial de face plana. O seguidor mostrado na Fig. 3.1 tem a face perpendicular ao eixo da haste, de mo do que o ângulo de pressão é zero e a força lateral exercida sobre o seguidor é desprezível comparada com a existente nos seguidores com rolete. Pode-se reduzir o ângulo de pressão aumentando-se o raio mínimo da carne de modo que a trajetória do seguidor em re lação à carne seja maior para a mesma elevação. Isto equivale a aumentar o comprimento de um pl ano inclinado para a mesma elevação, a fim de reduzir o ângulo de inclinação do plano. Também, numa carne com seguidor de rolete, o raio de curvatura da superfície primitiva deve ser maior do que o raio do rolete senão a superfície da carne se tornará ponteaguda. Às vezes, as hastes dos seguidores de face plana ou de rol ete são desloca das lateralmente invésestruturais de serem radiais conforme mostrado nas Figs. e 3.2a. Isto é feito poraorazões ou no caso do seguid or de rolete, com a3.1 finalidade de reduzir o ângulo de pressão no curso de elevação. Deve-se notar, entretanto, que embora o ângulo de pressão seja reduzido durante o curso de elevação, no curso de retorno ele será aumentado. A Fig. 3.2b mostra uma carne e um seguidor deslocado, com a mesma escala de deslocamento e o mesmo raio mínimo usados na Fig. 3.2a. Se a direção do movimento de um seguidor deslocado, de face plana, for paralela a uma linha radial da carne, resultará a mesma carne obtida com um seguidor radial. Entretanto, o comprimento da face do seguidor deve ser aumentado devido ao deslocamento haste. 3.2 Carne de Dis co com Seguidor Oscilante. A Fig. 3.3 mostra uma carne de disco com um seg uidor de fa ce plana, oscilante. Usando o mesmo princípio de construção empregado para a carne de disco com segui dor radial, gira-se o seguidor em torno da carne. Ao mesmo tempo o seguidor deve ser girado. em torno de seu centro de rotação, segundo os deslocamentos angulares correspondentes à cada posição indicada na escala. Hú diversas maneiras de se girar o seguidor em torno de seu centro. O método indicado na Fig. 3.3 é usar a interseção de dois arcos de circunferências (por exemplo, o ponto 3') para determinar um pon to da face do
seguidor em desses sua nova posiç ão, tem apóscomo girar em de seu centro e em da torno da carne. O primeiro dois arcos raiotorno a distância do centro carne até a
posição 3 da escala de deslocamento e como centro de curvatura o centro de rotação da carne. O segundo arco é traçado com centro de curvatura situado no centro de rotação do seg~idor após ter girado até a pos ição 3 e usando para o raio a distância do centro do seguidor até a escala de deslocamento. A interseção desses dois arcos será o ponto 3'. Devido ao número infinito de retas que podem passar pelo ponto 3', é necessário ter-se uma informação adicional para determinar a posição correta da face do seguidor correspondente ao ponto 3'. Conforme mostrado na figura, isto foi conseguido por uma circunferência tangente ao prolongamento da face do seguidor na posição zero. Na figura, houve coincidência dessa circunferência com o diâmetro externo do cubo do seguidor. Essa circunferência é, então, traçada em cada posição do centro do seguidor. Para se determinar a posição 3 da face do seguidor traça-se uma reta que passa pelo pon to 3' e é ta ngente à circunferência do cub" do seguidor em sua posição 3. Repetindo-se este processo, obtém-se um poligono formado pelas diversas posições da face do seguidor. A partir deste polígono desenha-se o contorno da carne.
A Fig. 3.4 mostra uma came de disco com seguidor oscilante, com rolete. O procedimento para a determinação dos pontos 1',2',3' etc. é semelhante ao indicado
na Fig. 3.3. Entretanto, neste caso, estes pontos são as posições do centro do rolete determinadas pela rotação do seguidor em torno da carne. Taçam-se as circunferências correspondentes à cada posição do rolete e o contorno da carne é tangente a essas circunferências. Deve-se notar que num projeto real seriam usadas divisões menores de modo a minimizar o erro do contorno da carne. Deve-se mencionar também que o mesmo procedimento pode ser empregado no projeto de uma carne com seguidor oscilante, de rolete, como o usado para uma carne com seguidor radial deslocado.
Embora a maioria das carnes em uso seja dos tipos já mencionados, há muitos outros, alguns dos qu ais encontram grande aplicação. Nas seções seguintes serào abordados três desses tipos. 3.3 Carne de Retorno Comandado. Em uma carne de disco c um segu idor radial. freqüentemente é necessário que o retorno do seguidor seja comandado pela carne e não sob a ação da gravidade ou de uma mola. A Fig. 3.5 mostra um mec anismo deste tipo em que a ca rne comanda o movimento do seguidor não somente durante
a elevação como também no curso de retorno. Necessariamente. o movimento de
retorno deve ser o mesmo que o de elevação, porém, no sentido oposto. Esta carne também é chamada de carne de diâmetro constante. Este tipo de carne pode também ser projetado empregando dois seguidores de rolete no luga r dos seguidores de face plana. Se for necessário ter-se um movimento de retorno independente do movimento de elevação, devem-se usar dois discos, um para a elevação e outro para o retorno. Estas carnes duplas podem ser usadas com seguidores de rolete ou de face plana.
3.4 Carne Cilíndrico. Este tipo de carne encontra muitas aplicações, particularmente em máquinas opera trizes. Talvez o exemplo mais comum, entretanto, seja a alavanca niveladora do molinete de vara de pescar. A Fig. 3.6 mostra um desenho onde o cilindro gira em torno de seu eixo e aciona um seguidor que é guiado por uma ranhura exist~nte na superfície do cilindro. 3.5 Carne Invertido. Às vezes é vantajoso inverter o papel da carne e do seguidor e deixar que o seguidor comande a carne. Esta inversão encontra aplicação em
máquinas de costura e outros mecanismos de na tureza semelhante. A Fig. 3.7 mostra o esboço de uma carne de placa onde o braço oscila, causando um movimento alternativo do bloco por ação de um role te dentro da ranhura da carne.
r Retaguarda ~
Bloco
Frente
t
'1
Antes de se determinar o contorno de uma came é necessano selecionar o movimento segundo o qual se deslocará o seguidor, de aco rdo com as exigências do sistema. Se a ve locidade de operação deve ser baixa, o movimento pode ser qualquer um dos movimentos comuns, por exemplo, parabólico (aceleração e desaceleração ou cicloidal. constantes), parabólico com velocidade constante, harmônico simples O movimento parabólico possui a mais baixa aceleração teórica para valores determinados de elevação do seguidor e rotação da came, dentre os movimentos citados e por esta razão tem sido empregado em muitos contornos de cames. Entretanto, em tr abalhos a baixas velocidades isto tem pouco significado. O movimento parabólico pode ou não ter intervalos iguais de ace leração e desaceleração, dependendo das exigências do problema. O movimento parabólico também pode ser modificado para incluir um intervalo de velocidade constante entre a aceleração e a desaceleração; este movimento é muitas vezes denominado de velocidade constante modificada.
O movimento harmônico simples apresenta uma vantagem de, ao empregar um seguidor radial de rolete, proporcionar um ângulo de pressão máximo menor do que no movimento parabólico com intervalos de tempo iguais ou no movimento cicloidal. Isto permitirá que o seguidor tenha apoios menos rígidos e maior trecho em balanço. Também menos potência será necessária para operar a came. Por estas razões o movimento harmônico simples é o preferido entre os outros tipos. Depois de selecionar o movimento do seguidor, é necessário determinar-se a escala de deslocamentos e marcá-Ia sobre a haste do seguidor, conforme mostrado na Fig. 3.1. As elevações podem ser calculadas, porém, são determinadas com mais facilidade gra(icamente, plotando-se uma curva deslocamento-tempo . ..PÍot~ 'ofgráfico deslocamento-tempo é necessário determinar primeiro o ponto de inf lexão se o movimento for parabólico ou uma modificação deste. Para os movimentos harmônico simples e cicloidal, o ponto de inflexão é determinado automaticamente pelo método de geração da curva. O ponto de inflexão de um movimento parabólico estará no meio da escala de des locamentos e da escala de tempos se os intervalos forem iguais. A determinação dos pontos de inflexão de um movimento parabólico modificado é um pouco mais complicada, como será visto a seguir. Consideremos um ponto deslocando-se com movimento uniforme modificado, onde parte do repouso com aceleração constante, em seguida passa a ter vel ocidade constante e finalmente chega ao repouso com desaceleração constante. Os pontos de inflexão podem ser determinados especificando-se os intervalos de tempo ou de deslocamento correspondentes a cada tipo de movimento. A Fig. 3.8 indica uma construção gráfica para determinar os pontos de inflexão A e B quando são dados os intervalos de tempo. A Fig. 3.9 mostra a construção para intervalos de deslocamento. Das relações S=
At2,
V
= At
e S = Vt, é possível provar a validade
+
da co nstrução mostrada nas Figs. 3.8 e 3.9.
0 k -.! lJ
I
I
~'l~,~-Lt;j
J
Tempotou êngulo8dacame
Depois que os pontos de inf lexão foram determinados, como por exemplo na Fig. 3.9, o trecho OA, de aceleração constante,#a curva do deslocamento pode ser construido conforme indicado na Fig. 3.10, onde o deslocamento L (correspondente a Sl da Fig. 3.9) está dividido no mesmo número de partes da escala de tempo, neste caso quatro. O trecho desacelerado BC da curva na Fig. 3.9 será construido de modo semelhante para o deslocamento SJ e o correspondente intervalo de tempo.
} '
o' 1
2 t
3
4
Tempo
ou ângul o 8 da came
Fig. 3.10 Movimento parabólico.
A Fig. 3.11 mostra o movimento harmônico simples [S = r (1 - cos w ,t)] para um deslocamento L com seis divisões na escala do tempo. Nesta figura deve-se notar que se a carne gira de meia-volta enquanto o seguidor se move segundo o deslocamento L) a velocidade angular wr do raio girante r se iguala à velocidade angular W da carne e a equação do deslocamento do seguidor pode ser escrita como S =r (1 - cos wt) =r (1 - cos O ). Se a carne gira somente de um qua rto de volta r = 2w e S = r (1 --cos 20). Portanto, pode-se ver que o deslocamento apara relação entre wr e wL. éw expressa por
wr w
1800
ângulo de r otação da carne para elevação
2
3
Tempo
t ou
4
L do
seguidor
5
ângulo () da came
Uma carne circular (excêntrico) proporcionará um movimento harmônico simples a um seguidor radial de face plana porque o ponto de contato entre estas duas peças e o centro geométrico da carne estarão sempre na direção do movimento do seguidor. A Fig. 3.12 mostra a construção para o movimento cicloidal
para um deslocamento L com seis divisões na esc ala de tempo. O mio do círculo gerador é L/2n. A circunferência deste círculo é dividida no mesmo número de partes que a escala de tempo, neste caso seis. Os seis pontos marcados na circunferência são projetados horizontalmente sobre o diâmetro vertical do círculo. Estes pontos são então projetados paralelamente à diretriz DA até as linhas correspondentes marcadas no eixo do tempo. Para carnes de alta velocidade a seleção do movimento do seguidor deve ser baseada não só nos deslocamentos mas também nas forças que atuam sobre o sistema
como resultado do movimento selecionado. Por muitos anos o projeto de carnes dizia respeito somente ao movimento de um seguidor em um curso determinado,
durante um certo tempo. As velocidades eram baixas de modo que as forças de inércia eram insignificantes. Com a tendência de uso de velocidades mais altas nas máquinas, entretanto, tornou-se necessário considerar as características dinâmicas do sistema e selecionar um contorno de came que minimizasse o carregamento dinâmico.
Tempotou ângulo 8 da came
Como um exemplo da importância do carregamento dinâmico, consideremos o movimento parabólico. Em relação às forças de inércia este movimento pareceria ser desejável por causa de sua baixa aceleração. Entretanto, não se pode ignorar o fato de que a aceleração cresce de zero a seu val or constante quase que instantaneamente, resultando em uma alta taxa de aplicação da carga. Determina-se a taxa de variação da aceleração pela terceira derivada do deslocamento, conhecida por "jerk" ou segunda aceleração. Portanto, o "jerk" ou a segunda aceleração é uma indicação da característica de im pacto do carregamento: pode-se dizer que o impacto tem a segunda aceleração igual ao infinito. A falta de rigidez e as folgas do sistema também tendem a aumentar o efeito da carga de impacto. No movimento parabólico onde a segunda aceleração é infinita, este impacto ocorre duas vezes durante o ciclo e tem o efeito de uma pancada súbita no sistema, que poderá ocasionar vibrações indesejáveis bem como danos estruturais. Como um modo de evitar o "jerk" infinito e seu efeito prejudicial em carnes. um sistema de projeto de carnes foi desenvolvido por Kloomok e Muffley 2 que utiliza três funções analíticas: (a) ciclóide (e meia-ciclóide), (b) harmônico (e meioharmônico) e (c) polinômio de oitavo grau. Os diagramas de deslocamento, velocidade e aceleração dessas funções estão representados nas Figs. 3.13, 3.14 e 3.15. As curvas têm derivadas contínuas em todos os po ntos intermediários. Portanto, a aceleração varia gradualmente e a segunda aceleração é finita. Evita-se o "jerk" infinito nos extremos igualando-se as acelerações. Deve-se notar que as velocidades serão concordantes porque não podem aparecer descontinuidades na
2
El1g.,
M.vereiro K100mok e R. V. Muffiey, "Plate Cam Design-with Emphasis on Dynamic Effects", Fe 1955.
Prod.
curva de deslocamento em função do tempo. Como um exemplo, quando após um repouso seguir uma elevação, a aceleração nula no final do repouso é igualada selecionando-se uma curva que tenha aceleração nula no iní cio da elevação. A aceleração exigida no final da elevação é determinada pela condição subseqüente. Se imediatamente se segue um retorno, a elevação pode terminar com um valor moderadamente alto de desaceleração porque este valor pode ser igualado exatamente por uma curva que tenha a mesma desaceleração no início do retomo.
c- s
s
~t I.-~ ~
V.
*
IL S=L I
12,..- (8J ) G ---se" 2,..
fJ
lU.;_j(1-COS2"'f)
r= '\:;f J
A
A -
~f ( s e " 2 ,. .f )
Fig.'3.13 Características do movimento cicloidal. S = deslocamento: V = velocidade: A = aceleração. (Fonte: M. Kloomok & R. V. Muffiey, "Plate Cam Design with Emphasis on Cam Effects," Prod. Eng., Fevereiro 1955.)
v= 'lrL 2fj
( c o s 2fj'lr8)
Flg. 3.14 Característícas do movímento harmônico. S =deslocamento; V =velocidade: A =aceleração. (Fonte: M. Kloomok & R. V. Muffiey. "Pia te Cam Design· with Emphasis on Cam Effects", Prod. Eng., Fevereiro 1955.)
L_ _
/~-r
II Lt e
hL
['''''''(fj -" '''''o ( J 'f -
./8)7
13,6096o\if
(8)8J li
+.26,73155(*1
+ 2,56095
1---13~
v~ A
~.
v ••t [18,29265(t)
e
A-~
2
~ 103,90200(t)
t) + 20,48760( t)
95,26755(
['36,58530(t)-415,60800(~) - 571,60530(tY
A
,
- fr [ -
: 160,38930(f)
5
]
+801,946SO(tY
+ 143,41320(t)]
5,26830 + 55.61100(t)3 + 95,11800G)
- 288,87390(~)
5
+ 143,41320(t)
6J
Fig. 3.15 Característícas do movimento polínomíal do oitavo grau. S = deslocamento; V = velocidade: A =aceleração. (Fonte: M. Kloomok & R. V. Muffiey. "Plate Cam Design- with Emphasis on Dynamic Effects,"' Fevereiro 1955.)
A seleçãocritérios: de curvas para atender a exigências particulares é feita de acordo com os seguintes 1. A ciçlóide proporciona aceleração nula nos extremos dos trechos da curva. P"Qnájjto, PJode ser combinada com dois repousos em cada extremidade. Como -ôângulo de pressão é relativamente grande e sua aceleração retoma a zero desnecessariamente nos extremos, duas ciclóides não devem ser usadas em seqüência. 2. O harmônico proporciona os me nores picos de aceleração e os menores ângulos de pressão das três curvas. Portanto, é a curva preferida quando as acelerações no início e no fim do trecho podem ser igualadas com as acelerações do trecho
vizinho. O meio harmônico pode ser usado onde uma elevação. a velocidade cons-
tante precede uma aceleração, porque a aceleração do ponto médio é zero. O meio harmônico pode ser combinado com meio-ciclóide ou com um meio-polinômio. 3. O polinômio de oi tavo grau tem uma curva de aceleração assimétrica e proporciona um pico de aceleração e ângulos de pressão intermediário entre o harmônico e a ciclóide.
Um seguidor de rolete deverá se deslocar, com elevação e retorno, sem repouso, durante um ciclo. Devido à operação realizada pelo mecanismo, parte da elevação deverá ser feita com velocidade constante. Determine as curvas dos movimentos a serem usadas. Referindo-se à Fig. 3.I6a: AB: Use a meia-ciclóide C-I a fim de p roporcionar aceleração nula no início do movimento e em B onde será feita a ligação com o trecho de velocidade constante. BC: Velocidade constante. CD: Use harmônico que se ligaráum emângulo C ao trecho de velocidade constante, como meio aceleração nula eH-2 proporcionará de pressão mínimo durante o resto da curva. D E : Use o polinômio P 2 para combinar a desaceleração do harmônico em D e proporcionar aceleração nula no fim do retorno em E. S D
(a)
O
A
I I
V
I
I I I I
(b)
J
IE
O
A
(e) fi
D
Fig. 3.16
Combinam-se as velocidades e as acelerações, de modo a não apresentarem descontinuidades. Estas curvas estão mostradas na Fig. 3.16b e c. Na Fig. 3.16c, pode-se ver que não há "jark" ou segunda aceleração em qualquer instante do ciclo.
método gráfico de projeto de carnes é limitado a aplicações onde a velocidade é baixa. o A fabricação deste tipo de carne depende da precisão do desenho do contorno e do método empregado para seguir este contorno como um gabarito. Por um lado, pode-se riscar o co ntorno da carne em uma chapa de aço e cortá-Ia com uma serra de fita, obtendo a carne. Por outro lado, pode-se usar uma fresadora copiadora em que o movimento da ferramenta é guiado por um seguidor que se desloca ao longo do perfil da carne representado em um desenho. Este desenho pode ser uma ampliação do tamanho real da carne a fim de aumentar a precisão do copiamento. Em qualquer um dos casos apresentapos o contorno da carne deve ser acabado manualmente. O projeto gráfico e o conseqüente método de fabricação por copiamento não são suficientemente precisos para cames de alta rotação. Por esta razão, voltou-se a atenção para o projeto analítico de cames e para o método que este projeto oferece para a geração de cames. Se for possível calcular os deslocamentos do seguidor para pequenos incrementos na rotação da came, o seu perfil pode ser obtido em uma fresadora ou em uma furadeira de coordenadas, com a ferramenta fazendo o papel do seguidor. Se o seguidor a ser empregado no mecanismo for de rol ete, o eixo da ferramenta deverá ser perpendicular ao plano da came e o diâmetro da ferramenta deverá ser o mesmo do rolete. Se for um seguidor de face plana, o eixo da ferramenta deverá ser p aralelo ao plano da came. Em amb os os casos deve-se conduzir a ferramenta para a posição correta, correspondente ao ângulo de rotação da came. Naturalmente, quanto menores forem os incrementos do ângulo de rotação, melhor será o acabamento da superfície da came. Geralmente, empregam-se incrementos de 1°, que deixam pequenas saliências ou reentrâncias na superfície da came que devem ser removidas manualmente. Desenvolveram-se fresadoras automáticas de controle numérico que possibilitam incrementos inferiores a 1° na rotação de came e avanços da ferramenta com precisão de jJ.m. Embora a máquina opere em passos discretos, estes são tão pequenos que dão a aparência de operação contínua. Espera-se o acabamento superficial da came produzida por uma máquina deste tipo seja de tal qualidade que permita a eliminação do acabamento manual. Este tipo de máquina também produzirá uma came mui to mais depressa do que a fres adora de coordenadas. quando ambas as máquinas usarem os mesmos incrementos do ângulo da carne. Nas discussões precedentes, imaginou-se que a carne que estava sendo gerada seriaque usada aplicação muitas final. carnes Na produção de várias do mesmo em são na necessárias iguais, em geral émáquinas mais prát ico fabricarmodelo o que se chama de came mestra e usá-Ia em uma máquina copiadora. A carne mestra é quase sempre, quanto às dimensões, uma ampliação da came real.
Em certos tipos de carnes é possível projetá-Ios analiticamente, partindo-se do movimento especificado. Desenvolveram-se métodos práticos de projeto analítico para carnes de dis co com seguidor radial de face plana, seguidor radial de rolete, seguidor" de rolete deslocado, seguidor oscilante de rolete e seguidor oscilante de facedeplana. métodos para os seguidores face plana, radial de role te e oscilante rolete Os estão apresentados nas seçõesdéseguintes. 3.6 Came de Disco com Seguidor Radial de Face Plana. A abordagem deste problema permite que o contorno da carne seja determinado analiti~mnente. No método gráfico, os pontos-de contato entre a carne e o seguidor são desconhecidos e é difícil determinar sua localização exata quando se desenha d contorno da carne. Também o raio mínimo da carne, para evitar que seja ponteaguda, somente pode ser determinado .for tentativas .. No método analítico, que foi desenvolvido por Carver e Quinn , essas desvantagens são superadas e pode-se determinar três características valiosas da came: (a) equações para métricas do contorno da carne; (b) raio mínimo da came para evitar pontas e (c) localização do ponto de contato que determina o comprimento da face do seguidor. Destas características, a primeira tem pouca aplicação prática, mas as outras duas dão informações que possibilitam a produção da came. O desenvolvimento dessas características é apresentado a seguir. A Fig. 3.17 mostra uma carne com seguidor radial de face plana. A carne gira com velocidade angular constante. O ponto de contato entre a carne e o seguidor tem coordenadas x e y e está a uma distância / da linha de centro do se guidor. O deslocamento do seguidor em relação à origem é dado pela seguinte equação:
onde o raio mínimo da came é representado por C e 1(0) representa o movimento desejado para o seguidor como uma função do deslocamento angular da carne. A equação para o comprimento de contato lpode ser facilmente determinada pela geometria da Fig. 3.17. Dos triângulos mostrados
o membro da direita da Eq. 3.3 é a derivada em relação a O do membro da direita da Eq. 3.2. Portanto. dR
/ = d iJ =
d d O (C
+ 1(0)]
Se o diagrama de deslocamento é dado por uma equação matemática S =/ « ( } ) ; então R e / são determinados facilmente das Eqs. 3.1 e 3.4. Da Eq. 3.4 pode-se ver que o comprimento mínimo da face do seguidor independe do raio mínimo da carne. Também, o ponto de contato está na posição mais afastada da linha de centro do seguidor quando a velocidade do seguidor é máxima. Quando o seguidor se afasta do centro da carne com velocidade positiva, I é positivo e o contato ocorre acima do eixo do seguidor, na Fig. 3.17. Quando o seguidor se move em di reção ao centro da carne, a velocidade é negativa e o valor negativo de / ind ica que o contato se realiza abaixo do eixo do seguidor.
Para determinar as equações de x e y para o contorno da carne, é necessário somente resolver as Eq s. 3.2 e 3.3 simultaneamente, o que resulta
o raio
+ /(0)] (C + /(0)]
x = (C
cosO- [( O)
y =
senO + nO)
senO cosO
(3.5) (3.6)
mínimo C para evitar uma ponta ou bico sobre a superfície da came pode ser determinado com facilidade analiticamente. Uma ponta ocorre quando dx/dO e dy/dO forem iguais a zero. Quando isto acontece, forma-se uma ponta na
carne conforme mostrado em x, y na Fig. 3.18. Para demonstrar isto, consideremos
que a linha de centro do-seguidor tenha girado de um ângulo O e que o contato entre a face do seguidor e a ca~e ocorra no ponto (x, y). Mais adiante, quando o seguidor for girado de um pequeno ângulo dO , o ponto de contato (x, y) não mudará por causa da ponta, ficando ainda em x, y.Assim pode-se ver que dx/dO =dy/dO =O.
dx
dlJ :~ = [C
+ f( O ) + f" (O )]
cos O
A soma [f(O ) + f"(O )] deve ser inspecionada para todos os valores de O para determinar seu valor algébrico mínimo. É necessário usar o valor mínimo de modo que C seja suficientemente grande para assegurar que a Eq. 3.9 não se anule para qualquer valor de O . Essa soma pode ser positiva ou negativa. Se for positiva, C será negativo e não terá significado prático. Neste caso, o raio mínimo será determinado pelo cubo da carne ao invés de sê-Io pela função f(O).
deterniinar os pontosoudocalculando contorno da carne pelas Eqs. 3.5 e 3.6 que dão Pode-se as coordenadas cartesianas, R e I para diversos valores de O .
Em geral, o segu ndo método é mais fácil, mas em ambos os casos os pontos devem ser ligados com o auxílio de uma curva francesa para a obtenção do contorno da carne. Na prática, entretanto, raramente é necessário desenhar o perfil da came em escala. Depois que o raio mínimo C tenha sido determinado e os deslocamentos R tenham sido calculados, a came pode ser confeccionada. Para tal, o comprimento da fresa deve ser maior do que o dobro do valor máximo de I. Durante a usinagem, o eixo da fresa deve estar paralelo ao plano da carne.
Exemplo 3.2 A fim de ilu strar o método de escrever as equações de deslocamento consideremos as seguintes condições: um seguidor de face plana é acionado em um deslocamento total de 37\Smm. No início do ciclo (deslocamento zero), o seguidor repousa durante 1 r ./ 2 radíànos. Em seguida eleva-se de 37, 5mm com movimento cicloidal (Curva C-S de K.loomok e Muffley) em 1 r ./ 2 rad. Depois repousa durante 1 r ./ 2 rad e então retoma 37,5mm com movimento cicloidal (C-6) em 1 r ./ 2 rad. A Fig. 3.19 mostra um esboço do diagrama de deslocamento.
s
L
o~, S= L
[.!-P _1_·sen 21r.
2 1 r .( J ]
P
Deve-se mencionar, ao se escrever a relação S =f« (J), que o valor de S sempre deve ser medido a partir do eixo das abscissas e o valor de ( J a partir do eixo das ordenàdas. Na equação precedente, entretanto, ( J é medido do ponto A e não do ponto O. Portanto, reescrevendo a equação usando (J ' conforme mostrado na Fig. 3.19, S .A .B = L [
(J '
1
2 1 r .( J ' ]
T T i sen -p
(J' = (J-~
2
~~ L [ J ! J ~ _ rr/2) __ 1_ sen 2rr( e p rr/2) ] P 2rr
S AB
S
AB
75 =-
rr
L
(
rr)
75 e-- --sen(4e-2rr). 2 4rr
e" 1 e" ] [ 1 - - p + -2rr sen 2rr - p e" -- e - ~
p= ~
SCD =
150-- 75e
1t
2
2
+ -475
sen (4e-61t)
1t
Deve-se observar que com as I:ombinações de repouso e movimento cicloidal usadas, as velocidades e as acelerações são igualadas nas extremidades de cada trecho não havendo, portanto, segunda aceleração infinita em qualquer ponto do ciclo.
Como um exemplo de como são determinados o raio mínimo C e o comprimento da face do seguidor, consideremos um seguidor radial de face plana que se eleva de 50mm e retoma, com movimento harmônico simples, durante meia-volta da carne. Dois ciclos do seguidor ocorrem durante uma volta da carne. É necessária somente uma equação de deslocamento para especificar o movimento do seguidor do começo ao fim do ciclo 4,
4
Também pode ser usada a equação de Kloomok e Muffiey S
nico H-S.
= (L/2)
(1 - cos
n()/{3)
para o harmô-
onde r é o raio girante e ()r o ângulo girado pelo raio giran te para obtenção do movimento harmônico (ver Fig. 3.11). Para os dados apresentados,
S
=
f«())
=
25 (1 - cos 2())
f'(())= 50 sen 2()
r
Para se determinar o raio mínimo, a soma C + f« ()) + f" «()) deve ser maior do que zero. Substituindo os valores de f«()) e f"«()) e simplificando,
f"
Como o movimento é simétrico, o comprimento teórico da face do seguidor é o dobro de Ima• ou seja, lOOmm. Deve-se dar um acréscimo ao comprimento da face do seguidor para evitar que o contato se realize no bordo da face. 3.7 Came de D isco com Seguidor Radial de Rol ete. A determinacão analítica da superfície primitiva de uma carne de disco com seguidor radial de rolete não apresenta 3.20 a posição centro da dificuldades. carne é dada Na pelaFig. seguinte equação: do cen tro do rol ete em rel ação ao
onde Ro é o raio mínimo da superfície primitiva da carne e f«()) é o movimento radial do se guidor em função do âng ulo de rotação da carne. Uma vez que se conhece o valor de Ro é fácil determinar as coordenadas do centro do rolete a partir das quais a carne pode ser d~lineaºª"
/ /
/
//
/
/
/
/ /
Kloomok e Muffley 5 desenvolveram um método para verificar a existência p da superfície de pontas eem raiomostrados de cur vatura primitiva o carnes raio dodeste roletetipo, Estes valores osão na Fig. 3.21 junto R,. considerando com o raio de curvatura P c da superfície da car ne. Se na Fig. 3.21 p for mantido constante e for aumentado R " p . irá decrescer. Continuando-se a aumentar R , até atingir o valor de p, o raio de cu~vatura da superfície da carne, P c' se reduzirá a um ponto e a carne ficará ponteaguda, conforme indica a Fig. 3.22a. Aumentando-se ainda o raio R, a superfície da car ne fica rebaixada e o movimento realizado pelo seguidor não será o des ejado, conforme mostrado na Fig . 3.22b. Portanto, a fim de evitar o aparecimento de uma ponta ou um re baixo no perfil da carne, o raio
5
1955.
M. Kloomok e R. V. Muffiey, "Plate Cam Design - Radius of Curvature",
Prod. El1g., Setembro
do rolete, R,! deve ser menor do que Pmin' onde Pminé o valor mínimo do raio de curvatura da superficie primitiva em um det erminado trecho da came. Havendo diversos tipos de curvas, sobre a superficie da came, pelas quais o seguidor irá passar, cada trecho deverá ser verificado separadamente. Como é impossível haver um rebaixo numa parte côncava da superficie da came, somente as partes convexas devem ser verificadas.
Superf(cle
--),< primitiva "' + , p , , "\ , \
~
ra,io de curvatura em um ponto de uma curva, expresso em coorde~ad~r ,\)~,J)},ojo. r lJlo ... Polares o , e dado por ()
P
=
+
R2
[R 2 (dR/dcf»'J3/2 + 2( dR /dcf »2 - R(d 2 R /dc f> 2)
~ V :< ; /')1"
/
~
onde R =f( cf» e as duas primeiras derivadas são contínuas. Pode-se usar esta equação para determinar o raio de curvatura da superficie primitiva da came. Para este caso, f(O ) = f(cf». Da Eq. 3.10 R = Ro dR
dO
~R
dOr
2
+ f( O ) = f'(O)
f"(O) =
P =R2
3/2
[j'(O > ]2 } + 2 [f + /( O )]2 - R [f '/( O )] {R
A Eq. 3.11 pode ser calculada para determinar a expressão de p para um tipo particular de movimento. Entretanto, a fim de evitar pontas e rebaixos no perfil da carne, deve-se determinar Pm in' Para se obter este valor mínimo, deve-se derivar a Eq. 3.11 com suas várias funçõe~ o que irá conduzir a equações transcedentais muito complexas. Por esta razão, são apresentados três conjuntos de curvas que mostram os valores de P m i n l R o em função de l J para as diversas relações de LI R o '
I I II
'"
LlRo =2,00
y//
1,75i'. 1,50 1,25r . "
1 ,4 1 ,2
0
,
~
li-
'1 1 ,0
/
:'\
w;: ~~ ~
f -
::~
f--
~ll,OO
Q.
0,8
~
0,80 ,,=~,4O 0,20
~
/ '
/"
--
0, 2
°10
15 2 0
30 40 60 80 100 Ângulo de rotação da came. 13.graus.
L/Ro.
0.01 ••... 0,02 " 0,03•..... 0,04 ~ o,06..•...
K\ /X
0°,6
~
1°,5
Q.
04 ,
/ / '~ ,/ / '
-
Fig. 3.23
'l /~
v~
.~
V~V~~~
. .. • ~ ". " . " - 10r / '
. - --;;;~I
/,....-: / / ~~~ '? ~ t? li'I /0 ///J'l /'~ V / ~ 'hít' ~ '/
~
~
~
~ ~ --O ,O S ~ 0,10 ,20 ~ . . • . . . ...•00,30
--0,40
15 20 30 40 60 80 100 Ângulo de rotaç ão da came, 13,graus.
150
Movimento cicloidal. (Fonte: M. Kloomok & R. V. Mumey, Plate Cam Design of Curvature," Prod. Eng., setembro 1955.)
Radius
/ ' . /
//
/ '
I - - '"
.... / // /1 / ....~ / . v ~ LIRo = 2,00 r - - ~ 1// / V ...- 1.75 1,SOr- - ~/~ /. . . . - . . . . - -
I -
---- \'~ " V , r:; "
I -
1,6
0
V
~ 'i 1,4 ~ 1,2
1.25 1.00
/,
1,0
j;
/ .
0,4
0, 2
V / / / / A ••.......
. / /.
-
°1 0
15 2 0
~
~
: /
30 4 0
h '/
I -
I -
0,80 0,60 0,40 0.20
60 S O 100
200
Ângulo de rotaçãO da carne, 13,graus.
/ "
, /
L/RO=O,O~~ 0.02 ~ 0,03....•••.... 0°,6
.e:.
'i 0,5
~'O,4 0.3
/ . /
/ j~ /'
V
-- - - -
15
20
Ângulo de rotaçio
/j
~& "'0.10
6(
10
~ ~
.~
'/ ~ '/ X / ' // / / / ~ ~ / /h~ . . - /~ . / V~ , / ~ "V/' ~~ ~ ~ ~
--
~~ '7 '/~ h
Y ////'// /I //~ /fi ~
O,~~ 0,06
/~
--'/;::::?;
30
40
:ZO,OS
....... 0,20 .....• 0.40 '-0,80 60
da carne, 13,graus.
80 100
ISO
Fig. 3.24 Movimento harmônico. (Fonte: M. Kloomok & R. V. Muffiey, "Plate Cam Design of Curvature," Prado Eng., setembro 1955.)
Radius
, / '
/
/ ' "
",......
' /~ / //' /' /~ // /
LIR o 1,6
0
~
-:s
1,4
.r
1,2
=
2,00 -r-., 1,75 1,50 - f . . , . . 1,25 1,00 . . . • . •
/ . -~ h/~7 W 0 '-/ -
/ "L.--0
/".A
/
/.
~~
15 20
~ / '
\~
"
Iií""
~ ~ 30 4 0
-
0,80 \ 0,60 0,40 0,2n
'/
~
V _
60 80 100
Angulo de rotaçfo da came,
200 {l, graus.
1,0 0,9 0,8 0,7 0,6
0
~
1°,5 Q.
0,4 0,3 0,2 0,1 °
5
10
15
20
30
40
Angulo de rotaçfo da came.
60
80 100
{l. graus
150
Fig. 3.25 Movimento -polinomial 8° grau. (DeProd. M. Kloomok e R. V. 1955.) Muffley. "Platc Cam Design Radius ofdeCurvature", Eng., Setembro
Nestas curvas, P é o ângulo de rotação da carne para cada trecho e L é a elevação correspondente. A Fig. 3.23 apresenta as curvas para o movimento cicloidal, a Fig. 3.24, para o movimento harmônico simples e a Fig. 3.25, para o movimento polinomial de 8° grau. Por meio dessas curvas pode-se determinar se Pmin é maior ou menor do que R•.
Um seguidor radial de rolete deve mover-se com um deslocamento total de l5mm com movimento cicloidal, enquanto a carne gira de [J = 30°. O seguidor repousa durante 45° e então retorna com movimento cicloidal em 70°. Verifique se a carne apresenta ponta ou rebaixo para um raio de rolete R. de 6,25mm e raio mínimo Ro da superfície primitiva de 37,5mm. L=
~=2=040 Ro 37,5
'
Será examinada apenas a elevação, d~vido ao seu ângulo f 3 menor. Portanto, da Fig. 3.23, para L/Ro = 0,40 e p = 3~--" Pmin R
o
= 022 '
A carne não terá ponta ou rebaixo, porque Pmin > R •. Conforme mencionado anteriormente, é importante considerar-se o valor do ângulo de pressão, no projeto de carnes com seguidores de rolete. É necessário manter o ângulo de pressã9 máximo o menor possível e até hoje este máximo foi estabelecido arbitrariamente em 30°. Entretanto, são usados ocasionalmente valores maiores quando as condições permitirem. Embora seja possível desenhar o contorno da carne e medir o ângulo de pressão máximo, é preferível empregar os métodos analíticos. Há diversos métodos disponíveis, um dos quais foi desenvolvido por Kloomok e Muftley 6, pelo qual pode-se determinar analiticamente o ângulo de pressão tanto para o seguidor radial de rolete como para o oscilante de rolete. Aqui será abordado somente o caso do seguidor radial de rolete. Para a carne de dis co e o seguidor radial de rolete mostrados na Fig. 3.26, o ângulo de pressão OCA é denominado IX e o centro da carne, O. Supõe-se que a carne estáillfíparada e o seguidor gira no sentido horário da posição C até C' segundo um pequeno ângulo A O . Da figura, 6
1955.
M. Kloomok e R. V. Muffiey, "Plate Cam Design - Pressure Angle Analysis",
Prado
El1g .•
Maio
oc'
= tg-1
C'E
__
CE
OCE e ACC' !'i() tende aCD Quando zero, ângulos tendem Aoemesmo tempo o segmento tendeos para o comprimento do arco CF,para igual90°. a R!'i() ambos, CD e CF tendem para CE. Portanto,
lim
oc' =
tg- 1
(. ~
~ ~ ).
M-O
Como os lados de o c e (x' se tornam, respectivamente, perpendiculares quando M J tende a zero, (x ' torna-se igual a o c o Portanto,
Pode-se determinar uma expressão para a, em qualquer tipo de movimento, partindo-se da Eq. 3.12. Entretanto, a determinação do ângulo de pressão máximo é quase sempre muito dificil, porque leva a equações transcedentais complexas. Por isso, Kloomoke MufOey empregam um nomograma desenvolvido por E. C. Varnun 7, apresentado na Fig. 3.27; P e L/Ro são parâmetros já definidos anteriormente. Determina-se, usando-se o lndlrograma, o valor máximo do ângulo de pressão para os três tipos de movimento.
Fig. 3.27 Nomograma para determinar o âllgulo de pressão mâximo. (Cortesia de E. C. Varnun, Barber - Colman Company.)
Um seguidor radial de rolete deve mover-se com um des locamento total de 18,75mm, com movimento cicloidal enquanto a carne gira de 45°. O seguidor repousa por. 30° e então retornacom movimento cicloidal em 600. Determine o valor de Ro para limitar o amá. em 300. Será exa minada somente a elevação, devi~o ao seu ângulo jJ __ ~enor. ',,-? 1 1'r)l"", Para p = 45° e I X má• = 30°,
,
L
= 0,26 R o
Ro
=
18,75 O,26
= 72mm
Se o espaço não permite tal valor de R o , f3 pode ser aumentado e a came deve girar mais rápido para conservar o mesmo tempo de elevação. 3.8 Came de Disco com Segu idor Oscilante de Rolete. Na Fig. 3.28 vê-se o início do traçado de uma came de disco com seguidor oscilante de rolete. O ângulo de elevação t / J é função do ângulo de rotação da came f J . Embora a came gire de f J para o ângulo de elevação t / J , o raio R gira segundo o ângulo (jJ . Especificando-se valores de R e (jJ , é possível obter-se o contorno da came 8•
---- --1---- -- -Circunferência de base
o ângulo
f3
é uma constante do sis tema e pode-se obter sua equação usando-se o
triângulo DAD'. Assim,
(3.15)
onde. S, R o e / têm dimensões fixas. O ângulo ré função de R; sua equação pode ser obtida do triângulo cos r=
S2
=
como
R2 ~p +2 SR
P +
cos ~
OBO'
S2 _R2
21S
o
e o ângulo '" é o ângulo de elevação para um de terminado ângulo de rotação da carne O . Portanto, das equações precedentes, os valores de R e d > podem ser calculados a partir de valores de O e dos correspondentes ângulos de elevação "'. No projeto deste tipo de carne, é necessário verUi.c:;~rse há rebaixos e conferir o ângulo de pressão máximo. As equações do raio de curvatura e do ângulo de pressão podem ser obtidas com mais facilidade pelo método de variáveis complexas de Raven 9• A Fig. 3.29 mostra o esboço de uma carne de dis co e um seguidor oscilante de rol ete, com o raio de cur vatura da superfície primitiva p e o ângulo depressão IX . O ponto O é o centro da carne, o ponto D é o centro de curvatura e o ponto O', o centro de rotação do seg uidor. A elevação angular do seg uidor a partir da horizontal é u, que é dada pela equação
onde f(O) é a elevação angular desejada para o seguidor, a partir de um ân gulo de referência uo (não mostrado na figura). Da Fig. 3.29, o ângulo de pressão I X é dado por
IX
= [u o
+ f( O )] -
; -
y.
9 F. H. Raven, "Analytical Design of Disk Cams and Theree - Dimensional. Cams by Independent Posltion Equations", ASME Transactions, Série E, Vol . 26, N." I, pp 18-24, Março, 1959.
A fim de se obter uma expressão para o ânguio y, determinam-se duas equações de posição, independentes, para o ponto A, centro do rolete. A primeira equação é obtida seguindo-se o trajeto (O-D-A) e a outra, seguindo-se o trajeto (O-B-O'-A).
b
~
_____
~ IB
A equação para o primeiro trajeto é dada por R
= re,d
+
pe'Y
A equação para o segundo trajeto é dada por R =a
+ bi + leia
Separando-se as partes reais e imaginárias das Eqs. 3.2] e 3.22, r cosb + p cos~ = a
+ I cosa senb + p sen} =b + I sena
(3.23)
r
(3.24)
Derivando as equações 3.23 e 3.24 em relação a O ,
db
dy
da
- r senb
---pseny Od
Od
--
=
O d -/sena--
d b,
dy
r cosb dO + P cosy dO
= I
da
cosa dO
Para uma rotação infinitesimal da carne, p pode ser considerado como constante. Assim, o ponto D, o centro de curvatura da car ne no ponto de contato e r podem ser considerados como fixos à carne para um acréscimo de rotação dO . Portanto, o valor de d b é igual a d O e como b diminui quando O cresce, segue-se que db/dO = - 1. Também, da/dO = [(O). Portanto, r senb - r cosb
p seny
+p
~
= -I [(O) seM
cos y
~~
t g y _- r rsenb cosb
= I [(O) cosa.
+ I[(O) I[(O)
seM cosa ,I
I' t
irJJ()hr-, '
.
ln( l. -
( •
J
11'
Os termos r cosb e r senb podem ser calculados das ijqs. 3.23 e 3.24, dabdo b
tgy
= a
+ I seM [1 + [«())] + I cosa [1 + [(O)]
~
que, quando substituída na Eq. 3.20, dará o ângulo de pressão IX. Para se determinar I X max' será necessário o emprego de gráficos semelhantes aos dados por KIoomok e Muffley na nota de rodapé n.O 6: Para se calcular o raio de curvatura p, é necessário primeiro derivar a Eq. 3.27 em relação a O . Substituindo dyjdO da Eq.J.26 e com o auxílio das Eqs. 3.19, 3.23 e 3.27, obtém-se a seguinte equação para p: [C 2
+ D2
]3/2
P = -(C-2-+-D-2~)[-I-+-[-(O-)]---(-aC-+-bC)~' '-[-(-O)-+--(a--se-na---b-co-s-a)-l-rr-'(-O)
C =a D
= b
I cosa [1 [(O)] + + I seM [1 + + [(O)]
Para evitar o rebaixo, p deve ser maior do que o raio do rolete. Portanto, é possível determinar-se Pminpara cada posição do perfil da carne. Para isso, é necessário o emprego de gráficos semelhantes aos dados por Kloomok e Muffley na nota de rodapé n.O S . 3.9 Cames Tridi mensi onai s. Este tipo de carne é difícil de ser projetado e fabricado, porém, encontra grande aplicação em mecanismos de direção de tiro.
)' 1
f
A Fig. 3.30 mostra um esboço de uma carne tridimensional, onde a elevação z do seguidor é função da rotação y e da translação x da carne.
Um problema que pode ser resolvido de modo muito simples, usando-se uma carne tridimensional, é o de calcular o alcance horizontal de um alvo aéreo sendo dadas a elevação e a altura do alvo. 1o Calcula-se o alcance horizontal usando-se a relação Ro = Ho cotg Eo , retirada do triângulo mostrado na Fig. 3.31. Esta expressão é calculada no diretor de tiro por uma carne tridimensional que gira o do alvo e se desloca ao longo de x proporcionalmente proporcionalmente ao alcance horizontalà altura Ro ' AH elevação do seguidor representa o ângulo de elevação E o ' Depois que a altura do alv o tiver sido introduzida na carne, por rotação, a translação da carne produzirá uma elevação do seguidor, indicando o ângulo de elevação. Quando este ângulo de elevação se igualar com a elevação da linha de visada, será indicada a distância horizontal correta.
o iretor de tiro ...,;fCfl do canhlo anti-aéreo
--k--R o--(Alcance horizontal)
4000
6000
Alcance
(Rol
8000
jardas
Para ilustrar o método de projeto de uma carne tridimensional, consideremos à altura um alvo osedeslocando em direção ao diretor de tiro, de 8 000 pés.esta A Fig. 3.32 mostra gráfico ângulo de elevação versus alcance horizontal para altura. Se esta curva for usada como contorno de uma carne plana, a translação horizontal da carne moverá o seguidor de modo a indicar o ângulo de elevação correto do alvo. Tal carne está mostrada na Fig. 3.33. i.--Movimento do seguidor
f
(I1ngulode elevaçlol
8000 pés
(altura I
Para ângulos ele vação correspondentes alturascorrespondentes. diferentes de 8 000 pés, é necessário traçar de curvas adicionais e produzir asa carnes Se estas placas forem colocadas em torno de um eixo, resultará uma carne conforme mostrada na Fig. 3.34a. A rotação desta carne permite selecionar a placa de acordo com a altura desejada e colocá-Ia sob o seguidor. Quando o número de placas aumentar muito, incluindo outras alturas, a carne tornar-se-á tridimensional ll e o seu aspecto está mos trado na Fig. 3.34b. Para a determinação do ângulo de pressão e do raio de curvatura da carne tridimensional, o leitor deve recorrer ao trabalho de F. H. Raven 12. 1 J
"PrincipIes of Operation, Prediction Mechanism, aIi.d Ballistic Cam of Sper ry M-7 Antiaircraft
Director", Sperry Gyroscope Company, Dezembro 1946. 12 Ibidem.
(b)
Fig. 3.34
A fabricação de uma carne tridimensional é muito difícil devido às exigências de precisão ede acabamento manual. Depois de serem especificados os deslocamentos do seguidor para os acréscimos desejados de rotação e de translação da carne, funde-se um bloco com o form ato aproximado da carne desejada. Usando-se uma ferramenta de corte, do mesmo tamanho e da mesma forma do seguidor, coloca-se o fundido em uma fresadora de carnes e usina-se a superfície do bloco, em alguns pontos de referências, até chegar à superfície desejada sobre a carne tridimensional. Através de rotações e translações apropriadas da carne e deslocando-se a ferramenta de corte até chegar à elevação prevista para cada ponto da superfície desejada, essa ferramenta simulará o movimento do seguidor em relação à carne. 3 Deste modo, pode-se 1localizar com precisão um ponto na superfície da carne. De , às vezes, são necessários 15000 pontos com a precisão de acordo com Rothbart ±O,OlOmm. Depois de marcados todos os pontos faz-se um acabamento manual com lima, seguido de um polimento com lixa de esmeril.
Problemas
3.1 Uma carne de disco girando no sentido horário aciona um seguidor radial de face plana segundo uma elevação total de 37,5mm, de acordo com os dados a seguir:
o 30 60 90 120
0,00 2,50 9,25
270
18,75 28,25 35,00 37,50 35,00 28,25 18,75
300
9,25
330
2,50 0,00
150 180 210
240
360
Desenhe a came usando um raio mínimo de 25mm. Determine o comprimento da face do seguidor (face· simétrica). Depois de achar o comprimento da face, por tentativas, aumente 3mm em cada extremidade para assegurar um contato adequado. 3.2 Uma carne de disco gira no sentido anti-horário, comandando um seguidor
radial de rolete, segundo uma elevação total de 37,5mm. Desenhe a carne usando os dados de movimento do problema 3.1 e empregando um raio mínimo de 25mm. O diâmetro do rolete deve ser 22mm. Determine, por tentativas, o ângulo de pressão máximo e o local onde ocorre este ângulo. 3.3 Uma carne de disco girando no sentido horário comanda um seguidor de face plana deslocado segundo uma elevação total de 37,Smm. Desenhe a came usando os dados de movimento do problema 3.1. A linha de centro do seguidor é deslocada de 12,5mm para a esquerda, paralelamente à vertical que passa pelo centro da carne . O raio mínimo da carne deve ser 2Smm. Determine o comprimento da face do seguidor (face simétrica). Depois de determinar o comprimento da face, por tentativas, aumente 3mm em cada extremidade para assegurar um contato adequado. 3.4 Uma carne de disco gira no sentido anti-horário e aciona um seguidor de rolete segundo uma elevação total de 37,Smm. A linha de centro do seguidor é deslocada de 12,Smm para a direita, paralelamente à vertical que passa pelo centro da carne. O raio mínimo deve ser 2Smm e o di âmetro do rolete, 22mm. Desenhe a carne empregando os dados de movimento do problema 3.1. Por tentativas determine o ângulo de pressão máximo durante os cursos de elevação e de retorno. 3.5 Uma came de disco gira no sen tido horário e aciona um seguidor oscilante de face plana segundo um ângulo de elevação total de 20", de acordo com os dados
a seguir.
o
0,0
30 60
1,5 5,5
90
10,0
120 150 180 210 240 270 300 330 360
14,5 18,5 20,0 18,5 14,5
10,0 5,5 1,5 0,0
Desenhe a carne usando um raio mínimo de 30mm. O centro de rotação do seguidor deve estar a 80mm à direita e na horizontal que passa pelo centro da carne, semelhante à Fig. 3.3. A distância do centro do cubo do seguidor ao arco da escala de elevações angulares é de 70mm. Determine o comprimento da face do seguidor. Depois de achar o comprimento da face, por tentativas, aumente 3mm em cada extremidade para assegurar um contato adequado. 3.6 Uma carne de disco girando no sentido anti-horário aciona um seg uidor oscilante de rolete segundo um ângulo de elevação total de 20". Desenhe a carne usando os dados de movimento do problema 3.5 e um raio mínimo de 25mm. O centro do cubo do seguidor deve estar a 75mm à direita e sobre a horizontal que passa pelo centro da carne, semelhante à Fig. 3.4. O diâmetro do rolete mede 19mm e a distância entre o centre do cub o do seguidor e o centro do rolete é de 72mm. Usando um furo de 16mm, um cubo de 25mm e um rasgo de chaveta de 5 x 5mm, desenhe o resto do seguidor em; proporções razoáveis. 3.7 Uma carne de re torno comandado gira no sentido horário e aciona um
seguidor face os plana, tipo garfo, conforme mostrado na Fig. 3.5 . Os dados para a elevaçãode são seguintes:
o 30 60 90
0,00 1,27 4,32 9,65
120 150 180
17,00 23,40 25,40
Desenhe a carne empregando um raio mmlmo de 25 mm. Usando proporções razoáveis complete o esboço do seguidor. 3.8 Uma carne de retorno comandado gira no sen tido anti-horário e aciona um seguidor, tipo garfo, de roletes. Desenhe a carne empregando os dados de movimento do problema 3.7 para a elevação. O raio mínimo deve ser 25mm. Os diâmetros dos roletes são de 19 mm. Usando proporções razoáveis, complete o esboço do garfo que suporta os roletes. 3.9 Um seguidor oscilante de rolete move-se segundo um ângulo total de 60" e aciona uma carne invertida, como a mostrada na Fig. 3.7. Os dados do movimento são os seguintes:
0,0 4,5
16,0 30,0 44,0 55,5 60,0
0,0 1,5 6,0
12,5 19,0 23,5 25,0
A carne deve deslocar-se para cima e para a direita a um ângulo de 45°, quando o seguidor girar no sentido anti-horário. O movimento do seguidor é simétrico em relação à linha de centro vertical. A distância entre o centro do rolete e o centro de rotação do seg uidor é de 7 5 mm e o di âmetro do rolete é de 16 mm. O bloco da carne mede 75 mm por 100 mm. Desenhe a ranhura que deve existir no bl oco da carne. 3.10 Prove que é correto o método de determinação dos pontos de inflexão para intervalos de tempo conhecidos, conforme indicado na Fig. 3.8. 3.11 Prove que é correto o método de determinação dos pontos de inflexão para deslocamentos conhecidos, conforme mostrado na Fig. 3.9. 3~12 Prove que é correto o método de construção de uma parábola, mostrado na Fig. 3.10. 3.13 Trace o gráfico deslocamento-tempo para um seguidor que deve ter uma elevação total de 37,5 mm. O movimento é iniciado com um trecho de aceleração constante em 67° de ro tação da carne, passando à velocidade constante em 90" e desaceleração constante em 90°: o seguidor repousa em 22,5° e então retoma com movimento harmônico simples em 90°. Use uma absci ssa de 100 mm de comprimento. 3.14 Trace o gráfico deslocamento-tempo para um seguidor que se eleva de 19 mm com movimento harmônico simples em um quarto de volta da carne, repousa
durante 38 45°, se elevar deparabólico 19 mm durante repousa duranteseguindo-se 22,5° e então retoma cmtorna com amovimento em um90°, quarto de volta, um repouso de 22,5°. Use uma abscissa de 160 mm de comprimento.
Trace o gráfico deslocamento-tempo para um seguidor que se eleva de 38 mm em meia-volta da came de modo que nos primeiros 9,5 mm tenha aceleração constante, nos próximos 19 mm velocidade constante e aceleração constante nos 9,5 mm res tantes. O retorno é um movimento harmônico simples em meia-volta came. Use uma absçissa de 150 mm de comprimento. 3.16 Trace o gráfico deslocamento-tempo para um seguidor que tem uma eleva3.15
ção mm com aceleração desaceleração constantetotal parade45°32de rotação da came. constante O seguidordurante retoma 90" 16 emm com movimento harmônico simples durante 90", repousa por 45° e retoma 16 mm com mov imento harmônico simples em 90" de rotação da carne. Use uma abscissa de 160 mm de comprimento. 3.17 O seguidor radial de face plana, mostrado na Fig. 3.35, tem movimento de translação alternativa sob a ação de uma came de disco circular que gira em torno do eixo 02' (a) determine as expressões para o deslocamento R do seguidor e para a distância I entre o ponto de contato e a linha de centro, em função do ângulo (J , do raio r e de do rotação deslocamento tracedaum gráfico do deslocamento R ementre função ângulo (J para b. uma(b)volta came. Chame de L a distância as posições extremas do curso do seguidor. Determine o valor de L (c) identifique o tipo de movimento realizado pelo seguidor.
Um seguidor radial é comandado por uma came girando a 1 rad/s. O seguidor parte do repouso e se eleva de 50 m m com movimento harmônico simples enquanto a came gira de 120°. O seguidor repousa nos próximos 1200 e então retoma com movimento harmônico simples nos 1200 restantes. Usando uma
/7
3.18
abscissa de 150 mm e intervalos de 30" para a rotação da came, trace as curvas de deslocamento, velocidade, aceleração e segunda aceleração, no mesmo eixo.
, 3.19 Partindo da equação do movimento harmônico simples, deduza a expressão do deslocamento S da curva H-5 mostrada na Fig. 3.14. 3.20 Deduza expressõcs que permitam o us o das equações de Kloomok e Muffley na determinação de velocidades e acelerações do seguidor quando a velocidade da carne não for constante. 1
3.21 Um seguidor deve ter movimento
cíclico de acordo com o diagrama
deslocamento mostrado dades são as seg uintes: na Fig. 3. 36. As exigências para deslocamentos Ponto
A
Ponto B
de
e veloci-
Ponto C
S =L
S=O
S =L
V=O
V =O
V=O
Recomende as curvas que devem ser usadas no diagrama de de slocamentos e a relação entre f J Ie f J 2 para combinar as acelerações no ponto B e nos pontos A e C.
3.22 Um seguidor partindo do repouso desloca-se de acordo com o gráfico mostrado na Fig. 3.37 e repousa novamente. As exigências do movimento são as seguintes: Ponto A
Ponto B
Ponto C
S =O
S =L
S =O
V=O
V= O
V=O
A=O
A
=
AI
A
=
O
Recomende as curvas que devem ser usadas no diagrama de deslocamento relação entre f J I e f J 2 para combinar acelerações no ponto B.
e a
Um seguidor partindo do repouso eleva-se com movimento acelerado. em seguida passa a ter velocidade constante e depois desacelera até ficar em repouso. 3.23
conforme indica a Fig. 3.38. As exigências do movimento são as seguintes: Ponto A
Ponto B
Ponto C
S=O
S= LI
S = LI
V=O
V=
A=O
A
V A
VI
=
O
= =
+
Ponto D L2
S = LI
VI
V=O
O
A=O
+ L2 +
Lj
Recomende as curvas que devem ser usadas no diagrama de de slocamento e a relação entre /31, /32 e P para combinar velocidades nos pontos R e C. j
No diagrama de deslocamento, mostrado na Fig. 3.16a, do exemplo 3.1, /31 é o ângulo de rotação da carne correspondente ao trecho AR, /32 o ângulo de RC, 3.24
DE.
AR,
3 CDRC, e /3 L4 oaângulo de de CDTambém ~ é a elevação t recho L/32 oa ângulo elevaçãode de elevação e L4 a elevação de DE.do Determine a j
relação que deve existir entre /3 3 e /34 para combinar as acelerações no ponto
D.
3.25 Determine (a) a relação entre os ângulos P t e P 2 entre as elevações Lt e L2 para combinar uma curva cic10idal C-I com uma curva de velocidade constante e (b) a relação para combinar uma curva de velocidade constante com uma çurva C-4. 3.26 Estabeleça as equações que relacionam as elevações Lt e L2 e os ângulos t (b) moviPmento e P 2 cicloidal para a combinação de: (a) movimento cicloidal com harmônico; com velocidade constante; (c) movimento harmônico com cicloidal; (d) movimento harmônico com velocidade constante. A combinação deve ser feita quando as acelerações forem nulas. 3.27 Determine (a) a relação entre os ângulos P t e P 2 e entre as elevações LI e L2 para combinar um movimento cic10idal C-I com o harmônico H-2 e (b) a relação para combinar uma curva H-3 com uma C-4. 3.28 Determine (a) a relação entre os ângulos P 1 e P 2 e entre as elevações LI e L2 para combinar um movimento harmônico H-I com um cic10idal C-2 e (b) a relação para combinar uma curva C-3 com uma H-4. 3.29 Determine (a) a relação entre os ângulos P t e P 2 e entre as elevações para combinar o movimento harmônico H-I com uma curva de velocidade constante e (b) a relação para combinar uma curva de velocidade constante com uma curva H-4. 3.30 Um seguidor deve se deslocar com velocidade constante durante um trecho da elevação e também do retorno. É possível combinar movimentos harmônicos com estas curvas de velocidade constante e não resultar segunda aceleração infinita? Caso afirmativo, recomende as curvas que devem ser usadas e esboce o diagrama de deslocamento mostrando as curvas. 3.31 Determine (a) a relação entre os ângulos P I e P 2 e entre as elevações e LI L para combinar um movimento harmônico H-5 com um movimento polinomial 2 de oitavo grau P-2 e (b ) a relação para combinar o movimento harmônico H-2 com o polinomial de oit avo grau P-2. 3.32 Escolha uma combinação de movimentos cicloidal, harmônico e polinomial de oitavo grau que não resulte segunda aceleração infinita. 3.33 Determine (a) a relação entre os ângulos P I e P 2 e entre as elevações Lt e L2 para combinar um movimento polinomial de oitavo grau P-I com oharmônico H-6 e ( b) a rel ação para combinar o movimento polinomial de oitavo grau P-I com o harmônico H-3. 3.34 Escolha uma combinação de movimento harmônico com polinomial
de oitavo grau que não resulte segunda aceleração infinita. 3.35 Um seguidor se desloca com movimento harmônico H-I, elevando-se 25 mm em 7t/4rad de rotação da carne. O seguidor então se eleva de mais 25 mm com movimento cic10idal C-2, para completar o curso de elevação. O seguidor repousa e retorna 25cm com movimento cic10idal C-3 e os 25 mm restantes com movimento harmônico H-4 em 7t/4 rad. (a) determine os ângulos de rotação da carne para os movimentos cic10idais e para o repouso combinando velocidades e acelerações. (b) determine a equação para o deslocamento S em função de () para cada tipo de movimento, tendo como origem das abscissas o ponto O , srcem dos eixos coordenados, de modo que o deslocamento possa ser calculado para qualquer ângulo ()
usando-se a equação adequada.
3.36 No diagrama de deslocamento da Fig ..3.39, deseja-se obter uma elevação total de 37,5 mm com um seguidor radial de face plana combinando o movimento cicloidal C-I com o har mônico H-2. (a) usando os dados do diagrama, determine o ângulo P 2 ' referente ao movimento harmônico, a fim de que haja continuidade de velocidades e de acelerações em B, ponto de transição entre os dois movimentos. (b) determine o comprimento máximo teórico da face do seguidor necessário para os dois movimentos.
3.37 Uma carne de disco comanda um seguidor radial de face plana com movimento harmônico simples. O seguidor se eleva e retorna durante uma volta da ca rne. Sendo o deslocamento total 50 mm e o rai o mínimo 25 mm, determine as equações paramétricas (x e y) do contorno da carne. Elimine o parâmetro para obter a equação do contorno da carne. Determine o comprimento teórico da face do seguidor. 3.38 Um seguidor radial de face plana é acionado segundo um deslocamento total de 40 mm. O seguidor sobe 10 mm com aceleração constante durante 60" de rotação da carne, 20 mm com velocidade constante durante 60" e os restantes 10 mm com desaceleração constante durante 60". O seguidor repousa em 45° e retoma com movimento harmônico simples quando a carne completa uma volta. Para cada tipo de movimento escreva a equação do deslocamento S em função do ângulo () de rotação da carne, usando como origem o ponto O , srcem dos eixos coordenados de modo que o deslocamento possa ser calculado para qualquer ângulo () usando-se a equação adequada. Calcule o raio mínimo C e o comprimento máximo de contato 'máx para cada tipo de movimento. Especifique o raio mínimo da carne e o comprimento da face do seguidor. 3.39 Um seguidor radial de face plana é acionado segundo um deslocamento total de 38 mm. O seguidor se eleva de 25 mm com aceleração constante durante 120"de rotação da carne e os restantes 13 mm com desaceleração constante durante 60". O seguidor retoma com movimento harmônico simples em 900 e repousa durante o restante da rev olução da carne. Complete a solução conforme o pedido do problema 3.38.
3.40 No desenho mostrado na Fig. 3.40, a carne de di sco é empregada para posicionar o seguidor radial de face plana em um mecanismo de cômputo. O
perfil da came deve ser projetado para dar um deslocamento S ao seguidor, de acordo com a função S =k (}2, partindo do repouso, quando a came girar no sentido anti-horário. Para 60" de rotação da came, a partir da posição inicial, a elevação do seguidor é de 10 mm. Determine analiticamente as distâncias R e I quando a came tiver girado de 45° a partir da posição inicial. Verifique a existência de po ntas no contorno da came durante a rotação de 60".
r-
rr-
r-
r '
r -
r-
3.41 Um seguidor radial de rolete é acionado segundo um deslocamento total de 25 mm com movimento harmônico simples durante meia-volta da came. O movimento de retorno é o mesmo da elevação e também se realiza em meia-volta da came. Usando um raio mínimo R o da superfície primitiva de 38cm e um diâmetro do rolete de 19 mm, determine as posições do centro do rolete do seguidor utilizando intervalos de rotação de 15° para a came. Desenhe o contorno da came e calcule os ângulos de pressão para determinar os pontos de contato. 3.42 Um seguidor radial de rolete se desloca com uma eleva ção total de 50 mm em movimento cicloidal durante 1800 de rotação da came. O seguidor repousa nos próximos 900 e então retorna 50 mm com movimento cicloidal durante 900 de rotação da came. Usando um raio mínimo R o da superfície primitiva de 25 mm, calcule com um computador o deslocamento, a velocidade, a aceleração e o ângulo de pressão do seguidor, utilizando intervalos de rotação de 100 para a came. 3.43 Um seguidor radial de rolete se desloca com uma ele vação total de 19 mm com movimento harmônico enquanto a came gira de 30". Verifique a existência de pontas na superfície da came com raio do rolete de 6,25 mm e raio mínimo da superfície primitiva Ro igual a 46,875 mm. 3.44 Um seguidor radial de rolete se desloca com elevação total de 6,5 mm com movimento harmônico enquanto a came gira de 45°. O raio Rr do rolete
é 6,5 mm. Determine o valor limite de R o que ocasione um perfil pontiagudo durante esse movimento. 3.45 Um seguidor radial de rolete se desloca com uma elevação total de 19mm com movimento cicloidal enquanto a came gira de 30°. Determine o raio de curvatura p da superfície primitiva quando f) for igual a 15°. O raio Rr do rolete é 6,25 mm e Ro é 46,~75 mm. 3.46 Um seguidor radial de role te se desloca com uma elevação total de 19 mm com movimento harmônico enquanto a carne gira de 300. Determine o valor de R o para que o ângulo de pressão máximo seja 300. 3.47 Usando a equação 3.12 e as expressões adequadas de R e dR/df), desenvolva a equação de I X para o movimento cicloidal. Utilizando os dados do exemplo 3.5 calcule o ângulo de pressão I X quando f) for igual a 22,5°. 3.48 Um seguidor radial de rolete se desloca com uma elevação total de 16 mm com movimento cicloidal enquanto a carne gira de 300. Supondo R o = 38 mm, determine I X máx' Se I X máx for muito grande e se as exigências de dimensões não permio' faça outras recomendações para limitar I X máx em 30°. tirem3.49 o aumento Utilizandode osRdados de deslocamento do problema 3.5, calcule os valores de R e e J > para uina carne de di sco com seguidor oscilante de rolete. A carne gir a no sentido anti-horário e tem um raio mínimo de 25 mm. O diâmetro do rolete é 19 mm e a distância do centro do cub o do seguidor até o cen tro do rol ete mede 72 mm. O centro do cubo está situado a 75 mm à direita do centro da carne. Na posição inicial, o centro do rolete está na vertical que passa pelo centro da carne. Desenhe a carne usando os valores calculados de R e e J > e comprove-os graficamente. 3.50' No problema 3.49, lj I = 0,174 (1 - cosf) radianos, aproximadamente. Usando esta expressão, calcule o ângulo de pr essão na posição 3. 3.51 Usando a expressão de ljIcomo função de f) dada no problema 3.50 e utilizando os dados do problema 3.49, calcule o ângulo de pressão para a posição inicial e comprove graficamente. 3.52 Usando a expressão de lj I como função de f) do problema 3.50 e utilizando os dados do problema 3.49, calcule o raio de curvatura para a posição 2. 3.53 Deve-se projetar uma came tridimensional para resolver a equação Q = 26,5 ah1/2, onde Q é o escoamento (cm 3/s), a é a área do orifício (cm 2) e h é a coluna de líquido (em). A área a deve ser introduzida na came através da rotação e a altura h pela translação da came. A elevação do seguidor determinará Q. (a) calcule um conjunto de valores de Q para a variando de 6,5 a f4,5 de décimo em décimo e fazendo h = 30, 120, 270, 480, 750, 1080 e 1470. (b) usando para Q m6dulo de 1 em = 2000 cm3/s e pa ra h, 1 em = 100 em trace uma seção axiaI vertical da came, marcando a posição a =1 na parte mais .alta da came. (c) trace duas seções tr ansversais da came, em h = 750 em e h = 1470 em.
Engre na ge ns Cil índrica s de Dente s Retos •••
•• •
. .•.•. . . ••:. ••
4.1 Introdução a Engrenagens Cilíndricas de Dentes Retos Evolventais. Consi~~r~dº duas superficie.ss_úrvas em C:º111atodireto pode.:se m-º.S.1Ii!rque a razão das velocid~des a!!-gulares é inversamente proporcioºªl aos segmeI!~os em que a linha de c~ntros é cortada- pelªJinh_ª~-'lCãa.ºu norm!!!.comum às duas sllperficies em contato. Se a linha de ação seI!1~ intercepta alinha de centros em um ponto fixo, aXa:zª_odas vel ocida_des angulares perInªnece constante, Esta é a condi~o desejada quando ~is dentesg~ engrena2Cns se aco~lam: a razão (jas velocidades angulares deve ser constante. E possível supor a forma do dente em uma engrenagem e'-pelã' aplicação do princípio acima (a normal comum intercepta a linha de centros em um pOllto fixo) ~ determinar o contorno dos dentes que se engrenam. Tais dentes são considerados dentes conjugados e as possibilidades são limitadas apenas pela habilidade em construí-Ios. Das mujlªs formas pos~iveis, só a ciclóide e a evolve!1teforam padro nizadas. Primeiramente utilizava-se a ciclóide que, depois, foi substituída evolvente todas vantagens, as aplicações, excetoimportantes_clllS em relóg ios. O guais dente com perfil_~a pela evolvente tem em dive]"sas as_mais sua JáciLfubilci!çãoeo fato de que a
dosdjâ..!!1~. Vê:Se-tª!TÜ>é!ll que a relação entre a~~~!QEidadesangulares não I1!llda quando a distância ~e centros é modificada. Por~ºI!v~ni_ê_nciª,suporiha guc um lado do fio seja remoYi49 e um pedaço~~::::'cartolina é fixado na polia 1 (Fig.-4.3a). Coloque um lápis nº-E~nto Q, sobre o fiQ.LgUie a polia 2 no sentido an..ti:!J...2rário. Em relação ao papel; pô'tÚo Q deseJ:e.Y.eJ:á uma linha reta, enquanto que em reta~o a polia I, Q traçar~ma evolvente n(l.cartolina. A mesma evolvente poderia ser gerada cortando-se o fio em Q e desenrolando-o da polia I, mantendo-o tenso. ~~JJmacartolina é agora fixada na PQliçU (Fig. 4.3b) ~ o processo érepetido"ger~-se uma evolvente nest'!<;artolina.Se as cart()linas são agora cortadas ao 10ngoQas evolventes, forma~se um lado de UII!dente em ambas as polia$.1._~_2. A evolv~nte
º
da polia I pode serus-ada para impelir~~lvente da polia 2..~ process()de razão -.
,_.-
-,----
circunferências usadas como base a geraçãododasevºlvent~s.são-coDhe· cidasAs como circunferências deb~e, e sãopara o coração sistema de engrenagens
evolventais. Na Fig. 4.4 o ângulo definido por uma linha perpendicular à linha de .ação tirada pelo centro 4açirçyn e c' de base ~ uma Ii.MLQ.e O. a a (ou O2 . h'd .Ç • angu.oI ..d~ }pc 'PEr' I e Q) ~Ǻ.Il._~ . ! o como Ica ao odponto a devo vente ress(I(J e u • • ~ onde está havendo contato. Se na Fig. 4.4, o ponto de interseção da linha de ação e da linha de centros é chamado de P, a relação das velocidades angulares será inversamente proporcional aos segmentos em que este ponto dividir a linha de A
centros.
Ângulo de incidência frontal
Fig.4.4
\
-
É possível traçar circunferências passaJldo por P usando primeiro O, como <:ent!oe depois 02' cotl!.0mostra a Fig 4 5.. 0 ..ponto P é chamado de ponto [11itllitivo e as circunferências que pa!!!iam -P Q r.. ele sãQ~onbecidas como circun(er~ncias e.rimitivas. Pode-se provar Que Q..uªndoae.vo1YeD~e1 impele a evolvente 2, as duas
j::ircuºJ~rências primitivas movem-se um.1 em relacão à outra e~IEento
p u ro .
A relação das velocidades angulares é. inversamente proporcional aos raios (lãs duas circunferências primitivas porque os segmentos em que P divide a linha de centros agora são os raios destas circunferências. Se.o diâmetro da circunferência ?
primitiva 1 é
dI
e o da circunferência 2 é
d 2,
(1)1 (1)2
= d /d 2
• l
Será mostrado em
outra seção que o número de dentes em uma engrenagem é diretamente proporcional ao diâmetro primitivo. Logo, ~ (1)2
4.2
=d 2/d 1
=Z2/Z1
Evolvente. Se considerarmos o perfil doda dente como sendo evolvental, devemosRelações. saber calcular algumas propriedades evolvente.
Ângulo de incidência frontal
A Fig. 4.6 mo stra uma evolvente que foi gerada a partir de uma circunferência de base de raio r b. A evolvente contém dois pontos A e B com raios correspondentes r A e r B e ângulos de incidência frontal O C A e o c B• É fácil obter uma relação para esses raios porque a circunferência de base é a mesma para qualquer ponto em consideração. Então,
r rB
COS o c B = -Â -COS
OCA
Da equação 4.2é possível determinar o ângulo de incidência frontal em qualquer ponto de raio conhecido sobre a evolvente.
A Fig. 4.7 mostra a Fig. 4.6 completa para incluir todo o dente da engrenagem. Deste diagrama é possível desenvolver uma equação para determinar a espessura do dente em qualquer ponto B, dada a espessura no ponto A.
Dos processo de geração de uma evolvente, mento BG. Então
o arco
DG é igual ao compri-
DÔG = DG = BG OG OG BG
tg
IX B
= OG
"' "
DOG = tgIXB " '"
"'"
DOB
DOG -
=
IX
B
"' "
DOA = tg IX..•~ IXA A expressão (tg IX- IX) é chamada ju nçã o evo lv ent al e é às vezes escrita EvIX. E fácil calcular a função evolvental quando o ângulo é conhecido; IX é expresso em radianos. Entretanto, é difícil determinar IXa partir de EvIX, e por esta razão foram publicadas tabelas de funções evolventais (ver Apêndice 1). Referindo-se ainda à Fig. 4.7,
1 "'"
"'"
T S B
DOE = DOB+-= EvIX
"'"
B
"'"
+
S _ B _
2r B
1
DOE = DOA +
= EvIX ..•
rB
T S'"
+ ~2r ..•
Através da equação 4.3 é possível calcular a espessura do dente em qualquer ponto da evolvente, dada a espessura em outro ponto. Uma interessante aplicação desta equação é determinar o raio em que o dente se torna pontudo. 4.3 Particularidades de Engrenagens Olíndricas de Dentes Retos. fim de < > estudo _ < i~ engrenagens continuar e'!:91ventais é nec~ssário definir os A eIeiIieirtõs !24_sjcQs-deuma engrenªg~m->-como mostra".! as figs. 4.80 e b. Deve-se também mencionar que a__menor das duas-e.fli[enagens é chm:mld'Lde piub4o; o pinhão é, ~mgerah_~ engrenagem motora. Se o raio r da ci rcunferência primitiva de uma engrenagem se torna irifinito, resulta uma cremalheira, conforme as Figs. 4.8c e 4.9. O perfil dos dentes de uma cremalheira é uma linha reta, que é a forma tomada por uma evolvente quando gerada sobre uma circunferência de base de raio infinito. Na Fig. 4.8a o passo base P b é a distância de um ponto sobre um dente ao ponto correspondente no próximo den!emedida sobrea circunferênciu de base. Opasso frontal P, é definido da mesIll~_~aneira exceto que _~_Illedidosobre a circunferência .Q!imitiva. A altura de cabeça e a altura de pé b, são distâncias radiais medidas conforme mostrado. A porção do nanco abaixo da circunferência de base é aproximadamente uma linha radial. A curva do dente é a linha de int erseção da superfície do dente com a superfície primitiva.
ª
Saliência ou altura da cabeça,h.
Superf(cie Primitiva Saliência ou altura t o da cabeça, Profundidade ou altura de
L,
Í .
h .
hf
É)nbora seja impossível_mostrar na Fig. 4.8,. o i()-&2.J?rimitivoé uma consideração jmportante em engrenagens. Jogo primiJw é a quantidade pela qual a dimen_são dQ_espaço de um d~?_!_e_e_xc_e_d_e_a_"_es'pessurªdo_dente que se engrena, medidos na
circunferêncj~ primItiva. Teoricamente, o jogo pri mitivo deveria ser zero, mas na prática alg!1ma tolerância deve ser_dada para expansiig-ctérmica e erros de fabri_çação. A não ser que seja especificado, supõe-se o jogo primitivo como zero neste texto. ~1l1lima se窺_QQ§terior será abord!ldo Q...!!létodopara calculá-Io em função de uma variª@Q.~ distâncÜtentre eixo§..
Fig. 4.9
Pinhâo e cremalheira de dcntcs retos cvolventais (Cortesia de IIIinois Oear Company.)
& Machine
4.4 Caracteristicas d a Ação Evolvental. Na discussão da geração da evolvente viu-se que a normal comum às du as superficies evolventais é t§ugenteàs duas çircunferências de base: Esta nor mal comum é também chamada de linha de açEg. O início do con tato ocorre quando a linha de acã o in.tercepta a circunferência de :çabeça da en~ renagem movida, e o fim do contato, quando a linha de jnter_~ta a circunferência d~~~ªbecada en~rena~m motora. Isto é evidente na Fig. 4.10
ª,ã o
que um par de dentes Oentrando e ocontato mesmo epar prestesB,a oseparar-semostra (mostrado tracejado). ponto Aem é ocontato início do o ponto fim. AJr~tória do pontode contato está ao_longo da linha reta APB. O perfil do de~e ~ngrenagellll) corta a circ~~1!ferênciapriDJ.itiva_.!!º.ponto C no.início do contato e no fim corta-a.. no ponto C. Os pontos D e f)' são Os co~~ondentes na en~enagem 2. Os arcos CC e DD'.~ão chamados arcos frontais de tr a n sm is s4 0 ~m s~r iguaÍs··parã haver rolame.1!!?puro. dªª ..ci.rcunferências primitivas, como já havia sido mencionado. Os ângulos do movimento são geralmente divididos em duas partes, como mostra a Fig. 4.10, onde qJF é o ângulo de aproximação e qJ Á o ângulq ângulo de afasd&...ajastqmento. O ângulo de aproximação não é igual~yg~~aQ tamento. Para hav er transmissão contínua. o aKQ de ~'t(teveJl~.tigyal ou.major do Que o passo frontal. Sendo isto verdadeiro, um novo par de dentes el)trará em ação antes que o par precedente desfaça o contato. ., , ! l' A relação entre o .arco frontal de transmi~são e o passo frontalOéconhecida como razão frontal de tr ansmissão: ~ A razão frontal de tr ansmissão para engrenagens evolventais é .!ª-mb.ém igual à 'relaç~o e.ntre a linha~~e movimentação ou c::pm1!.ri.~~e transmissão (isto é, a distância do início ao fim do contato medido sob a linha de ação) ~.O..pªsso base e geralmente é calculada desta maneira, como será mostrado posteriormente. Çonsiderada fisicamente.a..xazão frontal de trap~missão é o nÚm ero..lllédio..de.dentes em contato. Se, por exemplo, a razão é 1,60, não significa que há 1,60 dentes em contato. Significa que há altemadamente um e dois pares de dentes em contato e que ao longo do tempo a média é 1,60. Q...l:ak> teóriq)mín!J.!lP da razijo frontal de transmissão é 1.00. É claro que este valor deve ser aumentado em condições reais de operação. Embora sj(ja dificil especificar valpt:es devid.Q.àsdiversas situaçõc::.s_~ fatores envolvidos, 1,40 tem sid.o.J1.&adQ\(QQ lIlíp.Ü!!.
\ '1 '
A Fig. 4.10 também mostra um ângulo IX , ~ é formad~Újela litllha de ação e uma linba perpendjcular à linha.
=início
do contato
B
E
1
fim do contato e E 2 = pontos' de tangência da linha de ação e circunferência de base =
r" = raio de cabeça r b =raio base IX = ângulo de pressão a = distância entre eixos
glX
= AB = E1B \
~ r/),\M/f'1 M},~
2
- E1E2
I
f ) :. \
,'y('j)\}}iJ
$~-:= J (r "1) 2 - (rbl)2
rzb
+EA li.'!'J'
+ J (r "2 )2
-
(r b2)2 - a
= raio base =número de dentes
sen
lX
" " I' /
)'
\ ')"\ ! '
.
\ i
'I
\
i'
I,\, _, \
; ' - ',
.() )
\
I
À
..\-
\
MECANISMOS
/ Parte 1
l 'i \
A -razão frontal de transmissão c c x é então
Se parece estfanho calcular a razão frontal de transmissão dividindo uma medida em linha reta por uma circ unferencial, consideremos a Fig. 4.12. Na Fig. 4.12a são mostrados dois dentes adjacentes de uma engrenagem pertencente a um par. O passo base P f, está assinalado na circunferência de base de acordo com sua definição. Um seg mento sobre a linha de ação é também designado Ph' Do modo como duas evolventes adjacentes seriam geradas pode-se ver que os dois trechos chamados de P h têm que ser iguais. Então o passo base pode também ser considerado como a distância normal entre lados correspondentes de dentes adjacentes. A Fig. 4.12b ilustra como o passo base é medido em uma cremall.eira.
Exemplo
4.1
Um pinhão de 24 dentes comanda uma engrenagem de 60 d entes com um ângulo de pressão de 20°. O raio primitivo do pinhão é 1,5000 pol e o raio externo 1,6250pol. O raio primitivo de engrenagem é 3,7500 pol e o raio externo 3,8750 poI. Utilizando as Figs. 4.10 e 4.11 calcule o comprimento de transmissão, razão frontal de transmissão e ângulos de aproximação e afastamento para o pinhão e a engrenagem. SOLUÇÃO. Da Fig. 4.11
ral
r hl
1,6250 pol = r I cos r x = 1,5000 cos 20° = 1,4095 pol
r a2 = 3,8750 pol r h2 = r 2 cos < p =
3,75 cos 20° = 3,5238 pol asenrx = (1,50 + 3,75) sen20° = 1,7956 pol
gcx
= . J 1,62502
1,40952
-
+ J 3,87502
-
3,5238 - 1,7956
= . J 2,6406 - 1,9867 + . J 15,0156 - 12,4172-1,7956 = 0,8099 + 1,6115 - 1,7956 = 0,6258 pol
2n x 1,4095 24
=0,3689
pol
0,6258
êCX
EIB ElA EIP AP PB
.J(ral)2
°
= ,3689 = 1,6924
0,8099 pol = EIB - AB = 0,8099 - 0,6258 =0,1841 pol = ri sencx = 1,5000 sen 20° =0,5130pol =EIP- ElA = 0,5130-0,1841 =0,3289 pol =AB - AP = 0,6258 - 0,3289 = 0,2969 pol. =
- (rbY
=
razão frontal. frontal de pelo Apasso p, transmissão ê
= arco CC' e P
:z
p
êa
é também igual ao arco de ação CC' dividido
= 2 nr1 = 2 n x 1,5000 = 03927 pol ZI
r
24
'
Da Fig. 4.10 sabe-se que o arco DD' deve ser igual ao arco CC' de modo que arco DP = arco CP e arco PD' = arco PC'. O arco de aproximação CP da engrenagem 1 pode ser determinado da seguinte relação: AP arco CP AB =arcO CC'
arco
CP -
-
AP
x arco CC' = 0,3289 x 0,6662 = AB 0,6258'
° 3501 pol
arco PC' arco CC'
PB
AB
PB x arco CC'
' arco PC
=
arco
=
qJPI
arco
tn
't'PI
qJ
qJ
A2
= 1:5000 = 0,2334 rad = 13,373° 03501
DP =
1'2
= arco AI
O 350 I
CP
r I
= ---
lfJ F2
0,2969 x 0,6662 - O 3161 pol O 6258 , '
=
AB
r1
15000,
'
0,0934
2
,
ra d
=
5,349°
= 12074°
d
ra
=37500 0,3161 =00843 ' ra
PD'
, d ,
= 4829°
+ 't'AI =. arco,. CC' =15000 0,6662 = 04441 rad = 25,4470 ' tn
I
qJF2
=
= 0,3161 =02107
PC'
= arco r
3'7500
,
arco DD'
+ qJA2
= ---
'
1'2
qJFI
+
qJ AI
qJP2
+
qJA2
0,6662
= 37500 = 0,1777 rad = 10,1790 '
13,373° + 12,074° =25,447° = 5,349° + 4,8290 = 10,178° =
É possível também calcular os ân gulos de aproximação equação usando-se para o ângulo aproximação segue, a Fig.de4.13.
0=
(i X A
+ Ev iX A ) -
tg iX A= tgiXA -tgiXD (i X A
=
+
qJF2
da engrenagem
e afastamento.
A
2 é deduzida como se
(iXD + Ev iXD) iX A ) -(iXD + tg iX D- iXD)
fazendo a substituição
de
O qJF2
tg iX A- tg iX D + iXD- iX
=
Pelo fato de que D é um ponto sobre a evolvente na circunferência primitiva, IX D
= IX
Equações para CPF1' c P AI e c P A2 podem ser desenvolvidas de modo semelhante utilizado-se figuras apropriadas.
(llrA02H) E"
ClD
( 'f" . D02H) Ângulo de eproxlmeçlo
" '2
(~D02P)
o~
.wo. I o~ ()..-~ ~
t~~"w;Ao
-k~
108
() 1!+-tl.--~~ .
/)l
(~"-t
t..,
fO~-h
J-t I~hv-f yI~,
rt
Jt, I ~_1 I'
NM'
N ~;Y'\~L\)
W,.•.... " lUlJ WJ..'
MECAtils'~~~r\e 0J\\~ (1M
1
wo\lifl -n ,f (
~u~ Oinício do con~llto ocorra antescl~ onto ". cme~~Wt51&~ttdW· cll!engrenagem mov~da_e_ncontraráum tr~chQ.r(㺠evolvental a engrenagem motora-\-v, e di.~-~9..ue oco rerá int r erência. Isto está mOstrado-fia Fi . 4.14. E 1 e E z são;~ os pontos de . _ que deveriam limitar o comprimento de ação. A indica "é\;O início o contato e B o fim. Vê-se que o início do c ontato ocorre antes do po nto \ de . ; ~tão há interferência. A extremidade do dente comandado \jJ ),). • cortará o flanco do ente que comanda, como mostra a linha tracejada. Há muitas [~ maneiras para eliminar interferência. -lIma das guais é limitar a altura de cabeça da eng renagem comandada de modo que a circunferência de cabeça passe pelo ponto de interferência Ei" proporcionando assim um novo início de contato. Se isto for feito, neste caso, a interferência será eliminada.
\1 \\\\-' ~ t\(
\Jt
!\
\ ~\o (')\)),';
t \ '( \
.'
\
1. 1\ ',I
\
fi(
A interferência é indesejável por vários motivos. A interferência e o cesgaste ~esultante não só .enfraquecem os dents:s do pinhão como p-odem tam.bérn.remover '\.!W peo..yçnotJ:~o de evoJyentejy.p.ia-ª.circunferêncja de base. o que pode causar séri;1 w,eduçãon o comprilJ.ll'mto de transmissão. Agora serão discutidas as condições para interferência entre pinhão e cremalheira. Na Fig. 4.15 são tIÍÕstrados um pinhão e uma cremalheira engrenados. O ponto de tangência da linha de ação na circunferência de base do pinhão é chamado de ponto de interferência E, como no caso do pinhão e engrenagem. O ponto de interferência fixa a~tura de ca6e~ para a cremalheira, para o ângulQ de pressão mostrado. Com a altura de cabeça da cremalheira, como a mostrada na Fig. 4.15, o contato se inicia em A e ocorrerá adelgaçamento conforme a linha
tracejada. Se a altura de cabeça da cremalheira se estender só até a linha que p~ssa pelo ponto de interferência E, este ponto se tornará o início do contato e a interferência será eliminada. . Pode-se ver na Fig. 4 J 5 que se uma engrenagem de raio finito tendo a mesma altura de cabeca da cremalheira (a linha de cabeça da cremalheira agora passando Eeló ponto de interferência) se engrenasse com o pinhão o início do contato ocorreria sobre a linha de aeão em algum lugar entrf; o ponto primitivo P e o oontQ.ile E. então não ha",ria possibilidade de interferência entre o pinhão .einterferência a engrenagem. fode-se então concluir que se o nÚmero de dentes no pinhão.i tal que ele se engrena "Om uma cremalheira sem interferêncja ele se engrenará g,m interferência com qualquer outra engrenagem que tenha 0!!1esmo ou maior número de dentes. ~
01 Engrenagem 1 lmotoral
v-l)r
1<9f' A ~ ,-
C V l~ I~ W \. .U .A \. u')
Embora interferência evolvental o adelgaçament evitados. uma a pequena quantidade po ee ser to era a se ela não reduzir a razão frontal de transmissào, para um par de engrenagens, ilbaixo de um valor adequado. -Entretanto, o problema de determinar o comprimento de transmissão quando ocorre adelgaçamento é difícil, e ele não pode ser obtido da Eq. 4:4. Foi desenvolvido por Sportts i um método para esta determinação. Pode-se ver da Fig. 4.11 ~ Eq. ~4 ~ue se o valor de ~~ radi5al for maior do q... ue ,a,sen 0(, haverá kUH'K"'I mterferencla. -.~~ 7" f e l l > VJ}' C t& " , 4.6 Engrenagens Intercambiá'~s. Até aqui nào foi çonsiderada a questão de engrenagens intercambiáveis:a.discussão que se segue s~ aplica.a engrenagens cilíndricas de dentes ~~tos em geral .. Estreitamente ligada com o problema da intercambialidade está a maneira como as engrenagens são usinadas. Há muitos modos de gerar engrenãiens de dentes retos e os dois mai~ç:omuns sào o método de fresamento e o de Fellows. '.. -- . I
M. F. SpOltS "How to Predict Effects of Underculting Hobbed Spur Gear Teeth·'.
Dcsigll. Abril 19. 1956.
~
Machillc
Avanço
-t r -
Eixo do disco
da fr1lt8
.-
Linha primitiva dos dentes da fresa Circunferência primitiva de corte
,
'\
\
\
\
/~
Disco//::/'
-~
Estes dois são ilustrados nas Figs. 4.16 e 4.17 respectivamente. Quando estes métodos de corte forato desenvolvidos procurou-se um modo de classificar as ferramentas e as engrenageIl.~por elas cortadas. A çla§sificação adotada foi a de espeçificar a relação do D1ínwro de dentes com diâmetro primitivo. A esta relacão foi dado o nome de, "diametral pitch frontaL"* O "diametral pitch" pode ser expresso matematicamente do seguinte modo: . * o autor refere-se. aqui. à prática americana. A norma brasileira (ABNT-TB-81) indica o
módulo
frolltal como sendo o quociente do diâmetro primitivo pelo número de de ntes, m = ~ . sempre expresso em milímetros. O "diametral pitch" não é objeto de padronização nas normas brasileiras.
z
= número de dentes
d =diâmetro
primitivo
para o propÓ§itQ4e especificar ferramentas de corte, os valores do "diametral pitch frontal" foram Jomados com0!1úmeros inteiros com éertas excecões. .QL. diametrais pit"bes seguintes são usados frequentem~: 1, l i . l t , I ! . 2, 2i . 2t , 2i , 3, ' 3 t , 4,
S, 6 , 7 ,
8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 4 8, 6 4, 7 2, 8 0, 9 6, 1 20 Engrenagem reta de dentes externos Ferramenta pinhlo Circunferência primitva ~da ferramenta
. CIrcunferência primitiva de corte
Fig. 4.17 Método Fellows para gerar engrenagens de dentes retos evolventais. (Cortesia de Fellows Gear Shaper Company.)
Os passos menores podem ser especificados por incrementos pares até 200. Os passos comumente usados em engrenagens de precisão para instrumentos são 48, 64, 72, 80, 96 e 120. para economia de .fe.crilmentas, a s en~renagens geralmente são Jlsinadas usando um dos ~~~~~QmUDS relacionados acima. É possível usinar
engrenagens que tenham diameí;a; pÜches diferentes dos citadôs. I!to pode reque-
rer uma ferramenta especial m a s , geralmente pode ser fejto com uma das ferramentas ªcima em "ma moptagem especial Isto será discutido no Capítulo 5. •. ~ndo » ferralllÇ!l!!§,(oram p~cfrQnjzªdas. foi adotado um ângulo de pressão ~o. Isto foi uma conseqüência do processo de fundição de engrenagens que usava 14,5° porque senI4,5° é "aproximadamente 1/4, o que era conveniente na fabricação do modelo. ~ais tllrde foi adQtadQ,1í;unbém l.l~l ânIDI19 dI: pressão de
-
19:._~o§...JQram usadOs.durante muitos anos. mas a tendência. recentemente, é a de maior utilizacão do de 20" . Será mostrado em uma seção posterior quÚ possível ter-SI:um pinhão com menos dentes e sem adelgacamento QUando se usar 2 0 0 em lugar de J 4 5°~Como resultado daten.dência aos ângulQ§ de Dress.ãomaiores, a AGMA (American Gear Manufacturers Association) adotou ~ O " e 25° para e n r e ii ã ' ens de asso frontal grande L~P) e 20" para os de passo frontil1 Pequeno2). ~ V> ~~ Tabela
ti)D
~
~1'~ 1 'V \Q
4. 1 Proporções dos dentes de engrenagens - Retas evolventais Passo Frontal Grande (1-19,99 p) Agosto 1968 20° ou 25° Dente Normal 1,000
1,000
P
P
1,250 P
Folga no fundo do dente < h r - h a)
(c)
0,250 p
Altura do trabalho do dente (hk) (duas vezes a saliência)
2,000
Profundidade total (~)
2,250
(ha +hr)
Raio de arredondamento da cremalheira básica (r)
Passo Frontal Pequeno (20-200 p) AGMA 207.06 Novembro, 1974 20° Dente Normal
p
p
1,200 + 0,002 -p 0,200
--
p
+
(mín.)
0,002 (mín.)·
2,000 p 2,200
--
p
+ 0,002
, (mm.)
0,300 p 1,5708 p
1,5708 p
* Para dentes ou retificador, c =0,350!P + 0,002 (mín.). Embora sejam apresentados os últimos padrões da AGMA na Tab . 4.1, ainda há no mercado engrenagens e ferramentas de aco rdo com a antiga (e agora obs oleta) Norma ASA 8.6-1932. Por esta
razão a Tab. 4.2 apre senta as principais proporções desses sistemas.
141' Dente Normal 1,000
Saliência (h a)
10° Dente Normal
20° Dente Rebaixado
p
0,800 p
1,000
p
1,157
1,157
Profundidade (111')
1,000
-
p
p
0,157 Folga no fundo do dente (e)
0,157
0,209 Raio de arredondamento (r)
0,239
0,200 p
-
p
p
Espessura do dente (s)
p
0,304 p
p
1,5708
1,5708
p
p
1,5708 p
-
p
Se usinarmos engrenagens com ferramentas padronizadas é possível fazê-Ias de modo que sejam interc~lmbiáveis. Para isto~ertas condições deye}!!ser observadas: 1. Os diametrais pitches devem ser os mesmos. 2. Os ângulos de pressão devem ser iguais. 3. As engrenagens devem ter as mesmas alturas de cabeça e alturas de pé. 4. A e~pessura dQs-_dentesdeve ser a metade do passo frontal. O passo frontal foi definido como a distância medida ao longo da circunferência primitiva~e um ponto sobre um dente ao ponto correspondente no pró ximo. Isto lJode s r esc rito matematicamente como: A \~\ 'f'''l"'" r Pt
=
nd . ~ z e tambem
~ PlRj=
n
(4.8)
O termo en~renal:em padronjzada é usado muitas vezes e significa que a relação entre o número de dentes e o diâmetro primitivo é um dos valore s padronizados de diametral pitch, e que a espessura deve ser igu al ao vão dos dentes, que por sua vez é a metade do passo frontal. As engrenagens padronizadas são intercambiáveis.Engrenagens intercambiáveis podem ser definidas como aquelas que têm o mesmo ângulo detes pressão, mesmo passo e mesmas alturas de cabeça de são pé, espessura e vão de den compatíveis. As engrenagens cilíndricas retas eque oferec.idas em catálogos de fabricantes são padronizadas. Entretanto, um grande número de engrenagens não padronizadas é utilizado, principalmente em automóveis e aviões. 1s pro1'9rcões de engrenagens cilíndricas e~oI,,(lntais de dentes retos, de f!lesmas alturas de cabeça",padronjzadas, ..eSlãº-ºª-Tabela 4 I(ver Fig. 4.8). 4.7 Número Mínimo de Dentes para Evitar Interferência. O problema da interferência foi considerado previamente para pinhões e engrenagem e pinhões
-; L'~
l~ I--lú....
MVilLJ
tré\W~-t 0Ji I j\.I.M~ 0 . 0
J V'
'I""'~
?')
J----
r~. 1 0Q U -
(oJiã
JJ
Fe
+.
e cremalheira. Da discussão da Fig. 4.15 concluiu-se que se não houvesse interferência entre um pinhão e uma cremalheira também não haveT~ interferência entre este mesmo pinhão e uma engrenagem de dimensões iguais à sua ou ma ior. Naturalmente isto acontece supondo as mesmas dimensões de dentes para Osdois ca~s. Qllando considerada uma engrenageD1Q.adronizada em que as dimensões dos dentes são as dadas nas Úlbelas, é possível calcular o número mínimo de dentes em "iim pinhão que se engrt<.º~com u m a fremalh~irª semínt~rft:!.ência evolvental. Para solucionar este caso de interferência do limite, pinhão.a linha de cabeça da cremalheira deve passar pelo ponto Na Fig. 4.18, são mostradas as características essenciais de um pinbjjo e çrelllaIheira para este ca~ o. O ponto primitivo é P e o ponto de interferência é .E.
Unha de cabeça Linha primitiva
~
Fig. 4.18
W~\~ 1J..IA
Então.
\,
rx ~
02.
~t j
~
~tr
~
-(
sen
~t:c.\
r
\
Também
rh A .
PE
sen:>:
p l t tA-
~~
d -
1r7i
k/p
PE
PE
onde k é uma constante que, quando dividida pelo passo diametral resulta no adendo \J J i = k/p). Pl1ra o sistema de dentes mnl1)ais k = 1,00 e'p-ara o si:itema de degtes r.ebaÜados k =O 80 Multiplicando as duas equações por sen rx membro a membro,
- d Z onde P -
z
=
número de dentes.
2k
sen20( = - z -;;, z
2k
= sen20(
Desta equação .pode ser calculado, para qualquer sist~ma padronizado d~ dentes o menor nÚIlll.:rode dentes para _ulll_pinhãoengr~Ilar-se com uma cremalheiLa, sem interferência. Isto está na Tabela 4.3 para os si stemas comuns. Tabela 4.3 20° 20° Dente Normal
141° Dente Normal 32
z
18
25° Dente Dente Normal Rebaixado
14
12
Devido a estes valores terem sido calculados para pinhão e cremalheira, eles podem também ser l!sados como mínimos para pinhão e en&renag<.::!!!. sem peri~o ® interferência. pevitlo à semelhªnça entre a ação dos d entes de uma ferramenta fresa usinando mp.a engrenal:em de dentes relQs.e a dos dentes de um pinhão em uma cremalheira os ..números de dentes ta1,)!1Jadosacima sãQtªm~m os mínimos que ~~1!!_ser usinados por ..Y.~erramenta €resa, Sk1ILªdelgaçamenw. ~ . s e _as eºgrena~ens devem ser fg.bricadas de outro. modo; por exemplo, pelo , . L I J!}étodo de Eellqws, Q nÚmero mínimo Jie dentes que duas engrenagens de igual O .u u ~ tL o ~rnanhQ podem ter sem que haja inte{f~~pcia evolvental.pode ser determinado o através da Eig 4.19. ~este caso a circunferência
r
ra
=
r
+ ha
onde
z 2p
k
r~~--+ a
/'oU L
hE z o~U;
~
"i,o 1.1 \
p
r
=
z -2 p
z
-1
2p
2k
e
ha
= ~p
2z
sen IX
2P 2z 1 sen IX = 2 p 2P ~'
-------
. J (z
I' --
+
2k)2 -
\1 ' J ;:,.--...1..'1,-4;r:/:-\
n
,A.
L
li
(z COSIX):l ' -I"':
~ _
hei -
\'
<\l/,.( -= .: k [ )-;-J ~
,J-
.
J,
_
,)
\ )~ \.
"" \
""
':i: .
(4.12)
qesta equação pode_.ser determina,do OIJlenor número de dentes, em gualquer sistema padronizado, para, duas en~rena~ens iguais funciQnart:msem interferência evolvental. Estes valores são mostrados na Tabela 44 para os sistemas comnns, também mostradas as razões frontais de transmissão i). (e Quando engrenagens de mesmo tamanho e com número de dentes especificados na Tabela 4.4 são usinadas com uma ferramenta pinhão, tipo Fellows, funcionam sem interferência evolvental. Se o nÚmero de º-entes em uma das engrenagens é mantido nos valores dados, é interessªºte determinar o número máximo que a segunda pode ter sem causar interferência. É obvio, comparando os valores
são'
I
1
'iK~-o-\
~abulados na Tabela 4.4 com o número de dentes que se engrenarem com uma crema:.. Iheira-SeRl mteaeIêneia (fàbela 4.3), que a segunda engrenagem não pode tender para uma cremalheira. Tabela 4.4 20"
14t Dente Normal z (€a
'1 .
.. 25°
20°
Dente Normal
23
31
=
(€a
1.84)
'1\ . ( 11JI .J",
/
Dente Rebaixado
Dente Normal
10
=
1.44)
9 (€a
=
1,15)
(€a
=
1,26)
Podem ser desenvolvidas relacões para este problema com base na Fig. 4.20, onde a circunferência de cabeça da engrenagem 2 passa pelo ponto de interferência da engrenagem 1.
+
=r
r Q2
2
=
h Q
2p
!.l- + ~ = p
2p
22
+ 2k
Uí'
r" 2
=2
r cos
a
= rI
z2
IX = -2 .
+ r2
cos
P
IX
+ Z2
ZI
2p
=
Z (
1
+Z
2p
2
)2
sen21 X
Desenvolvendo e usando a relacão sen2 1 X
+
2 COS 1X
= l .\
( 4. f 3~
:;(.h ~!lt~_equay'ão pod~ ser~~_ter~i.nada a Inaior engrenagem
(Z2)
Que pode ser
engrenada com uma dada (z 1)se~interferência. I;~s valores são mostrados na T~~...Yliªndo como z 1 os valores encontrados anteriormeilte para engren agens iguais.
1 41 -"
20°
Dente Normal
Dente Normal
20"
Dente Rebaixado
25"
Dente Normal
e Z2 tende para uma cremalheira tornando-se infinito, o segundo membro da equação tende para zero, obtendo-se a Eq. 4.9 que determina o número de dentes Zl para um pinhão se engrenar com uma cremalheira sem interferência. E também interessante observar que, ~e unI V.a.t~4 maior do que Q.5.. da Tabela 4.3 para engrenamento com ullla cremalheira sem interferência é substituído na Eg. 4.13, obtém-se um val()t: negativo impossível para z 2 :'\c 4.8 Determinação d o Jogo Primitivo. Na Fig. 4.21a é mostrado o perfil de um par de engrenagens com distância entre eixos de referência a
Zl
+
Z2
=_ . _ . -
2p
com jogo primitivo zero. As circunferências primitivas com que estas duas engrenagens funcionam sio as mesmas em que foram usinadas e seus rai os são dados por r = z/2p. As circunferências primitivas de corte são também conhecidas como çircunferências 'primitiva., de referência.
r
,...Gircunfertncie primitiva , . . . .- < t e reftll'tnclll
'b 2
ldeco",'
Engrenagem 1 Circunf. primitiva de refertncia
.
Circunf. primitiva de
Jogo
primitivo i
-
I" Engrenagem
2
~--
CI_.~
referência
:'1 ::2 C \
It
!"
I
1\
:
!1 :c C -
Além da variação nas circunferências primitivas, o ângulo de pressão também aumenta. O ângulo r:J.' é conhecido como o ângulo de pressão de funcionamento e é maior do que o ângulo de pressão de corte r : J .. Uma equação para o ângulo de pressão r : J .' pode ser facilmente derivada da Fig. 4.21b:
,. +,. b,
cos
r :J . cos = = (r1 + r 2) ---cos r :J .'
b2
r :J .'
c o s r :J .'
a
= -,
cos ~."" ....., cos r :J .'
c o s r :J .
a
Aa
= a' - a cos r :J . cos r :J .'
= a -- -a
= a ( ~cos- l)
r : J .'
4.21b,
engrenagens sãoa operadas Fig: haverá jogo Quando primitivoasconforme mostra Fig. 4.21c.nasA condições relação dasdavelocidades angulares
não será afetada enquanto as engrenagens permanecerem em contato. Entretanto, se a direção de rotação for invertida, haverá perda de movimento. Pode ser derivada uma equilção para o jogo primitivo, pelo fato de que a soma das espessuras dos , dentes mais o jogo primitivo deve ser igual ao passo frontal, todos medidos na circunferência primitiva de funcionamento:' Da Fig. 4.21c, a seguinte equação pode ser escrita: 2n= r; = ZI
s'
2n r ~ Z2
= espessura do dente na circunferência primitiva de funcionamento
ir = jogo primitivo r' = raio de circunferência primitiva de funcionamento z = número de dentes.
s' = 2r' 1
1
[~ + 2r 1
r'
_ 1 S1 r 1
s;
2r; r'
r
2r' (Ev rx ' - Evr x) 1
[;:2
_2_ S 2
Ev rx - Ev rx' ]
+ Evr x -
Evr x' ]
2r' (Evr x' - Evr x) 2
2
espessura do dente na circunferência primitiva de referência (s raio de circunferência primitiva de referência (r =z/2p ) ângulo de pressão de referência (14,5°, 20°, 25°) ângulo de pressão de funcionamento
=' Pt/2
= n/2p)
Substituindo as Eq s. 4.17, 4.18, 4.19 e 4.20 na Eq. 4.16 e lembrando que
2nr
.
z - = Pr \ -
\:
v
-~lY'.'J '\
n
=
p' \
/--0
I~;)f('-!-
j, = ~
[; -
(SI
s.
+
+ 2u
S2)
P =S2
2"
=
(E vrx' -
E M )]
(4.2 I)
1t
=2p
e a Eq. 4.21 simplifica-se para j,
= 2,,' (Ev rx'
- Ev rx)
A Eq. 4.2 1 deve ser usada se as engrenagens não são padronizadas, isto é, se SI '!- S2' As engrenagens não padronizadas serão apresentadas no Capítulo S. Valores recomendados para jogo primitivo podem ser encontrados nos manuais de engrenagens. 4.9 Engrenagens de Dentes Internos. Em muitas aplicações uma engrenagem evolvental de dentes internos é engrenada com um pinhão em lugar de duas engrenagens de dentes externos, a fim de obter certas vantagens. Talvez a vantagem mais importante seja um c(;>njuntomais compacto. Também para as mesmas dimensões dos dentes, as engrenagens de dentes internos terão maior comprimento de contato, maior resistência nos dentes e menor deslizamento relativo entre dentes em contato do que as de dentes externos. Em uma engrenagem de dentes internos, os perfis de dente são côncavos e não convexos como em uma engrenagem de dentes externos. Devido a esta forma, pode ocorrer um tipo de interferência que não é possível em uma engrenagem de dentes em umentram a cremalheira. interferência ocorre entre perfis inativosexternos quando ou os dentes e saem deEsta contato e não houver suficiente diferença entre os números de dentes da engrenagem de dentes internos e do pinhão. A Fig. 4.22 mostra um pinhão engrenado com uma engrenagem de dentes internos.
Circunf. de pé Circunf. primitiva Cinrcunf. de cabeça
Eles têm dimensões tão próximas que essa interferência ocorre nos pontos a, b, c, d ee. Quando uma engrenagem de dentes internos é usinada, usa-se uma ferramenta pinhão, tipo Fellows, com dois dentes a menos do que a engrenagem que está sendo usinada. Isto automaticamente reduz as extremidades dos dentes para prevenir interferência nos pontos a, b, c, d e e. Pode haver também interferência evolvental entre perfis ativos do mesmo modo que nas engrenagens de dentes externos. AIsto cutido dois no dentes próximoda par~grafo. Fig.será 4.23dis mostra Fig. 4.22 em co ntato com a linha de ação tangente à circunferência de base da engrenagem no ponto f e tangente à circunferência de base do pinhão no ponto g. Pode-se iniciar no ponto f, um perfil evolvental para a engrenagem, mas a evolvente para o pinhão não pode começar antes do ponto g. O ponto g é, então, o primeiro ponto possível de contato sem interferência evolvental e determina a altura de ca beça máxima da engrenagem. O ponto h, interseção da circunferência de cabeça do pinhão e a linha de ação, é o fim do contato, e o comprimento de ação é gPh. Deve-se mencionar que a relação p =z/d vale tanto para uma engrenagem de dentes internos quanto para uma de dentes externos.
,
1Pin_h~ 0 1
Circunferencia de base Circunferência primitiva ~ircunf!rência _dece~
E"!iren89f!m 'O~
_
_
4.10 Engrenagens Cicloidais. Embora a engrenagem cicloidal tenha sido grandemente substituída pela evolvental, o perfil cicloidal possui certas vantagens dignas de nota. Estas serão discutidas brevemente. Para um tratamento detalhado .de engrenagens cicloidais o leitor pode procurar uma das muitas referências sobre o assunto. 2
As engrenagens cicloidais não têm interferência e um dente cicloigal geralmente é mais forte do gue .•pm dente evolventaLl'-ºrgue tem Oanco~ mais separados. em contraste com os flancos radiais deste último. Os dentes cicloidais têm também menos desUzamento.k..em consegüência. menos desgaste. A Fig. 4.24 mostra um dente de engrenagem cicloidal e para comparação, um dente evolvental. Entretanto, uma importante desvantagem do engrenamento ciclojdaJ é o fato de gue para um par de engrenagens cicloidais há sÓuma distâncja entre ejxos. teoricamente ~, e com a qual elas transmitirão movimento a uma relação constante de velocidades angulares. Outra desyaptagept é que, embQrj! seja lJOssíye1o fresamento de uma engrenagem cicloidal, a ferramenta não é usinada tão facilmente qu'U!.t.o \lma evolyeptal,po[que os dentes das crem.a1beiras ciçloidais não têm os lados retps ~Qmo os das eyolyeptais. por esta razão as engrenagegs eyolyeptais Podem ser fabricadas com maior precisão e a cust
As engrenagens eVQlveptais substituiram cOIlll'-I~~ªJ!l~!ll,Ç_ f!.~cloidais para transmjs~ãQ de potência. Entretanto,~Lç~?l9.E:i~sãQ largª.mttnte utilizadas tm relojº~ri~~S~!!Osj.1.}!tr)J.me.PJ2.§~Qmk, as quest§.es h.ueLkrlnçllu,.[eSi~1~pcja sio CJlDSjdera.cãeS llriorjtárjas. Em relojoaria o trem ded~engrenagens da fonte de potência aumenta sua relação de velocidades angulares com a engrenagem impelindo o pinhão. Em um relógio de puls03 este aumento pode ser tão grande quanto 5000 : I. As engrenagens serão então tão pequenas que, a fim de impedir o uso de dentes excessivamente pequenos. é necessário usar pinhões (engrenagens movidas, neste caso) tendo somente 6 ou 7 dentes. O perfil de dente destes pinhões deve também ser capaz de atuar em uma rotação de 60°. Para este propósito, as engrenagens cicloidais são preferidas às evolventais. O problema da distância entre eixos e relação de velocidades angulares não é importante neste caso porque todo o trem, governado pelo escape pára e parte novamente várias vezes por segundo. A operação do trem envo lve assim tão grandes variações de quantidade de movimento que o efeito da forma do dente sobre esta variação é desprezível. O efeito da forma do dente na consistência da razão de velocidade não é, assim, intrinsicamente importante. Para dar corda, acertar e nas reduções minuto-hora, o pinhão impele a engrenagem e ambos os engrenamentos, cicloidal ou evolvental, podem ser usados. Entretanto, os relógios americanos geralmente usam engrenagens evolventais.
4.1 Uma evolvente é gerada em uma circunferência de base que tem um raio r b de 4 pol. Quando a evolvente é gerada, o ângulo que corresponde a E vr x varia deO a 15 0 . Para incrementos de 3 0 para este ângulo, calcule os ângulos de pressão r x correspondentes e raios r para pontos na evolvente. Plote esta série de pontos em coordenadas polares e ligue-os com uma curva contínua para representar a evolvente. 4.2 Escreva um programa de computador para o problema 4.1 fazendo r = 3,4 e 5 pol. Determine os valores correspondentes de ângulo de pressão r x e raio r para cada valor de r b' 4.3 A espessura de um dente de engrenagem evolvental é 0,314 pol com um raio de 3,5 pol e um ângulo de pressão de 14,5 Calcule a espessura do dente e o raio em um ponto na evolvente que tem um ângulo de pressão de 25 4.4 Se as evolventes que formam o contorno de um dente de engrenagem forem prolongadas, seus flancos se encontrarão e o dente ficará pontudo. Determine o raio em que isto ocorre para um dente que tem uma espessura de 0,262 pol em um 0 •
0 •
0 •
raio' 4.5 de 4A pol e um ângulo de pressão de engrenagem 20 esp~ssura de um dente de uma evolvental é 0,196 pol em um raio de 2,0 pol e um ângulo de pressão de 20 Calcule a espessura do dente na circunferência de base. 4.6 Os raios primitivos de duas engrenagens acopladas são 2,00 e 2, 50 pol, e os raios externos são 2,25 e 2,75 pol, respectivamente. O ângulo de pressão é 20 Faça um esquema destas engrenagens em escala I : I tal como o mostrado na Fig. 4.10, e marque o início e o fim d o contato. O pinhão é a peça motora e gira no sentido horário. Determine e mostre os ângulos de aproximação e afastamento para ambas as engrenagens. Desenhe as evolventes necessárias para determinar qJ F e qJ A pelo método aproximado do Apêndice. 4.7 Um pinhão de 2,00 pol de raio prim itivo gira no sen tido horário e aciona uma cremalheira. O ângulo de pressão é 200 e a altura da cabeça do pin hão e da cremalheira é 0,20 pol. Faça um esquema, em esc ala 1 : 1, destas engrenagens, e assinale o início e o fim do contato. Determine e indique os ângulos de aproximação e afastamento para o pinhão. Desenhe as evolventes necessárias para determinar do Apêndice. qJ F e qJ A pelo método aproximado 4.8 Duas engrenagens de dentes retos, iguais, com 48 dentes, engrenam-se com raios pri mitivos de 4,00 pol e alturas de cabeças de 0,1 67 pol. Se o ângulo de pressão é 14,5 calcule o comprimento de ação ga e a razão frontal de transmissão G a. 4.9 A razão frontal de transmissão é definida como o arcO frontal de transmissão dividido pelo passo frontal ou como a relação do comprimento de transmissão com o passo base. Prove que 0 •
0 •
0 ,
• As normas da AGMA não apresentam engrenagens com unidades no SI. Por esta razão, não há problemas nos capítulos 4, 5, 6 e 7 empregando essas unidades.
Arco frontal de transmissão passo frontal
Comprimento de transmissão passo base
4.10 Descrc;va uma equação para o comprimento de ação g(l. para um pinhão que comanda uma cremalheira em termos do raio primitivo r; o raio base r b' a altura de cabeça ha e o ângulo de pressão (1.. 4.11 Um pinhão com um rai o primitivo de 1,50 pol impele uma cremalheira. O ângulo de pressão é 14,5°. Calcule a máxima altura de cabeça possível para a cremalheira sem haver interferência evolvental no pinhão. 4.12 Um pinhão com 24 dentes, passo 12, ângulo de pressão 200, dentes normais, impele uma engrenagem de 40 dentes. Calcule os raios primitivos, raios base, saliência, profundidade e espessura de dente na circunferência primitiva. 4.13 Um pinhão com 18 dentes, diametral pitch 8, ângulo de pressão 25°, dentes normais, impele uma engrenagem de 45 dentes. Calcule os raios primitivos, raios base, alturas de cabeça e de pé e a espessura do dente na circunferência primi-
tiva. 4.14 Um pinhão de 42 dentes, diametral pitch 120, ângulo de pressão 1200, dentes normais, impele uma engrenagem de 90 d entes. Calcule a razão frontal de transmissão. 4.15 Se os raios de um pin hão e uma engrenagem são aumentados tal que cada um se torne uma cremalheira, o comprimento de tra nsmissão, teoricamente, se torna um máximo. Determine a equação para o comprimento de tr ansmissão sob estas condições e calcule a razão frontal de transmissão máxima para sistemas de dentes normais com ângulos de pressão 14,5°, 200 e 25°. 20 dentes, 200, 4.16 Um pinhãoaciona com uma diametral pitch o 4,raioângulo de pressão dentes rebaixados, cremalheira. Calcule primitivo, raio base, altura de trabalho, altura total e a espessura dos dentes da cremalheira na linha primitiva. 4.17 Uma cremalheira de dentes normais, ângulo de pressão de 200, tem uma saliência de 0,25 pol. Calcule o passo base e mostre-o como uma dimensão da cremalheira, em es cala I: I. 4.18 Determine o número de dentes em uma engrenagem evolvental de dentes retos, normais, ângulo de pressão 14,5°, tal que os diâmetros das circunferências de base e de pé sejam iguais. 4.19 Determine para um par de engrenagens de dentes retos: (a) uma equação para a distância entre eixos a como função dos números de dentes e do diametral pitch. (b) as várias combinações de engrenagens de dentes normais, ângulo de pressão 200, 'que podem ser usadas para operar a uma distância entre eixos de 5,00 pol com uma razão de velocidades angulares de 3 : 1. O diametral pitch não deve ser superior a 12 e as engrenagens não podem ser adelgaçadas. As engrenagens devem ser fresadas. 4.20 Um pinhão com 30 dentes, normais, ângulo de pre ssão 25°, diametral pitch 6, impele uma cremalheira. Calcule o comprimento de transmissão e a razão
frontal de transmissão.
4.21 Um pinhão com 24 dentes, diametral pitch 2, ângulo de pr essão 20", dentes normais, aciona uma cremalheira. Se o pinhão gira no sentido anti-horário, a 360 rpm, determine, graficamente, a velocidade de deslizamento entre um dente do pinhão e da cre malheira no início do contato, no pon to primitivo e no fim do contato. Use uma escala de 1 pol = 10 pés/sego 4.22 Duas árvores, cujos eixos estão afastados de 8,5 pol devem ser acopladas com engrenagens de dentes retos com uma razão de velocidades angulares de 15 : 1.
Usando aos um diametral dois paresteria de que engrenagens que nos melhor se ajustem requisitos pitch acima.6, selecione Que modificação ser tolerada dados para cada conjunto utilizado? 4.23 Uma ferramenta fresa, dentes normais, diametral pitch 8, ângulo de pressão 14,5°, é usada para usinar uma engrenagem de den tes retos. A ferramenta tem hélice à direita com um ângulo de 2°40', um comprimento de 3;00 pol e um diâmetro externo de 3,00 pol. Faça um esquema em escala 1 : 1da ferramenta, usinando uma engrenagem de dentes retos de 48 dentes. O disco da engre nagem tem I 1/2 pol de espessura. Mostre o cilindro primitivo da ferramenta sobre o disco de engrenagem com o passo da hélice da fresa em correta relação com o passo frontal do dente da eng renagem. Mostre três dentes da engrenagem e 1 1/2 voltas da hélice da fresa: posicione estes elementos por meio do passo frontal. Assinale os eixos da fresa e do disco da engrenagem, o ângulo de avanço da ferramenta e a dir eção de rotação da fresa e do disco de engrenagem. 4.24 Para um ângulo de pressão de 22,5° no sistema de dentes normais, calcule o número mínimo de dentes para um pinhão engrenar-se com uma cremalheira sem interferência evolvental. Também calcule o número de dentes em um pinhão para engrenar-se com uma engrenagem de igual tamanho sem interferência evolvental. 4.25 Um pinhão com 24 dentes, diametral pitch 8, ângulo de pr essão 20", impele uma eng renagem com 56 dentes. Determine o raio de cabeça de modo que a circunferência de cabeça de cada engrenagem passe pelo ponto de interferência da outra. Calcule o valor de k para cada engrenagem. 4.26 Duas engrenagens iguais, diametral pitch 5, ângulo de pressão 200, engrenam-se de modo que a circunferência de cab eça de cad a uma passa pelo ponto de interferência da outra. Se a razão frontal de transmissão é 1,622 calcule o número de de ntes e o raio de cab eça para cada engrenagem. 4.27 Duas engrenagens evolventais, ângulo de pressão 200, são montadas à distância entre eixos de refe rência. A circunferência de cabeça de cada engrenagem passa pelo ponto de interferência da outra. Deduza uma equação para k como função de z, on de z é o nú mero de dentes e k uma constante que quando dividida pelo diametral pitch é a saliência. 4.28 No esquema de uma engrenagem mostrado na Fig. 4.25, ôs den tes têm ângulo de pr essão de 200 e são normais. Se o diâmetro primitivo é 4,80 pol e o diametral pitch 5, calcule o raio do pino que fica em contato com o perfil no ponto principal. Calcule o diâmetro m medido sobre dois pinos opostos. 4.29 Um pinhão com 40 dentes, diametral pitch 10, ângulo de pressão 14,5°, dentes normais, é montado com uma cremalheira, sem folga. Se a cremalheira é afastada 0,07 pol calcule o jogo primitivo produzido.
4.30 Um pinhão com 18 dentes, diametral pitch 12, ângulo de pressão 20°, dentes normais, impele uma engrenagem de 54 dentes. Se a distância entre eixos com que as engrenagens operam é 3,05 pol, calcule o ângulo de pressão de funcionamento. 4.31 Um pinhão com 36 dentes, normais, diametral pitch 10, ângulo de pressão 14,5°, impele uma engrenagem com 60 dentes. Se a distância entre eixos é aumentada em 0,025 pol, calcule (a) os raios das circunferências primitivas de funcionamento, (b) o ângulo de pressão de funcionamento e (c) o jogo primitivo produzido. 4.32 Um pinhão com 24 dentes rebaixados, diametral pitch 4, ângulo de pressão 200, aciona uma engrenagem de 40 dentes. Calcule (a) a distância entre eixos máxima teórica com que estas engrenagens podem operar separadas para continuar a haver movimento e (b) o jogo primitivo nas novas circunferências primitivas quando as engrenagens são separadas da distância calculada em (a). 4.33 Um pinhão com 24 dentes tem uma espessura de dentes de 0,255 pol em um raio primitivo de 1,50 pol e um ângulo de pressão de 200. Uma engrenagem de 40 dentes tem uma espessura de dentes de 0,230 pol em um raio primitivo de 2,50 pol e um ângulo de pre ssão de 200. Calcule o ângulo de pressão e a distância entre eixos se estas engrenagens são montadas sem jogo primitivo.
15 dentes, Um pinhão de dentes. diametral pitch 10, ângulo de pressão impele uma 4.34 engrenagem de 45 Usando um computador, calcule o jogo 25°, primitivo
produzido quando a distância entre centros é aumentada de 3,00 para 3,030 pol em incrementos de 0,001 pol. 4.35 Um pinhão de 34 dentes, diametral pitch 96, impele uma engrenagem de 60 dentes. Se a distância entre centros é aumentada de 0,005 pol, compare o jogo primitivo produzido utilizando os ângulos de pressão de 14,5°, 20" e 25°.
Engrenagens de Dentes Retos Corrigidas ••••
•
••••••
.
• •
••••••
5.1 Teoria das Engrenagens de Den tes Retos Corrigidas. O defeito mais grave do sistema de engrenamento evolyental é.a.QQssibilidadede. interferência entre.Jl ~xtremidade dos dentes da eDl:renagem cgm os f1aDCosdo pinbão, Quando o núm~ro g.~~~tes deste úl~imo é.m~nor do que o mínimo para o sistemapinhãQ-engrenagem. Q.uando ocorre in.t~Ifur~cia, o metaLçm.c
çãode_I!!etalpeIl1J~~a ~ cl;>nneçjdacomo adelgaçamento e normallll~J1!eocorre, a menO~Lq~esejam tomadas providênciª.§...1?-arapre\ifiii-="!a.Se a ferml,llenta não. removesse este metal, as .!!!tas ellgrenaglm.s_º~º girariam Quando monlligas porque a engrenagem, devido à interferência, tenderia a penetrar no flanco do pinhão. ~a. re.ªli<1ªgeJ,_ç.l1tre~nto,as @,grenagenS po.derão gira r livrelll~nte porque o flancoºº.pinhão foi adelgaçadp. Mas isto não só en~ce o dente.do pjnhão como tªm~m Qode remOy.eL~a· pequena parte da evolvente adjaçente à circunferência de base, o que pode ç~r s~ria reduçª,-o no comprimento .de.transmissão. A tentativa eara eliminar...a interferência. e seu j;.OJlseqUenteadelgaçamento !çvouao..dessau::2lyimento de várjQs sistemas não Padronizados de engrenament9,
.a1guns 40s q1.! aisrequ erem ferramentas espeçjais. Qois des~s ~is!..emastiXCJ:.a êxito e têm larga. aplicação porq',ieJ)'odem ser usa das ferramentas normalizadas Para .,gerar os dentes. NQ'primeiro método, guando o pinhª-o está sendo cortado, a ferramenta é afast.ªºa ~e. uma certa dts..tância da ~bra, ~o qu~ a ~inha de cabeça da cremalheira baslca passe pelo ponto de IAtef~a '00 pmhao. Isto ~liIl1inao adelgaçamento...mas a espessu~acio dente ficará aume.ntada com ~.ms-
mmgente decréscimo no vão .• ste>está ilustrado na F'ig,_5.1, onde (a) mostra os QenJ~sadelgaçados e lb) QS dentes resultantes quando a ferramenta foi afastada. Montando-se este pinhão (Fig. 5.th) com sua engrenagem, nota-se que a distância entre eixos aumenta devido ao 9J~çré~cim()do vão do dente. E lâri ao "' p< >d e mais ser êalcuiãdã&retâmente dodiametral pitch e do número de dentes e então é considerada não normalizada. Q ãng\ll()_Qepressão eIt! qp~.~ .~nsrenagens operam também aumenta. ~C~_JH:~ de eliminar a interferência é conhecido como o sistema de
'd i " r t á u c i a
ep tre
eixos -~-;"mentada.
Q afastamento da ferramenta não precisa limitar-se ao pinhão mas pode ser aplica~odeser aplica
Os dois sistemas podem ser aplicados a ~ngrenagens de de.ntes retos, helicoidais ~.cônicas. De fato, o sistema para engrenagens cônicas é um sistema de saliências diferentes. Agora serão desenvolvidas fórmulas paraª_ aplicação destes dois sistemas_a ~ngrenagens de dentes retos usinadas com ferramenta fresa. 5.2 Sistema de DistAncia Entre Eixos Aumentada. A Fig. S.la mostra em linha cheia uma cremalheira cortando um pinhão que tem men os dentes do que o mínimo permitido para evitar a interferência. A cremalheira e'o pinhão estão montados à distância entre eixos de ref erência, com a linha primitiva da cremalheira tangenciando a circunferência primitiva de referência do pinhão. A linha de cabeça da cremalheira passa acima do ponto de interferência E do pinhão de modo que os flancos dos dentes do pinhão ficam adelgaçados conforme mostrado. Para o dente da cremalheira eliminar a folga necessária na raiz do dente do pinhão, sua altura teria que ser aumentada. Para simplificar o esquema, esta altura adicional é mostrada tracejada em um só de nte. A mesma disposição pode ser usada para ilustrar a ação de um a ferramenta fresa cortando o pinhão, porque cinematicamente os dentes de uma cremalheira e de uma fresa são idênticos.
Linha primitiva de referência
Altura adicional Necesséria para eliminar a folga \
\ Linha primitiva de corte ambos os calOS _ Xm~(També~ lin~ primiti"!...~.!!ferência antes do re.cuo da ferra~nt8 " Linha primitiva de referência - recuo da ferrementa
=
/)/1
/
---..
JI/ I
~Pb
Para evitar o adelgaçamento afasta-se a cremalheira de uma distância xm de modo que sua linha de cabeça passe pelo ponto de interferência E. Esta situação é mostrada pontilhada na Fig . S.2a, e resulta no corte de um pinhão com dentes mais largos do que an tes. Quando a cremalheira é afastada, o raio de cabeça do pinhão também deve ser aumentado (usinando-se um disco maior), Pllra permitir
a manutenção da folga entre as extremidades dos dentes do pinhão e as raizes dos dentes da cremalheira. A mesma folga é usada tratando-se de engrenagem normalizada ou não. Para mostrar mais claramente a modificação nos dentes do pinhão, a cremalheira da Fig. 5.2a foi afastada para baixo e para a direita objetivando manter o mesmo perfil esquerdo do dente em ambos os casos. Quando duas engrenagens, em que uma ou ambas forem geradas com a ferramenta afastada, forem montadas, a distância entre eixos será maior do que a de ref erência. Além disso, o ângulo de pressão em que operarão será maior do que o ângulo de pressão da ferramenta. Como foi mencionado previamente, quando um pinhão normalizado é gerado pela cremalheira, a linha primitiva de referência da cremalheira tangencia a circunferência primitiva de corte do pinhão. Neste caso, a linha primitiva de referência é também a linha primitiva de corte. Quando a cremalheira é afastada uma distância xm, chamada de correção, a linha primitiva de referência não será mais tangente à circunferência primitiva de corte do pinhão, portanto não será mais a linha primi5.2b mostra tiva corte. Uma nova linhas linha na cremalheira atuará comoquando tal. A ela Fig.está maisde claramente as duas primitivas na cremalheira cortando um dente não normalizado. Da Fig. 5.2a pode ser visto que a circunferência primitiva de c orte no pin hão permanece a mesma, independentemente do pinhão ser normalizado ou não. A espessura do dente do pinhão, aumentada em sua circunferência primitiva de corte, pode ser determinada a partir do vão do dente da cremalheira em sua linha primitiva de corte. Da Fig. 5.2b esta espessura pode ser expressa pela seguinte equação:
A Eq. 5.1 pode então ser usada para calcular a espessura do dente na circunferência primitiva de referência ou de corte de uma engrenagem gerada por uma ferramenta afastada de uma distância xm: xm será negativa se a ferramenta avançar sobre o disco da engrenagem. Esta equação pode também ser usada para determinar quanto uma ferramenta deve avançar em um disco de engrenagem para resultar um jogo primitivo especificado. Na Fig. 5.2 a cremalheira foi afastada de uma distância suficiente para que a linha de cabeça pass asse pelo ponto da interferência do pinhão. É possível desenvolver uma equação tal que a correção xm possa ser determinada para satisfazer esta condição. xm
=
AR
+ DA
k
= -p + rb
=
r
cos
rb IX
- DP
cos
IX -
r
Z
XIII
k 2 1X ) = --r(l-cos p
1 z 2 p(k - Tsen IX ).
=
Há duas equaç ões que foram desenvolvidas na seção 4.2 (Capítulo 4) que encontram aplicação particular no estudo de engrenagens não normalizadas.
Através destas equações é possível determinar o ângulo de incidência frontal e a espessura de dente em qualquer raio se ambos são conhecidos em outro raio r A' Para engrenagens não normalizadas, a espessura de referência que corresponde à espessura sAna Eq. 5.4 é a espessura de dente na circunferência primitiva de corte, que pode ser calculada para qualquer afastamento da ferramenta pela Eq. 5.1. O ângulo de incidência frontal de referência que corresponde a I X A é o ângulo de pressão da ferramenta. O raio neste ângulo de pressão é o raio da circunferência primitiva de corte. Quando duas engrenagens, engrenagem 1 e engrenagem 2, que foram usinadas com correções xm e xm2, respectivamente, forem montadas, operarão em novas circunferências primitivas de raios r~ e r; e com um novo ângulo de pressão IX'. As espessuras dos dentes nas circunferências primitivas de funcionamento podem ser expressas como s ; e s ; e podem ser facilmente calculadas com a Eq. 5.4. Estas dimensões são mostradas na Fig. 5.3 juntamente com a espessura dos dentes SI e S2 nas circunferências primitivas de raios r e I'z. Agora será desenvolvida uma equação para determinar o ângulo de pressão I X em que estas duas engrenagens operarão. 1'8
l
I
211:1"
21"
~I-
[ 12"1
s
+ (Eu
IX -
s]Eu IX') [
-
22"22,.'
] ~z_
- (Eu
IX -
IX') Eu Z1
1 =_ _
Engrenagem Circunf.
1
primitiva
de corte Circunf. primitiva
de
funcionamento
[~2rl + (Ev a -
SI
2xml
tg a
+
Ev
S2
1t
=-
p
pt +T + 2xm
2 tg a (xm l
+
a')J
r~ ri
pt
2
(Ev
a - Ev OOJ =~
a' -
Ev a).
ZI
2
ZI + Z2 + ~-~(Ev p
tg a + T =p+
+ xm + Pt = 2)
[~+ 2r
1t
-
p
1t
Z I
ZI + Z2 + ~-~~(Ev p
+
P
Z2
(Ev
a' - Ev a)
a' - Ev a).
xm1
+ xm2
_
(Zl
-
+
Z2)
(Ev r x ' - Ev r x )
2P t g r x
Usando a Eq. 5.7 é possível determinar o ângulo de pressão r x ' em que duas engrenagens operarão depois de terem sido cortadas por uma fresa afastada de xm e xm2, respectivamente. Para calcular o acréscimo na distância entre eixos (sobre a distância de referência a) devido ao ângulo de pressão aumentado, a Eq. 4.15 pode ser usada e é repetida aqui: Aa
a [
=
cos r x cos r x '
-
I
1J
Freqüentenente é necessário projetar engrenagens para serem montadas com uma distância entre eixos predeterminada. Neste caso, o ângulo de pre ssão é fixado pelas condições do problema e é necessário determinar as correções xm e xm2 da ferramenta. A soma (xm1 + xm2) pode ser determinada pela Eq. 5.7a. Entretanto deve ser observado que a soma de xm1 e xm2 não é igual ao acréscimo na distância entre eixos em relação à distância entre eixos de referência. Infelizmente não há maneira de determinar racionalmente xml e xm2 independentemente. Por isto os valores são usualmente selecionados supondo um deles através de alguma relação empírica tal como variá-l os inversamente (ou diretamente se xm. + xm2 é negativo) com o número de dentes nas engrenagens, em uma tentativa de reforçar os dentes do pinhão. Entretanto, este método de selecionar xm1 e xm2 geralmente não leva os dentes do pinhão e engrenagem a terem resistências próximas. Em uma tentativa para corrigir esta situação, Walsh e Mabie desenvolveram um método para determinar a correção xm1 da ferramenta a partir do val or de xm1 + xm2 para um par de engrenagens de dentes retos projetado para operar a uma distância entre eixos diferente da de referência. Usando um computador digital, foi possível ajustar xm1 e xm2 para várias relações de velocidades e variações na distância entre eixos de modo que a tensão nos dentes do pinhão fosse aproximadamente igual à nos dentes da engrenagem. l
1
à complexidade problema, resultados tiveram que+ ser ) tadosDevido em forma de gráficos. doEstes mostramos curvas de xm1/(xm xm2apresenversus 1 Z2/ (Zl + Z2) para várias alterações na distância entre eixos. Estes gráficos foram desenvolvidos para um ângulo de pressão da ferramenta r x de 20°, dentes normais (k = I) e passo frontal grande. Embora as curvas tenham sido plotadas para dados baseados em um diametral pitch um, elas podem ser usadas para qualquer diametral pitch até 19,99 (limite do passo frontal grande). As curvas foram também plotadas para Z 1 =18 e Z 2 de 18 a 130 dentes. Quando Z 1 toma outros valores, introduz-se 1
E. J. Wal sh e H. H. Mabie, "A Simplified Method for Determining Hob Offset Values in the
Design of Nonstandard Spur Gears", Stillwater, Oklahoma, Outubro, 1971.
Proceedings,
Second OSU Applied Mechanism Conference.
um erro muito pequeno (menos de 4 %). Um exemplo está apresentado na Fi g. 5.4 para alterações na distância entre eixos de A C = 1,175 a 1,275 pol, para p = I.
---
í0,80
+
!
E- 0,70 lo<
0,50 0,50
0,70
0,75
z,/(z.
+z,)
Um pinhão e uma engrenagem de 20 e 30 dentes, respectivamente, devem ser cortados por um fresa de ân gulo de pressão 20°, diametral pitch 5, para operar em uma distância entre eixos de 5, 25 pol, sem jogo primitivo. Determine os valores de xml e xm2 de modo que sejam obtidos dentes com espessura adequada para que a resistência dos dentes do pinhão seja ap roximadamente igual à dos dentes da engrenagem. A distância entre eixos de referência é dada por: a=
ZI + Z2 20 + 30 --= ----
2 x 5
2p
= 5,00 pol Ângulo de pre ssão de funcionamento: cos
rx
,
. a
= -a' cos
rx
5 O
cos 20° = -'5,25
5,25 - 5,00 = + 0,25 poI.
Va
o valor de baseadas em p
Va deve =
= a'
-a
=
ser multiplicado pelo diametral pitch porque as curvas são
I. xp = 1,25 =Va
/ia
=
0,25 x 5
30
20 + 30 = 0,60
=
Xn1.
+
XI1I.
xm1
+ xm
(z 2
1
=
(20
XI11.
+
0,543
Xn12
(Ev a.' - Ev a.) 2p tg a .
Z2)
26,5° + 30)2 (Ev x 5 tg 20"
Ev 20")
= 0,543 (Xn11 + Xn12) = 0,543 (0,29073)
= 0,15787 pol Embora nào seja prático acompanhar todos os cálculos necessários para encontrar as tensões nos dentes do pinhào e da engrenagem, é interessante observar que
s = 9,959 F" 1
F
Fn
= carga normal na ext remidade do dente
F
=
espessura da face do dente.
Além dos gráficos para alterações positivas na distância entre eixos, como ilustrado na Fig. 5.4, o trabalho contém também uma série de gráficos para alterações negativas na distância entre eixos. Outro método para a solução do problema da determinação de xm1 e xm2 foi desenvolvido por Siegel e Mabie 2. Por este método, xm1 e xm2 são selecionados para uma aplicação particular a fim de serem obtidas proporções de dentes que levem a uma relação máxima entre comprimentos de afastamento e de aproximação e, ao mesmo tempo, a uma razão frontal de transmissão /> a de 1,20 ou maior. Este sistema é baseado no fato de que um par de engrenagens funciona mais suavemente saindo de c ontato do que entrando em contato. Então é mais vantajoso ter uma relação entre comprimentos de afa stamento e de aproximação tão alta quanto possível, especialmente para engrenagens para aplicação em instrumentos. Não é possível calcular saliência e profundidade de uma engrenagem com a distância entre eixoscom aumentada a menos que estejam sobre a engrenagem que ela deve se engrenar. A Fig.disponíveis 5.5 mostra informações duas engrenagens que devem se acoplar a uma dada distância entre eixos a'. As engrenagens devem ~er cortadas com uma fresa que é afastada xm1 no pinhão e xm 2 na engrenagem. E necessário calcular o diâmetro de cabeça de cada engrenagem e a profundidade de corte. A linha central da engrenagem 2 foi deslocada para a direita de forma que um dente da ferramenta possa ser mostrado acoplado com cada disco. Sabendo-se a distância entre eixos, os raios das circunferências primitivas, as correções, a forma do dente e o diametral pitch da ferramenta, é possível escrever as equações para os raios de cabeça, como se segue:
,
r a2 = a - ri - xm 1
+ -pk
Deve ser notado na figura que as alturas de cabeça das duas engrenagens não são iguais entre si nem são iguais ao k/p da ferramenta. Uma equação para a profundidade de corte pode também ser facilmente desenvolvida a partir da Fig. 5.5. =ll1
r + r a2 onde c é obtido nas Tabelas 4.1 ou 4.2 h
-
a'
+c
2 R. E. Siegel e H. H. Mabie , "Determination of Hob Offset Values for Nonstandard Gears Based on Maximum Ratio of Recess to Approach Action", Proceedings, Third OSU Applied Mechanism Conference, Stillwater, Oklahoma, Novembro, 1973.
---------+
I I
I
5.3 Sistema de Saliências Diferentes. Se a ferramenta avança no disco da
engrenagem a mesma distância que é afastada do pinhão, Xnl2 = -Xnll e da Eq. 5.7, IX' =IX. Assim o ângulo de pressão em que as engrenagens operarão é o mesmo em que foram usinadas. Porque não há alt eração no ângulo de pressão, r; = ri e r~ = = 1'2' e as engrenagens operarão na distância entre eixos de referência. A saliência do pinhão é aumentada para k/p + xm e a saliência da engrenagem é reduzida para k/p - xm. A espessura de dente na circunferência primitiva de corte pode ser prontamente calculada pela Eq. 5.1, mantendo-se em mente que a espessura de de nte da eng renagem diminui da mesma quantidade de qu e aumenta a do de nte do pinhão. Como foi mencionado previamente, há co ndições em qu e este sistema não funciona adequadamente. A fim de que este sistema tivesse sucesso, o professor M. F. Spotts, da Northwestern University, determinou que para engrenagensmenos com ângulo pressão de de pressão 14,5°, a de soma números de den deveéser pelo 34. Parade ângulo 25°dos o valor mínimo datessoma 24. As proporções das engrenagens usinadas por uma ferramenta pinhão para qualquer destes dois sistemas não serão as mesmas que quando cortadas por uma ferramenta fresa. As fórmulas precedentes aplicam-se só a engrenagens cortadas por uma ferramenta fresa ou por uma ferramenta cremalheira. Entretanto, podem ser desenvolvidas fórmulas para engrenagens cortadas por ferramentas pinhão usando os princípios acima.
Duas engrenagens de dentes retos de 12 e 15 dentes, respectivamente, devem ser cortadas por uma fresa, ângulo de pressão 20", dentes normais, diametral picth 6 e não devem apresentar adelgaçamento. Determine a distância entre eixos em que devem operar as engrenagens.
p
xm1 = 1
(k
-T sen Zl
2)
= -1( 10 0 - 12 6'
xm2
Ev
IX '
I
IX
sen
2
2
no)
2u
15
= 6"
1,00 - T sen220"
=
+
Ev
IX
2p (xm 1
+
0,01490
=
+ xm + Z2
2)
Zl
tg
2 x 6 (0,04968 12
IX
+ 0,02045) + 15
tg 20"
= 0,01490 0,02624 + 0,01134
=
r -
cos IX cos IX'
r1 r -
x 0,9397 0,9135
r -
I' " '
r -
r~
r2
cos = cos
IX
IX'
1,25 x 0,9397 _ 1 2858 09135 ' ,
I po
e
rr -
Exemplo
5.3
r -
Duas engrenagens de 32 e 48 dentes, normais, ângulo de pressão de 14,5°, diametral pitch 8, operam à distância entre eixos de 5 pol. A fim de alterar a relação
de velocidades, deseja-se substituir a engrenagem de 32 dentes por uma de 31. Deve-se manter a espessura de dente na circunferência primitiva de corte da engrenagem de 48 dentes, assim como a distância entre eixos de centros de 5 pol. Determine o valor de xm que dará a espessura adequada de dente para engrenamento com a engrenagem de 48 dentes. l
Z2 5 7I po 2 x 8 = 31,9 2 P = 31
31
--
79
r~
=
x 5
i~ x 5 = 3,0379
, r cos O( cosO( =--= I
r'I
pol
1,9375 x cos 14,5° 1,9621
xml
(31 + 48) + xm2 _ 2 x (0,009120-0,0055448) 8 x 0,25862
xm
+ xm =
l
2
xm 2 xml
79 x 0,003575 16 x 0,25862
= O . = 0,06825 pol
0,282425 4,13792
5.4 Engrenagens de Ação de Afas tamento. Outro tipo interessante
nagens não padronizadas
é o de engrenagens
de ação de afastamento,
de engreassim cha-
madas porque a maior parte ou toda a ação entre os dentes acontece durante a fase de afastamento do contato. O sistema de saliências diferentes é uma forma de engrenagens de aç ão de af astamento. Sabe-se que a região de af astamento no contato de um par de engrenagens é muito mais suave que a região da aproximação. Foi baseado nisto que forâm desenvolvidas as engrenagens de ação de afastamento e foi constatado que estas engrenagens duram mais e operam com menos atrito, 3
vibração e barulho dedoação que as dentes proporções normalizadas. Engrenagens de engrenagens af astamento com podem ser de usinadas usando ferramentas fresa e pinhão normalizadas e sua forma de dente é igual à dos dentes de engrenagens padronizadas e são montadas na mesma distância entre eixos. Então, um par de engrenagens de aç ão de af astamento pode ser usado para substituir um par de engrenagens de den tes retos padronizados sem alterar a distância entre eixos. A resistência das engrenagens de ação de afastamento é aproximadamente a mesma que para as engrenagens normalizadas. Entretanto, uma engrenagem deste tipo deve ser projetada para operar ou como motora ou como movida; ela não pode ser projetada para operar como ambas. Entretanto, um pinhão de ação de a fastamento pode impelir uma engrenagem em qualquer direção, isto é, ele pode mudar a direção de ro tação durante um ciclo de operação. As engrenagens podem ser usadas para uma caixa de multiplicação ou redução, mas a potência deve fluir sempre na mesma direção. Se o fluxo de po tência muda de direção durante a operação, ocorre um escoamento, na área de contato dos dentes, que resulta em atrito e desgaste. Devido a estas limitações, engrenagens de ação no afastamento não podem ser usadas como intermediárias operando em distâncias padronizadas. Há dois tipos de engrenagens de ação de afastamento: (a) ação de afastamento completa onde todo o contato é realizado no afastamento (b) ação de semi-afastamento. A fim de que um par de engrenagens de ação de afastamento tenha uma razão frontal de transmissão adequada, e pouco ou nenhum adelgaçamento e os dentes não sejam pontudos, os de afastamento completo têm que ter no mínimo 20 dentes na engrenagem motora e 27 na movida. Para engrenagens de semi-afastamento, entretanto, o número mínimo de dentes na motora é reduzido para 10 e na movida para 20. As de ação de afastamento completo devem ser preferidas porque toda a ação é realizada na região de afastamento. Entretanto, o grande número de dentes necessários muitas vezes limita seu emprego e devem então ser usadas as de ação de semi-afastamento. A Tabela 5.1 mostra as proporções para os dois sistemas de engrenagens de ação de af astamento. Para possibilitar uma comparação entre estas e as engrenagens padronizadas, são mostrados na Fig. 5.6 a altura de cabeça, o passo, a circunferência de base e o comprimento de transmissão para (a) engrenagens padronizadas (b) engrenagens de ação de afastamento completo (c) engrenagens de ação de semiafastamento. Na Fig. 5.6b para o sistema (b) a circunferência primitiva da engrenagem movida (engrenagem 2) torna-se a circunferência de cabeça porque a saliência é zero. Então, o comprimento de apr oximação é zero, e todo o comprimento de transmissão está na região de afastamento. A Fig. 5.6c para o sistema (c) mostra a
região de afastamento consideravelmente maior do que a região de aproximação para este sistema. Tabela S.1 Proporções dos dentes, Engrell88em da ação de afasta mento (Ãngulo de pressão a = 20°) Ação de Semi-afastamento Motora Movida 1,500 p
0,500 p
Ação de Afastamento Completo Motora Movido 2,000 p
Saliência (h a>
-
Profundidade (hf>
0,796 p
-
z
z
z
z
p
p
p
p
+4
z
Diâmetro positivo (d) Raio de cabeça (r a) Espessura do dente (s)
z
+
1,796 p
3
-
2p
1,9348 p
-
z
-
-
+
2p
z
2p
1,2068 p
0,296 p
-
O
-
2p
2,2987 p
-
Ci r c u n f .d~
AB-
In{cio do contato Fim do contato
2,296 p
0,8429 p
-
«Jv'4)lt--"
I Engr enagem Fig.S.6a
2
Engrenagem de ação de afastamento completo I Engrenagem 1 (motora)
.~
()l
A -In{cio do contato B- Fim do contato
Engrenagem de açio de serni-efastarnento
AB-
In{cio do contato Fim do contato
-~
I Engrenagem 2
Alberl. C. D. e F. S. Rogers. Killemalics of Machill<'l',I'. John Wi1ey and Sons, 1931. Buckingham, E., Spur Gears. McGraw-Hill Book Company. 1928. Spotts. M. F.. Desigll ~lMachille E/emellls. first edition. Prentice-Hall. 1948. Steeds, W., Involute Gears, Longmans. Green and Company. 1948.
5.1 Um pinhào com 12 dentes deve ser usinado por uma fresa de dentes normais, ângulo de pressào 20". diametral pitch 2. Faça um esquema teórico dos dentes do pinhão e da cremalheira em montagem padronizada, como mostra a Fig. 5.2a Desenhe a evolvente do pinhão pelo método aproximado mas não trace os Bancos do dente do pinhão. Mostre o efeito, no dente do pinhào, de afastar a cremalheira básica at0 que sua linha de cabeça passe pelo ponto de interferência. Esta disposição deve ser mostrada tracejada e sobreposta ao primeiro esquema com o lado do dente da cremalheira passando pelo ponto primitivo. Indique a circunferência de base, a circunferência primitiva de corte, afastamento da ferramenta, ângulo de pressão e linhas primitivas (de corte e padronizada) da cremalheira. 5.2 Um pinhão de 24 dentes deve ser usinado por uma fresa de dentes normais, ângulo de pressão 14,5", diametral pitch 10. Calcule a distância mínima que a ferramenta terá. que ser afastada para evitar o adelgaçamento. Calcqle o raio da circunferência primitiva de corte e a espessura do dente nesta circunferência. 5.3 Uma engrenagem de 26 d entes deve ser usi nada por uma fresa de dentes normais, ângulo de pressão 20°, diametral pitch 7. Calcule a máxima distância que a ferramenta avançar no disco da engrenagem causar adelgaçamento. Calcule o raiodeve da circunferência primitiva de corte e sem a espessura de dente nesta circun ferência. 5.4 Uma engrenagem de 20 dentes í: cortada por uma fresa de dentes normais, ângulo de pressão 14,5°, diametral pitch 4, que foi afastado de 0,10 pol. Determine se este afastamento t' suficiente para eliminar o, adelgaçamento. Se assim for, cal'cule a espessura de dente na circunferência primitiva de corte e na circunferência de base. 5.5 Uma engrenagem de 35 dentes deve ser cortada com uma fresa de dentes 14,5°,
4.
normais, ângulodade pressãode referência diametral a alteração ferramenta a partir posição para pitch ser obtidaCalcule uma espessura de da dente de 0,400 pol em uma circunferência para a qual o ângulo de incidência frontal é 20". 5.6 Um pinhão de 20 dentes deve ser cortado por uma fresa de dentes normais, ângulo de pressão 20°, diametral pitch 6. Qual será a alteração na posição da ferramenta para ser obtida uma espessura de dente de 0,274 pol em uma circunferência para a qual o ângulo de incidência frontal é de 14,5°? 5.7 Um pinhão de 20 dentes deve ser cortado por uma fresa de dentes normais, ângulo de pressão 20", diametral pitch 6. Calcule a espessura mínima de dente que pode ser obtida sobre uma circunferência para a qual o ângulo de incidência frontal
é de 14,5°. O dente não deve ser adelgaçado.
Um pinhão com 1I e uma engrenagem com 14 dentes foram cortados por uma fresa de dentes normais, ângulo de pressão 20", diametral pitch 8. Para evitar adelgaçamento a fresa foi afastada de 0,0446 pol no pi nhão e 0,0227 pol na engrenagem. Calcule o ângulo de pressão e a distância entre eixos em que estas engrenagens operarão. Determine a diferença entre a distância entre eixos calculada acima e a distância de re ferência, comparando-a com xml + xm2• 5.8
5.9 Prove que
Um pinhão de 15 e uma engrenagem de 21 dentes devem ser cortados com uma fresa de dentes normais, ângulo de pressão 14.so, diametral pitch 6, para operar em uma distância entre eixos de 3,20 pol. Determine se estas engrenagens podem ser cortadas sem adelgaçamento para operar nesta distância entre eixos. 5.10
5.11
Usando os dados do exemplo 5.2, calcule os raios de cabeça dos discos das engrenagens, a profundidade de co rte e a razão frontal de transmissão. 5.12 Um pinhão e uma engrenagem de 13 e 24 dentes, respectivamente, devem ser cortados por uma fresa de dentes normais, ângulo de pre ssão 20", diametral pitch 4, para operar em uma distância entre eixos de 4,83 pol. Calcule o ângulo de pressão em que as engrenagens operarão e os valores de xml e xm2• Faça xml e xm2 inversamente proporcionais ao número de dentes. Verifique se xml é grande o suficiente para evitar o adelgaçamento. Determine os raios de cabeça dos discos das engrenagens, a profundidade de co rte e a razão frontal de transmissão. 5.13 Usando os dados do exe mplo 5.3 verifique se o valor de xm1 é suficiente para evitar o adelgaçamento. Calcule os raios de cabeça dos discos das engrenagens, a profundidade de corte e a razão frontal de transmissão. 5.14 Um pinhão de 12 dentes tem uma espessura de dente de 0,2608 pol em sua circunferência primitiva de corte. Uma engrenagem de 32 dentes que se engrena com ele tem espessura de dente de 0,1888 pol em sua circunferência primitiva de corte. Se ambas as engrenagens foram cortadas por uma fresa de de ntes normais, ângulo de pressão 20°, diametral pitch 7, calcule a correção xm usada para usinar cada engrenagem e o ângulo de pressão de funcionamento. 5.15 Um pinhão com 35 dentes, não padronizado, tem uma espessura de dente de 0,188 pol, em um raio de 2,50 pol e um ângulo de incidência frontal de 2Qb. O pinhão se engrena com uma cremalheira no raio de 2,50 pol com jogo primitivo zero. Se a cremalheira tem ângulo de pressão de 20", dentes normais, diametral pitch 7, calcule a distância do centro de pinhão à linha primitiva de referência da cremalheira. 5.16 Um pinhão de 11 dentes deve acionar uma engrenagem de 23 dentes com uma distância entre eixos de 2,00 pol. Se as engrenagens são cortadas por uma fresa de dentes normais, ângulo de pressão 20°, diametral pitch 9, calcule o valor
xm1 e xm2 de modo que o início do con tato durante o corte do pinhão ocorra no de ponto de interferência do pinhão.
5.17 Um pinhão com 20 dentes, ângulo de pressão 20°, diametral pitch 10, aciona uma engrenagem com 30 dentes com uma distância entre eixos de 2,50 poI. É necessário substituir estas engrenagens por um par que tenha uma relação de velocidades I 1/3: I e ainda mantenha a mesma distância entre eixos. Usando a mesma ferramenta que usinou as en grenagens originais, selecione um par de engrenagens que se afastem o menos possível das engrenagens padronizadas. Determine as correções das engrenagens, os raios de cabeça e a profundidade de corte. 5.18 É necessário conectar dois eixos cuja distância entre centros é 3,90 pol com um par de engrenagens de dentes retos tendo uma relação de velocidade de 1,25 : 1. Usando uma fresa de de ntes normais, ângulo de pressão 14,5°, diametral pitch 10, recomende um par de engrenagens cuja relação de velocidades angulares se aproxime tanto quanto possível de 1,25: 1 sem apresentarem adelgaçamento. Calcule as correções das engrenagens, os diâmetros externos, profundidade de corte e a razão frontal de transmissão. 5.19 por Umuma pinhão de 27ângulo e 39 dentes, respectivamente, cortados fresaedeengrenagem dentes normais, de pressão 14,5°, diametraldevem pitch ser 6, para serem obtidos dentes com saliências diferentes. A fresa é afastada de 0,03 poI. Determine para cada engrenagem o diâmetro primitivo, o diâmetro de cabeça, a profundidade de co rte e a espessura de dente na circunferência primitiva. 5.20 Um pa r de engrenagens de saliências diferentes de 18 e 28 dentes é cortado por uma fresa de dentes normais, ângulo de pressão 20", diametral pitch 4, com coneção 0,06 pol. Compare a razão frontal de transmissão destas engrenagens com a de um par de engrenagens padronizadas de mesmos passo e números de dentes. Um pinhão de dentes normais, ângulo de pressãode 20°, diametralà distância pitch 20, com 5.21 30 dentes, deve engrenar-se com uma engrenagem 40 dentes, entre eixos de referência. Sendo necessário um jogo primitivo de 0,004 pol, calcule quanto a fe rramenta deve avançar no pinhão e na engrenagem, para ser obtido este jogo. Suponha que os dentes de ambas as engrenagens devam ter suas espessuras diminuídas da me sma quantidade. 5.22 Um pinhão com 20 dentes, ângulo de pressão 25°, diametral pitch 8, deve se engrenar com uma engrenagem de 40 dentes em uma distância entre eixos de 3,80 poI. Se a ferramenta é recuada de 0,0352 pol quando cortando o pinhão e 0,0165 pol quando cortando a engrenagem, calcule o jogo primitivo produzido. 5.23 Duas engrenagens de saliências diferentes de 18 e 30 dentes, respectivamente, cortadas com uma fresa, ângulo de' pressão 25°, di ametral pitch 6, são projetadas para ter jogo primitivo zero quando a ferramenta é afastada de 0,05 pol . Calcule os valores de Xn1) e xm2 se estas engrenagens forem modificadas para terem jogo de 0,005 pol supondo que os dentes sejam estreitados da mesma quantidade. 5.24 Um pinhão de 18 dentes, ângulo de pressão 20", diametral pitch 12, aciona uma engrenagem de 42 dentes. Sendo de ação de semi-afastamento, calcule a relação entre os comprimentos de afastamento e de aproximação.
5.25 Duas engrenagens de semi-afastamento primitivo. O pinhão tem 20 edea ação engrenagem 48 dentes. Se se as engrenam eng.renagenssemsãojogo cor-
tadas com uma fresa, âng ulo de pressão 20", diametral pitch 10, calcule a razão frontal de transmissão. 5.26 Um par de engrenagens de ação de afastamento deve ser projetado para funcionar sem jogo primitivo. O pinhão deve ter 20 e a engrenagem 44 dentes e devem ser cortados com uma fresa, ângulo de pressão 20", diametral pitch 8. Calcule se pode ser obtida uma razão frontal de transmissão de 1,40, usando engrenagens de ação de afastamento completo ou semi-afastamento, ou ambos. 5.27 Um pinhão de 24 dentes, ângulo de pressão 20", diametral pitch 10, impele uma engrenagem de 40 dentes. As engrenagens têm ação de semi-afastamento e o comprimento de transmissão g(l = 0,468 pol. Calcule a relação entre os comprimentos de afastamento e de aproximação.
Eng re na ge ns Cê nica s, He li coida is e Parafusos Sem-fim
.•
.•...• • -
•
••
•
••
•••••
6.1 Teoria das Engrenagens Cônicas. ~...s_engrenagensçQ!Iiç_ª~são usadas para çQll_e<::taL~xºrescujo!' l;Üxºs.sejnterceptam. O ângulo entre eixos é definido como oentre ângulo entre linhas_º-e_cenlrQdas engrepagens em contã!.,o. Embora o ângulo eixos sejaasusualmente 90°, há muitas aplicações de engrenagens cônicas que requerem ângulos maiores ou menores do que esse va lor. A superficie primitiva de uma engrenagem cônjca é um cone. Q..uando duas engrenagens cônicas se en-Menam seus CSlJJ.esfazemcontato (10 longo de uma linha ÇQlD.Wll. e há um vérti~~ambém comum onde as linhas de centro das engrenagens se encontram. Os cones rolam um sobre o outro sem deslizarem e têm movimen"tô esférico. Cada ponto em uma engrenagem cônica mantém uma distância constante do vértice comum. mostra umasecão axial de um PiJrdeengrenagens.cônic(ls çom A õ S "Fig. eixos6 2em ângylo reto. ~.~lação entre as 'y!:.locidade~.mgular esengrenadas é jnyer~mente.proporcjonal aos diâmetros d a li bases dos s..0nes,porq~çº_ºes primitivos rolam um sobre o outro sem escorregamento. Estes diâmetros tornam-se os diâmetrós-p~fmitivos das engré~agens. ~ r_e~~ entre as vel()c.!(l.~º.~.~I!gularespode entªº.sceL e~1Hessa como w1L 0 3 . . 2 . . _ = d , ] d " ; ==".~~!..J'como -no caso de engrenagens de dentes retos. A relação p =zjd também é válida. Fazendo um esquema de um par de engrenagens cilíndricas de dentes retos, será simples, conhecendo-se os diâmetros primitivos, desenhar as circunferências
prImitivas em sua poslçao correta. No caso de engrenagens cOOlcas, entretanto, devem ser considerados os ângulos primitivos bem como os diâmetros primitivos. As equações para os ângulos primitivQs estão deduzidas a seguir, com R representando o comprimento da geratriz do cone primitivo. sen 01.
~. =di ~2R = sen (..:..~
sen <5 1 seriTsen-;'
(j )
2
= ~.9~2 ~ ~~~ 2
sen <5
2
sen r.
_1_ [_s_en_(jl_+ cos I:J _1_ sen I: sen(j2
sen (j, di -sen (j2 = d;
=
tg(j2
I,\-, I
\ .
,t
'I
- -2 \ h. (6.1)
Do mesmo mpdo
\
r (V'; ',ll\~ti\\.')
Embora as Eqs. 6.1 e 6.2 tenham sido deduzidas para engrenagens com eixos em ân gulo reto, aplicam-se às eng renagens cônicas com qualquer ângulo entre eixos. Fazendo o esboço de um par de engrenagens, a posição de geratriz comum aos cones primitivos pode ser determinada graficamente se a relação das velocidades angulares e o ângulo entre eixos forem conhecidos. Como foi mencionado, os cones primitivos de um par de engrenagens cônicas têm movimento esférico. Então, a fim de que as extremidades mais espessas dos dentes de engrenagens cônicas ajustem-se perfeitamente quando engrenadas, estas extremidades devem permanecer na superfície de uma esfera cuj o centro é o vértice dos cones primitivos e cujo raio é sua geratriz comum. Entretanto, não é frequente fazer esférica a extremidade de uma engrenagem cônica, e assim ela é feita cônica como mostra a Fig. 6.3. Este cone é conhecido como cone complementar e é tangente à esfera teórica no diâmetro primitivo. A geratriz do cone complementar é então perpendicular à geratriz do con e primitivo. Para todos os efeitos práticos, as superfícies do cone complementar e da esfera são idênticas na região da extremidade dos dentes de engrenagens cônicas. As distâncias do vértice dos cones primitivos às extremidades externas dos dentes em qualquer ponto com exceção do ponto principal não são iguais, de modo que as superficies das extremidades dos dentes engrenados não ficarão bem niveladas. Entretanto esta variação é pequena e não afeta a ação dos dentes. Todas as proporções de dente de uma engr~nagem cônica referem-se à extreITlidademais espessa do dente. Isto será discutido em uma seção posterior . .Quando é necessárro-mostrar Q_contoTOQda extremidade mais espessJldº--9_ente, faz-se uso do fato de que o perfil do dente da engrenagem cônica corresponde aproximadamente ao do dente de uma engr enagem cilíndrica de dentes retos que tenha um raio primitivo igual à geratriz do cone comp lementar e um diametral pitch igual ao da engrenagem cônica. Esta engrenagem de dentes retos é chamada en.g re nag em de dent es
r_e_to_s_e_9_uivalente, e esta seção na engrenagem cônica é conhecida como §§:ãotrtl_n_sversªl.
Além do tipo geral de engrenagens cônicas visto na Fig. 6.2, há os seguintes casos especiais: 1. Engrenagens comcas: do mesmo tamanho e ângulo dos eixos 90". 2. Engrenagens cônicas angulares: o ângulo dos eixos é mai or ou menor do que 90". Um esquema é mostrado na Fig. 6.4. 3. Engrenagens de face: o ângulo primitivo é 90° e a superfície primitiva torna-se um pl ano. A Fig. 6.5 mostra um esboço.
Até aqui a apresentação tratou fundamentalmente da teori,"l.geral e de tipos de engr_~nagens cônicas. Consideraremos, forma dos dentes. Como foi visto no estudo do Capítulo 4. agora, o perfilaf:-voly~ntalde uma en~rena2em de de~tes retos foi facilmente geradQJLPar1ÍIde citcunferêDGia-debase e !OWOIl.í,l forma de uma evolvente cilíndrica.quando considerou-se a largura da engrenagem. Entretanto, Jl fºrl).1ª_~_\,ºlyeºtaLTlªo_Usada para engrenagens cônicas porque a superfície de base seria um cone. Isto significa que, quando um plano rola sobre este cone base, uma linha do plano gera uma evolvente esférica, que é de fabricação impraticável. No sistema de engrenamento cônico que foi desenvolvido os dentes são gerados conjugados a uma coroa que tem dentes com lados planos. A coroa mantém a mesma relação para engrenagens cônicas como uma cremalheira mantém para engrenagens de dentes retos. A Fig. 6.6 mostra o esboço de uma coroa teórica. Os lados dos dentes permanecem em planos que passam pelo centro da esfera. im l a
_-1__ ......
""
't " / '
/ / /
II I
\
,
........••.••.
""
"
\
\\
\
Quando a coroa se engrena com uma engrenagem conjugada, a trajetória completa do contato na superficie da esfera tem a forma de um 8. Por causa disto, os dentes da coroa e da conju.&.adasão chamadosdentes octóides. Só uma parte da trajetória é usada, e para dentes com a altura mostrada o contato se dá em APB ou A' PB'. 6.2 Detalhes das Engrenagens Cônicas. Afim de considerar as particularjda~s de uma engrenagem cônica mostra-se na Fi~ 6.7íLY!!l.nar de en~rena~ens cônjeas Gleason de. dentes retos. - - ---O sistema Gleason foi adotado como o padrão para engrenagens cônicas Como pode ser visto no esboço, as gera trizes do cQne de pé são tracadas pelo vértice dos cones primitivos. Entretanto, as geratrizes dos cones de cabeça são tracadas ~l!1.elamente às geL~JIg~§._de pé da eMrena.,gem que se a.<:?pla, possibilitando l!§sim uma folga constante~. eliminando'pºssíy~ interferência D.QjllJ}do do defue na extremidade menos espessa dos dentes. A eliminação desta possível interferência per~it;miiõres raios de aresta nas ferramentas geradoras, o gue allIpentará a resistência dos dentes pelo aUJ!l~to do raio de .a{redondamento. As extremidades mili.s -..
ê'spessas dos dent~_s.. são dimensionadas de açorC!º_com o sistema de saliências dif~~s, discutido no Capítulo 5, de modo que ~saliência d(:U~.LI!hãoserá maior do que a da en2[ ena~em. Usam-se saliç.ncias grandes n()pillJlão fundamentalmente para evitar_R.-ª!k!.g~-ªm~ª-!:a igu_ªINº_9~ste e par-ª. ª-!1m~ºtar a resistência dos dentes. Na seção seguinte veremos a norma Gleason para as dimensões d'"e engrenagens cônicas de dentes retos. A Fig 6 7b representa O corte AA, mostrando os perfis dos dentes. A saliência e a profundidade são medidas perpendicularmente à geratriz do cone primitivo, na parte externa da engrenagem; então o ângulo de profundidade é dado por
tg {) =.:.:L-h j
R
O ângulo de profundidade deve ser determinado indiretamente, porque a geratriz do con e de cabeça não passa pelo vértice dos cones primitivos. Pode-se mostrar que o ângulo de saliência do pinhão é igual ao ângulo de profundidade da engrenagem. Da mesma maneira, o ângulo de saliência da eng renagem é igual ao ângulo de profundidade do pinhão. Os ângulos de cabeça e de pé são então {) a
= {) +
{)j={)-(Jj
(J a
(6.4) (6.5)
Devido ao ângulo complementar ser igual ao ângulo primitivo, o diâmetro de cabeça de uma engrenagem cônica é
A largura do den teado de uma engrenagem cônica não é determinada pela cinemática da ação dos dentes, mas por req uisitos de fabricação e capacidade de
.~ Circunf primitiva Circunf de base Circunf depé
I'
~ o ~
~S
o
complementar
# 9
i"'/' I cJ~
Cone
O'
Aj
I'I
f(
Fig. 6.7 d =diâmetro primitivo. d. =diâmetro de cabeça. R =comprimento da geratriz. b =largura do denteado. h. =saliência ou altura da cabeça. h/ =profundidade ou altura do pé. 1: =ângulo entre eixos. ~ =ângulo primitivo. 8. =ângulo de saliência. 8/ =ângulo de profundidade. ~. =ângulo de cab eça. ~/ =ângulo de pé.
#
carga. Se o dente for muito ~rªnc;l~Lemrelação ao com"primento R, haverá dificuldades na fabric~ção, de modo que a largura do denteado é limitada como se segue: R
b
tO (aquele p
que for menor)
(6.7)
Embora sejam usados freqüentemente, ',-ºiametrais pitchs" inteiros em engrenagens cônicas, não há a mesma necessidade para essa restrição nos projetos, uma vez que o feqamental para engrenagens cônicas não é limitado a passos normalizadgs como no cas9 de engrenagens de dentes retos. 6.3 Proporções de Dente para Engrenagens Cônicas Gleason. (Para engrenagens cônicas de dentes retos com eixos em ângulo reto e 13 ou mais dentes no pinhão.)
dentes ou mais no pinhão 15 dentes no pinhão e 17 ou mais na engrenagem 14 dentes no pinhão e 20 ou mais na engrenagem 16
2,00-h p a2
Engrenagem:
h
f2
P·10h-ao: IlJI
Engrenagem:
= 2,188 P
2.188
=T (h a1
a2
I
=p - - I",
pt
S2
- h
-
h a2)
tg
Cl
(aproximadamente)l
1
Para obter o valor exato, é necessário um conjunto de curvas cuja inclusão aqlJi não é oportuna. Ver Gleason, Design Manual.
Pinhão:
SI
=pt -
S2
~Ol1,) .DentesZ>~ Retos. As proporções
~7
.
/ '"
6.4 EngrenageM CÔnicas ~ares )de das engrenagens cônicas angulares de dentes retos podem ser determinadas das mesmas relações que as côn icas em ângulo reto, com as seguintes exceções:
1.
O
número limite de d entes não pode ser tomado do item um na seção 6.3. Cada aplicação deve ser examinada separadamente quanto ao adelgaçaçamento com a ajuda de um gráfico do Design Manual da Gleason. Este gráfico mostra o ângulo de sal iência do pinhão versus ângulo primitivo. Há curvas para vários ângulos de pressão.
2.
O
ângulo de pre ssão é determinado de acordo com o item anterior.
3. Ao determinar a profundidade do dente da engrenagem do item ci nco na seção 6.3, é necessário usar uma razão de transmissão equivalente de engrenagens cônicas de 90" em lugar de Z2/Z I '
Para uma cOroa (<5=90°) esta relação é infinita. Para engrenagens cônicas angulares em que o ângulo das árvores é maior do que 900 e o ângulo primitivo de engrenagem é também maior do que 90°, resulta uma engrenagem cônica interna. Neste caso, os cá lculos devem seguir as indicações da Gleason Works para determinar se as eng renagens podem ser usinadas. 6.5 EngrenageM CÔnicas Zerol. Além das engre nagen.s.cônjcas de dentes retos. há.9\l!!:.,?§_ dois tipos de engrenagens cônicas, um.dos.qua.~ é Q~". As engrenagens côn icas zerol têm dentes curvos com ângulo de espiral nulo na metade da largura do denteado, COmomostra a Fig, 6.8 e têm o mesmo empuxo e a mesma a~ão de dentes que as engrenage!!s cônic.as de dentes retos. Podem ser usadas nas mesmas montagens. A vantagem da,,_engrenagem zeTQl sohre-JLro~e dentes retos é que !l~Il.QÇJ'ficie de seus den.t_e~,E0de ser retificada. A engrenagem zerolJ~ms..~to Qa;~L- localizado, isto é, o contato só se realiza sobre a parte central do dente em lugar
'fí~~
~4~~
(,)
. 69 (a) Engrenagens Flg.. zero Imostrando
. I b) Engrenagens do contato l~,lu,do. localIzamostran '1mcas do. (Cortesia de Gleason W or.ks) o o contatocomflex
C(
conicas
e inteiro, enquanto ~ônica de..dentes retos pode ou não ter contato 1 0 o de ndend erador u . Os modernos 1, ~ geradores de en ena ens cônicas de de ntes retos produzem dente com contajo \t1f-í\}y\~ localizado, curva o-os levemente ao lonl:o a õcomnrimento.JkJJlQdo que contato -\J L ó -f ~ se dá próximo ao meio do dente. Uma engrena~lll~C,SL de dentes retos com <:,~ª~.Ç. .aracterísticas é conhecida como engrenagem "oniJJa. O cQnt~ locali~do ~!; permite.IDJLlil:eiro ajus!e durante a monta§Ul e all:um deslQCIDUento,Aç~ à
°
n
~
deflexào a , o b caria sem concentrar a {Qrçanas extrernidadiôS dos deut",. A Fig. 6.9 mostra fotografias de engrenagens cônicas zerol e coniflex, com contato localizado .
••efstfi"L
.
cc> fO pf ,(t'8
0\0 de"
I~ --·--
6.6 Engrenagens Cônicas Espirais. O segundo tipo é o da engrenagem cônica li a seci2., espiral, que tem dentes curvados obliqua~ente. 1 Fig. 6.100 mostra m de U1!l.1'llrde dentes em contatQJ: a Fig. 6.lOb mostra a espiral do dente de uma engrenagem. Os dentes têm um ângulo de espiral tal que o ~~2.0 do dente (fig. 6.10b) seja maior do que o passo frontal, resultando um contato contínuo na linha lUimitiva no planº dos eixos das engrenªge~. Isto possibilita obter Ql2e ra,ão suav'U'Qm um menOr númerQ de ºentes no pinhão do que com eD.&renagenscôni~~ de dentes Q ~ r~l, que l!!o_!ªm contato contínuo na linha primitiva. Em engrenagens i). (0-~ - cônicas espirais o contato entre os dentes iniCIa-se em uma extremidade do de.nte e V-\~tt \ progride obliquamente através da fac e. Isto contrasta com a ação dos dentes de ~ engrenagens cônicas de dentes retos ou zerol, onde o contato se dá de uma vez através de toda a largura da face. Assim, por estas razões, aseJ}grenagens cônicas ~\'~~
-.. -
._,
espirais t~m a窺J!1ais sua ve do q\J~.
6.7 Engrenagens Hipóides. Outrora __~.s engren~~Qs_çºniç~~1?pirais eram usa®s-e..~lYSivªmente comº~gr~nagens motoras das_~rvores trazeiras ÀOsautomóv~ (coroa e pinhão). Em 1925, a Gleason irur.o_duziua engrenagem hipóidr, que ~l,lbstituiu a cônicª~.ill.irflLI!esta aplicacão. As engrenagens hipóides tê.Ul...a1larência semelhante às cônicas.~_s1'.iI.ª-is, com exceção dot
-,
\
para relações de reducão maiores. As engrenagens hipóides ta.tn_~m_"'p05!~ ser reti fic
A formadedossaliências dentes para engrenagens cônicas espirais e hipóides diferentes excetocônicas quandozerol, ambas as engrenagens têm o é o sistema mesmo número de dentes. Eoram desenvolvidas.normas semelhantes às das engrenagens.纺ícas de dentes ret9s pam ..estes sistemas e~contra~s no Desig'.!..M an ua l da Gleason par_a,_~.!lgr~.n,!g~p:~_çônicase.hipóides.
~e sobre um cilindro base for rolado um plano, umaJi!!!gu;!este plano, paralela ao eixo d2.SilinQ-t0, gerará a superfície d~-Y.m..~.nlç.de~agem cilíndrica de d~~Letoa.eyolventais. ~ha geraçtoraJofinçJinada em relaç~.()ao eixo, será gera~a~\ superfície de um dente be]jeojdal. Estas duas situações são mostradas nas Figs.6J19.-U, respectivamente. As engrenagens helicoidais são usada..s..12.ü.ú!...ÇQnectar eixos p
ladas.ell1 um plano
DrtogQoal à
gt:.ratrÍl..12rimitiv'l.do dente e o diametral pitch e o
Capo61 ENGRENAGENS CÓNICAS, HELICOIDAIS
E-)ARAFUSOS
SEM-FIM
~P
ângulo de pressão são ~s naquele plano. Como a ação de corte de uma fresa oc orre no plano ortogonal, é possível usar a mesma ferramenta para cortar engrenagens helicoidais e cilíndricas de dentes retos de mesmo passo: em uma engrenagem cilíndrica~ .1'lano ortogot e o de ro tação são idênticos.
l~.
a w tiJ
i t
')
lj+-Uf~
O ~ t~)
- r I o - 'A v
:
X
t\Q V \ V
J t ~hs';,
Fig. 6.14 Engrenagens cilíndricas helicoidais (a) para eixos paralelos e (b) par a eixos esconsos ou reversos. (Cortesia de D. O. lames Gear Manufacturing Company.)
A_Fig. 6.15 mostra o esboçº de uma engrenagem helicoidal com o pas.s.o frontal lIledido no ..Qlano ortogonal e no planod.~JotaS'ão. Da Fig. 6.15: P ",
ondep :=.Jiiametral pitch transversal).
=
Pt
cos f3
=
n cos P
f3
pitcb no plano de rotação (também conhecido como diametral
Fig. 6.15 p," = passo frontal ortogonal. P, = passo ortogonal no plano da rotação. hélice.
fJ
= ângulo de
Quando uma engrenagem helicoidal é cortada por uma fresa, o passo frontal ortogonal P , , , da Fig. 6.15 torna-se igual ao passo frontal da ferramenta. Por isso e pelo fato de que p, = n/p pode-se escrever a seguinte relação: n
PIII=p-
"
onde P " T diametral pitch normal e é igual ao dia metral pitch da fresa. Substituindorta Eq. 6.8
Como ~\i'-J. ~'l
'rf-,\
r 'lJ . A ,
~
~ "e M l '
P
=
z/d,
então,
O a~h.~wk Ml\q~)j~1»A 'w,b lh' \Mt ~
L w fU
66:'"
l. ~ ~
.J
Jt
~Ilt
cs
d = P" O
~ f3
. \ rI i
'AiM""~
'ftU,
1\
( J ., . .
'
(6.10) Y J/JI v
à t .t ~
M'fIJr'V"
~mbofa nãt"haja intenção de entrar em detalhesconcern ntes forças que agem em uma engrenagem helicoidal, é necessário considerá-Ias ao se determinar a relação entre o ângulo de pressão c x no plano de e o ângulo<:l.e pressão ortogonal IX " e o ângulo de. hélice f 3 . ---Dá Fig. 6.í6, que mostra estas forças,
- f Q lª ç ª º -
F
tg tg
IX
IX "
= F , (plano =
OFD
= -'-
F
cos f 3
OABH)
(plano (plano
ODC)
OADG)
Fn Ft Fa Fg
OABH OADG = ODC
tg
lX "
COS
fJ
Força normal Força de transmissão = TO~qUe Força axial Força de separação Plano de rotação Plano tangeneial Plano normal ou ortogonal Ângulo de pressão no plano de rotação Ângulo de pressão no plano normal Ângulo de hélice
É também interessante considerar o efeito do ângulodehélice no número de dentes Q.Y.epodenLser cortados por uma fresaeIll!!!!1_~ engrenagem:li~J(cºi~m
adelgaçamento. Referindo-se à Fig. 4.17 ( engrenagens cilíndricas de dentes retos) pod.e-se desenvolver a equação para o número mínimo de dentes para engrenagens helicoidais cortadas por uma fresa, da seguínte maneira:
(iff?
~
_ k/P
pE
n
-[ iE
sen2IX
k
=
rp "
r
Foi compilada número mínimo de seth adelgaçamento. ângulo da hélice f J
z
=
2P
uma tabela pela AGMA (207.05. junho, 1971) que indica o dentes que podem ser fresados em !lm il engreO'Jgem helicoidal Esses números estão indicados na Tabela 6.1 em função do e do ângulo de pressão ortogonal I X , para dentes normais.
\J r
n
Tabela6.1
C W -v -r
\C - :. 1
Nv~r\
p ( tk tJ -J
( D ~ ): rtl,()Jj( ~ 141 o (engrenagens
Jc~ ~
32
cilíndricas retas) 5
32
17
12
10
31
17
11
16
11
15 20
29 27
10
15
23
26
25 30
25 22 19
35
14
10
14
9
12
8
10
7
40
15
9
6
45
12
7
5
(Cortesia da AGMA). Extraída do Sistema de Padronização Norte-americano - Tooth Proportions for Fine-Pitch Spur and Helical Gears (USAS 86.7-1967), com permissão dos editores. The American Gear Manufacturers Association, 1330 Massachusetts Avenue
AO)
)
N. W. Washington, D. C. 20005.
Se for necessário usar um pinhão menor do que os da Tabela 6.1, ele pode ser cortado sem adelgaçamento afastando-se a ferramenta de man eira semelhante à mostrada para engrenagens cilíndricas de dentes retos, no Capítulo 5. Pode-se deduzir uma equação equivalente à Eq. 5.2, para engrenagens helicoidais. xm = _1_
Pn
o valor de
[k -
2
z sen 1 X 2 cos f 3
J.
xm dado pela Eq. 6.13 é a quantidade de que a fresa terá que ser
afastada a fim de que a linha de cabeça da fresa ou cremalheira passe justamente pelo ponto de interferência do pinhão que está sendo cortado. Embora em sua maioria as fresas sejam projetadas para ter um valor norma1izado do diametral pitch no plano ortogonal, há fresas que o têm no pl ano de rotação. Estas fresas são conhecidas como fresas transversais e o passo no pla no de rotação é conhecido como diametral pitch transversal. Se a engrenagem deve ser cortada pelo método de usina~m Fello~ (ferramenta pinhão), as dimensões são consid(:!:l!das no plano de rotação e o dianu:.tral p-itch e o ângulo de pressão tçITI.~~!ores..Eormalizados nesse plano .. Quando uma engrenagem helicoidal 1 cortada...por uma ferramenta pinhão, o passo frQ~1 Pr da Fig. 6.15 toma-se igual ao passo frontal da ferramenta, de modo que yale m jlS s"ÇguintesrelaCÕes.;
na
= / ~
/P
z
\ / . r . J
ti /)
Z
P=([
No método Fellow~ não pode ser usada a mesma ferramenta para cortar engrenagens cilíndricas de...4entes retos e helicoidais. Os.aspectos discutidos..aplicam-se a engrenagens helicoidais paralelas e eSCQD:m§. Os dois tipos serão agor,! considerados separadamente •.. 6.9 Engrenagens Helicoidais Paralelas. Para as engrenagens helicoidajs eugre!lªrem-lle adequadamente, as seguintes condições devem ser satisfeitas: 1. Ângulos de hélice iguais 2. Passos iguais 3. Hélices opostas, isto é, uma engrenagem com hélice à esquerda e outra com com hélice à direita.
pode também ser usada para engrenagens o diametral pitch no plano de rotação.
helicoidais
paralelas
desde que p seja
Em uma eng renagem-!lelicoidal parale!~._aJilrgura do demeªQo é feita suficient~~~~le..grande tal q~~"para um dado ângulq_de hélice /3, oavªnço-4SL.a.~eja J:!laiQLg.o..Que o pa.ss<>frontal, como ilustXl!ª Fig 6.J 7. Isto. P9ssibilitat á cpnlato contíº.\!Q .•Il,Q plano axial quando a engrenagem girar. Esta relação (avanço do dente para passo frontal) pode ser considerada como uma razão frontal de transmissão. Na Fig. 6.17, pode-se observar que para haver avanço da face ig ual ao passo frontal, a largua do denteado seria igual a p/tg 3/ . Para estabelecer uma margem de segurança, a AGMA recomenda que esta largura do denteado seja aumentada de, pelo menos, 15 % , do que res)!lliL.~.seglli!!te eQuação: 1,15p b > ---' tg / 3
Além da razão frontal de transmissão resultante engrenagens helicoidais paralelas também têm uma no plano de rotação como as engrenagens cilíndricas transmissão total será ent ão a soma destes dois valores nagens cilíndricas de dentes retos.
da inclinação dos dentes, as razão frontal de transmissão de dentes retos. A razão de e é maior do que o das engre-
Engrenagens helicoidais paralelas têm co nta19 em linha, de modo semelhante à,s cilíndricas retas. Entretanto, nestas últimas, a linha de contato é paralela ao eixo, enquanto que nas primeiras corre diagonalmente através da face do dente. As (A..-o6-ô\"Y_engrenagens helicoidai~L Qaralelas têm açãO.mais suave e, portanto, apresent~m I. 1 menos ruído e vibração d(L.~cilíndricas de dentes re tos..e devem.s.er preferidas ~, , fI't> para trabalho em alta velocidade. A razão para a ação mais suave é que ~tes »II.q~ - éntramem contato gradualmente, iniciando em uma extremidade do dente e progre~ dindo pela superfície, enquanto que nas cilíndricas de dentes retos o contato se dá \ simultaneamente sobre toda a largura do denteado. A desvantagem das engrenagens ~A\~M. h~licoidais paralelas está no esforço axial Produzido pela hélice dQs dent!G§. Se
este esforço axial for tào grande que nào possa ser convenientemente suportado pelos mancais, pode-se contrabalançá-Io usando duas engrenagens helicoidais de hélices opo stas ou uma ellgrellagell espillha de peixe que é na verdade uma helicoidal dupla cortada em um só d isco. A Fig. 6.18 mostra a fotografia de uma engrenagem espinha de peixe.
Como um exemplo de engrenagens helicoidais paralelas, considere que a fim de reduzir o ruído em um a caixa de engrenagens, deve-se substituir engrenagens cilíndricas de dentes retos, das normais, 20°, de angulares 30 e 80 dentes, helicoidais. as Amesmas. distância entre eixos e a relação velocidades devemporpermanecer Determine o ângulo de hélice, os diâmetros externos e a largura do denteado das novas engrenagens. Suponha que as engrenagens helicoidais sejam cortadas com uma fresa de dentes normais, 20°, diametral pitch 16. Dos dados das engrenagens cilíndricas de dentes retos,
30 + 80 2 x 16 = 3,4375 pol
Z\ + ou p= ----
Z2
2a
Observações
P
Z2
80
16
77,33 74,67
15,47 14,93 14,40
72
cos
f 3 =- - - . L = Pn
Engrenagens originais Z2 número não inteiro Z2 número não inteiro Satisfatório para uso
14,40 = O 9000 16
'
Há outras combinações de número de dentes e ângulo de hélice que satisfariam às condições, mas a solução encontrada deve ser a escolhida porque tem o menOr ângulo de hélice. Os diâmetros de ca beça das duas engrenagens são da, = di
+ 2ha
Z =-:-
+2
p ::
( k )
= 2714,4
+( 21) 16
= 2,000 pol
d a2 = d 2
+ 2h
a
Z =--:-+2
( kp) :
72
= 14,4
(1)
+ 2 16
= 5,125 pol
Observe que a saliência foi calculada usando o diametral pitch da fresa A largura do denteado é
(P n).
b > 1,15p,
tg f 3 7t
7t
- = 144 = 0,2185 pol. p
b
,
> (1,15) (0,2185) > 0,5189 pol tg 25,84°
b
9 = 16 pol.
6.10 Engrenagens Helicoidais Esconsas. Para engrenagens helicoidais esconsa..s.acoplarem-se adequadamente M sÓ um requisito, iMOé, elas d.~vemter o mesmo diametral oitch ortogonal. Seus passos no plano de rotação não são necessariamente iguais, sendo usualmentediferentes. Os ângulos de hélice podem ou não ser iguais e as engrenagens podern..~. hélice de mesm o sentido ou não. A relação de velocidades é
Se ~ é o ângulo entre dois eixos conectados por engrenag:ens helicoidais esconsas e P I e p, são os ângulos~as hélices das epg:renag:ens,
Os sinais menos e mais aplicam-se, respectivamente. quando as engrenagens têm hélices opostas não. A Eg. 6.19 é ilustrada na Fig. 6.19 que mostra pa~s de eng:renalWns helicoidais esconsas antes e depoi~do acop1ame1U.0' A ação das en~nagens h~liçQWais eseoos as.t bastante diferente da a~ãQ.Eas tJ,~J helicoidais paralel~. ~uelas têm contato pontual. Além disso, há ~o de.9eslizamento ao longo do dents:, o q\fe não acontece nas paralelas. Por estes motivos, { to - r c 1 0 O )]
as engrenagens helicoidais esconsas são usadas somente para transmitir "pequenas potências. Uma aplicação destas engrenagens é o conjunto que aciona o distri- .,~~ buidor de um motor automotivo. Usando o princípio da velocidade de deslizamento desenvolvido no Capítulo I, é possível determinar as hélices dos dentes através das faces de duas engrenagens helicoidais esconsas desde que seja conhecida a velocidade periférica do ponto primitivo de cada engrenagem. A Fig. 6.20 mostra esta construção, onde VI e V2
t
são conhecidos e pode-se determinar as hélices dos dentes e os ângulos de hélice para estas velocidades e o ângulo entre eixos. As duas hélices em contato no ponto P são paralelas à linha M) M2• Este contato ocorre na parte inferior da engrenagem I e na parte superior da engrenagem 2.
Engrenagem 1 Hélice esquerda ã
~
li.
\
~-
Engrenagem 1 Hélice
à esquerda
Engrenagem 2 Hélice ã direita
M1
Fig. 6.20
Para ilustração, considere um par de engrenagens helicoidais esconsas conecI . tando dois eixos com um ângulo de 60" e com uma relação de velocidades de 15 : O pinhão tem um diametral pitch ortogonal 6, um diâmetro primitivo de 7,75 pol e um ângulo de hélice de 35°. Determine o ângulo de hélice e o diâmetro primitivo da engrenagem e o número de dentes em ambos, pinhão e engrenagem. Para determinar o ângulo da hélice da engrenagem, suponha que ambas têm hélices de mesmo sentido. Então,
(7,75) (0,8192) (1,5) (0,9063)
ZI
=p"d l
ZI
=38
(O Z2 =zl..::::.L
cos /3 .
( 02
Z2
=(6)
(7,75) (cos 35°)
=(38)(1,5)
=57
6.11 Parafuso Sem-Fim. Se um dente 4~euma engrenagem helicoidal faz uma r~volução completa no cili~~rimitivo, a engrenageIll_!~_s_l!lt~fl!e __é conhecida como parafuso sem-fim. A engrenagem que se acopla com o parafuso sem-fim é denominada coroa do sem-fim; entretanto, a coroa não é uma enlUenagem heli-
coidal. A coroa e parafuso sem-fim são usados para cone~ar _eixosnão paralelos e que não se interceptam, e.9....uee_stão,usualmente, em ângulos ret~s; ver Fig. 6.21.
Fig.6.21 (o) Par coroa e sem fim. (Cortesia de Foote Brothers Gear Par coroa e sem fim g1oboidal.
& Manufacturing
Corp.)
(b)
A redução é geralmente muito grande. A relação entre uma engrenagem cilíndrica de dentes retos ou helicoidal e sua fresa, durante o corte, é semelhante à relação entre um parafuso sem-fim e coroa. Os par afusos sem-fim, que são verdadeiras engrenagens helicoidais evolventais, podem ser usados para acionar engrenagens cilíndricas de dentes retos ou helicoidais, mas obviamente resulta contato pontual, o que é ins atisfatório do ponto de vista de usk a. É possível, entretanto, assegurar contato em linha acoplando o sem-fim com uma coroa cortada com uma fresa que tenha o mesmo diâmetro e a mesma forma de dente que o sem-fim. Se isto for feito, o sem-fim e a coroa serão conjugados, mas o sem-fim não terá dentes evolventais. A Fig. 6.22a mostra um esb oço de um sem-fim onde 1 é o ângulo de avanço, f J o ângulo de hélice, P r o passo axial e d o diâmet!.9"'primitivo. O passo axial do sem-fim é a distância entre pontos correspondentes de fios de rosca adjacentes medida paralelamente ao eixo.
l i ,
L B ~,'/W J fr·' L
.d ,
I -JP x~
Considerando as características de um sem-fim, o avanço é de importância primordial e pode ser definido como a distância axial que um ponto na hélice do sem-fim se move em uma revolução. A relação entre 0l~vanço e o passo axial é
~ rÓ " " " ~
(}=YI
fJ \ ~
(6.20)
fii-"~'(\)';) d on d e Z.I e. od n umerod e entra as o u\-.> Iletes n o Cl 'I'd10 ro ",pnmltlvo of' sem- 1m, Um sem-fim pode ser obtido com número de entradas de um a dez, Se desenrolarmos uma volta completa de um filete de um se m-fim resulta um triângulo, como mostra a Fig, 6.22b, Da figura pode-se ver que , tgA.~~
I nd!
onde dI é o diâmetro do sem-fim, O diâmetro de uma cOroa pode ser calculado de
~
=
W2
Z2
=
d 2 COS di cos
ZI
P2 P1
para eixos em ângulo reto. Para um sem -fim e coroa com eixos em ângulo reto acoplarem-se adequadamente, devem ser satisfeitas as seguintes condições: 1. ângulo de avanço do sem- fim 2. passo axial do sem-fim
ângulo de hélice da coroa
=
passo frontal da coroa.
=
Uma transmissão por sem-fim e coroa pod~ou não ser reversível, dependenQ.o ~a aplic~ão. Quando usada para guincho, é necessário que a unidade seja autotravante e acionada só pelo sem-fim. Entretanto, se a transmissão for usada para engenhos automotivos, é necessário que seja reversível e que a coroa seja capaz de acionar o sem-fim. Se o ângulo de a~anco do sem -fim..for maior do que o ângulo de atrito das superfícies em contato, a tri!nsmi~são será I.eYersíyel. O coeficiente de atrito J 1 e o ângulo de atr ito < / > são relacionados pela equação / l = tg < / > . \Jm sem-fim e coroa são considerados autotravantesquando o ângulo de avanço do sem-fim é ni~nordõ-'Qlle:ll r~--'0 .
• • • • •
-_ o
Como um exemplo de parafuso sem-fim, consideremos um sem -fim de três entradas comandando uma coroa de 60 dentes; o ângulo dos eixos é 90" como mostra a Fig. 6.23. O passo frontal da coroa é 1 1/4 pol, e o diâmetro primitivo do sem-fim é 3,80 pol. Determine o ângulo de avanço do sem-fim, o ângulo de hélice da coro a e a distância entre eixos.
Parafuso sem·fim 1
Fig. 6.23
,
I
tg/_ = -d
=
71: I
o ângulo
de hélice da coroa
3,75 x 3,80
71:
ângulo de avanço do sem-fim.
=
Logo
=
d 2
P Z2
= (1,25) ( 6 < 2 L = 23,9 pol
71:
71:
dI + d 2
3,8 + 23,9
2 -
a
=
2 -
=
Um par de engrenagens cânicas de dentes retos tem uma relação de velocidade W1/W2 e as linhas de centro de seus eixos se interceptam segundo um ângulo .t. Se considerarmos as dis tâncias x e y a partir do ponto de in terseção, ao longo dos eixos. prove que a diagonal de um paralelogramo com lados x e y será a geratriz comu m dos cones primitivos das engrenagens. 6.2 Uma coroa cânica de dentes retos tipo Gleason, com 24 dentes, diametral 6.1
pitch 5, é acionada um pinhão 16 dentes. Calcule diâmetro e o eângulo primitivos do pinhão,pora saliência e a de profundidade, a largurao do denteado o diâmetro primitivo da engrenagem. Faça um corte axial, em ve rdadeira grandeza, do pinhão e engrenagem acoplados, usando dimensões adequadas para os cubos e nervuras como mostra6.7a. a Fig. 6.3 Uma coroa cânica de dentes retos tipo Gleason, com 48 dentes, diametral pitch 12, é impelida por um pinhão de 24 dentes. (a) calcule o ângulo primitivo do pinhão e o ângulo entre eixos. (b) faç a um esboço (em escala) dos cones primitivos das duas engrenagens acopladas. Mostre o cone complementar de cada engrenagem e assinale-os, bem como os cones primitivos. 6.4 Um par de engrenagens cânicas com eixos ortogonais, iguais, tipo Gleason, tem 20 dentes ea um diametral pitch 4.o Calcule o diâmetro primitivo, a saliência ea profundidade, largura do denteado, comprimento da geratriz, o ângulo de cabeça, o ângulo de pé e o diâmetro de cabeça. Faça um esboço do corte axial, em verdadeira grandeza, das engrenagens acopladas, usando proporções razoáveis para o cubo e a nervuracomo mostra a Fig. 6.7a. Faça o desenho com os valores calculados.
6.5 Um pinhão cânico de dentes retos, tipo Gleason, com 21 dentes, diametral pitch 6, impele uma engrenagem de 27 dentes. O ângulo entre eixos é 90". Calcule o ângulo primitivo, a saliência e a profundidade e a largura do denteado para cada engrenagem. Faça um esboço do cor te axial, em ver dadeira grandeza, das engrenagens acopladas usando dimensões adequadas para o cubo e a nervura como mostra a Fig. 6.7a. Um pinhão cânico de dentes tipo OGleason, com 14 dentes, diametral pitch6.6 4, impele uma engrenagem de 20retos, dentes. ângulo entre eixos é 90°. Calcule a saliência e a profundidade e espessura do dente para cada engrenagem, e ainda os raios primitivos e de base das engrenagens cilíndricas retas equivalentes. Faça um esboço das engrenagens equivalentes, em verdadeira grandeza, mostrando dois dentes em contato como na Fig. 6.7b. 6.7 Um pinhão cânico de dentes retos, tipo Gleason, com 16 dentes, diametral pitch 5, aciona uma engrenagem de 24 dentes. O ângulo entre eixos é 45°. Depois de fazer os cálculos necessários, esboce um corte axial, em verdadeira grandeza, do pinhão e da engrenagem acoplados usando proporções razoáveis para o cubo e as ne rvuras como mostra a Fig. 6.7a. 6.8 Um par de engrenagens cânicas de dentes retos, tipo Gleason, acopla-se com ângulo entre eixos de 75°. O diametral pitch é 10 e os números de dentes do pinhão e da engrenagem sào, respectivamente, 30 e 40. (a) calcule os ângulos primitivos e as saliências e as profundidades do pinhão e da engrenagem. (b) faça um esb oço, em verdadeira grandeza, dos cones primitivos e complementares das duas engrenagens em contato. Assinale os cones primitivos, os cones complementares e os ângulos primitivos de ambas engrenagens. (c) destaque, no esboço, a saliência e a profundidade do pinhão, assinalando-os claramente. 6.9 Prove, com a ajuda de um esboço adequado, que em uma engrenagem cânica de dentes retos, tipo Gleason, o ângulo de cabeça do pinhão é igual ao ângulo de pé da engrenagem e que Ja =J + 8a• 6.10 Uma engrenagem helicoidal de 14 dentes deve ser cortada por uma fresa de dentes normais, ângulo de pressão 20°, diametral pitch 10. Calcule: (a) o ângulo mínimo de hélice que esta engrenagem deve ter a fim de ser cortada, com montagem padronizada, sem adelgaçamento. (b) quanto terá que ser afastada a fresa para evitar o adelgaçamento se o ângulo de hélice for 20°. 6.11 Um pinhão helicoidal de 12 dentes deve ser cortado com uma fresa de dentes normais, ângulo de pressão 20°, diametral pitch 8. Se o ângulo de hélice for 20°, calcule quanto a fresa deve ser afastada para evitar o adelgaçamento. 6.12 Duas engrenagens cilíndricas de dentes retos, iguais, com 48 den tes, largura do denteado de 1 pol e diametral pitch 6, acoplam-se no acionamento de uma máquina de fadiga. Calcule o ângulo de hélice de um par de engrenagens helicoidais para substituir as engrenagens cilíndricas se a largura do denteado, distância entre centros e relação de velocidades devem permanecer as mesmas. Use as seguintes ferramentas: (a) pinhão com diametral pitch 6, (b) fresa com diametral pitch 16.
cilíndricas de dentes retos norm alizadas foram com 6.13 uma Duas fresa engrenagens de dentes normais, ângulo de pressão 20°, diametral pitch cortadas 10, para
terem uma relação de velocidades de 3,5 : 1 e distância entre eixos de 6,75 poI. Deve-se usinar engrenagens helicoidais com a mesma ferramenta para substituirem as cilíndricas, mantendo-se a mesma distância entre eixos e mesma relação de velocidades. Determine o ângulo de hélice, números de dentes e largura do denteado das novas engrenagens, mantendo o ângulo de hélice em um valor mínimo. 6.14 Duas engrenagens cilíndricas de dentes retos devem ser substituídas por
engrenagens helicoidais. As de dentes foram cortadas por uma fresa de dentes normais, ângulo de pressão 20°, diametral pitch 8, têm relação de velocidades de 1,75 : 1 e a distância entre eixos é de 5,5 poI. As engrenagens helicoidais devem ser cortadas com a mesma fresa e ma nter a mesma distância entre eixos. O ângulo de hélice deve ficar entre 15°e 20° e a relação de velocidades entre 1,70 e 1,75. Determine os nú meros de dentes, ângulo da hélice e relação de velocidades. 6.15 Em uma caixa de engrenagens, duas engrenagens cilíndricas de dentes
retos padrQnizadas (diametral pitch 16 e ângulo de pressão 20°, dentes normais) com 36 e 100 dentes são acopladas à distância entre eixos padronizada. Decide-se substituÍ-Ias por engrenagens helicoidais com ângulo de hélice de 22° e os mesmos números de dentes. Determine a variação necessária na distância entre eixos se as engrenagens são cortadas (a) com uma fresa de dentes normais, ângulo de pressão 20°, diametral picth 16, (b) co m uma ferramenta pinhão (Fellows) de 20°, diametral picth 16. 6.16 Um par de engrenagens helicoidais para eixos paralelos deve ser cortado
com uma fresa, de dentes normais, ângulo de pr essão 200, diametral pitch 8. A relação de velocidades angulares deve aproximar-se tanto quanto possível de 2 : 1. Calcule o passo frontal e o diametral pitch nô plano de rotação. Determine os números de dentes, diâmetros primitivos e distância entre eixos para satisfazerem às condições acima. 6.17 Um pinhão cilíndrico de dentes retos com 20 dentes, diametral pitch 10,
aciona duas engrenagens, uma com 36 e outra com 48 dentes. Deseja-se substituir as três engrenagens por engrenagens helicoidais e mudar a relação de velocidades entre os eixos das eng renagens de 20 e de 48 dentes para 2 : 1. A relação de velocidades e a distância de centros entre os eixos das engrenagens de 20 e de 36 dentes devem permanecer as mesmas. Usando uma fresa de dentes rebaixados, ângulo de pressão 200, diametral pitch 16, e mantendo o ângulo de hélice tão pequeno quanto possível, determine o número de dentes, ângulo de hélice e seu sentido, largura do denteado e diâmetro de cabeça para cada engrenagem. Calcule a variação na distância de ce ntros entre os eixos onde originalmente vêm montadas as engrenagens de 20 e 48 dentes. 6.18 Um pinhão cilíndrico de dentes retos, diametral pitch 12, impele duas engrenagens, uma com 36 e a outra com 60 dentes. É necessário substituir as três
engrenagens por helicoidais, mantendo as mesmas relações de velocidades e distância entre eixos. Usando uma fresa de dentes rebaixados, ângulo de pressão 20°, diametral pitch 16 e mantendo o ângulo de hélice tão baixo quanto possível, deter-
mine o número de dentes, ângulo de hélice e se u sentido, largura do denteado e diâmetro de cabeça para cada engrenagem.
6.19 Dois eixos paralelos devem ser conectados por um par de engrenagens
helicoidais (engrenagens I e 2). A relação de velocidades angulares deve ser 1,25: 1 e a distância entre eixos, 5,5 pol. A engrenagem 2 deve impelir uma engrenagem helicoidal 3 cujo eixo faz um ângulo reto com o da 2. A relação de velocidades angulares entre as engrenagens 2 e 3 deve ser 2 : 1. Usando uma fresa, dentes normais, ângulo de pressão 20", diametral pitch 9, determine o número de dentes, ângulo de hélice e diametral pitch de cada engrenagem e a distância entre eixos a23. 6.20 Dois eixos paralelos devem ser conectados por um par de engrenagens helicoidais (engrenagens 1 e 2). A relação de velocidades angulares deve ser 1,75: 1 e a distância entre eixos 2,75 pol. A engrenagem 2 deve impelir uma terceira engrenagem helicoidal (engrenagem 3) com uma relação de velocidades angulares 2 : 1. Três fresas estão disponíveis para cortar as engrenagens: fresa A (diametral pitch 7, ângulo de pressão 20", dentes normais), fresa B (diametral pitch 9, ângulo de pressão 20", dentes normais) e fresa C (diametral pitch 12, ângulo de pressão 20°, dentes normais). (a) escolha a fresa que resulte no menor ângulo de hélice {3. ,
a23
(b) queum fresa permitirá a menormenor distância entre eixos entre os eixos 2 e 3, mantendo ângulo de hélice do que 35°? 6.21 A fórmula para a distância entre eixos de duas engrenagens cilíndricas de dentes retos ou helicoidais é dada por a = (Zl + Z2) 2p, onde a depende dos números de dentes das engrenagens z 1 e Z2 e do diametral pitch P. Mostre que a23 independe de p para três engrenagens (dentes retos, paralelas e helicoidais) acopladas cujas distância entre eixos a12 e relações de velocidades angulares W1/W2 e W2/W3 são conhecidas. 6.22 Du as engrenagens cilíndricas de dentes retos, ângulo de pressão 20°, dentes normais, diametral pitch 18, com 36 e 90 dentes devem ser substituídas por engrenagens helicoidais. A distância entre eixos e a relação de velocidades angulares devem permanecer as mesmas. Se a largura das engrenagens não pode exceder 1/2 pol devido às limitações de espaço, determine um par de engrenagens helicoidais que mantenha o ângulo de hélice tão pequeno quanto possível. Use uma fresa de dentes normais, ângulo de pressão 20°, diametral pitch 18 e determine os números de dentes, ângulo de hélice, largura do denteado e diâmetros de cabeça. 6.23 Du as engrenagens cilíndricas de dentes retos, ângulo de pressão 20°, diametral pitch 18, com 32 e 64 dentes normais devem ser substituídas por engrenagens helicoidais. A distância entre eixos e a relação de velocidades angulares devem permanecer as mesmas. Se a largura das engrenagens não pode !.1ltrapassar 7/16 pol devido a limitações de espaço, determine qual das seguintes fresas deve ser usada, mantendo o ângulo de hélice tã o pequeno quanto possível: fresa A (diametral pitch 18, ângulo de pressão 20°, dentes normais) ou fresa B (diametral pitch 20, ângulo de pressão 20°, dentes normais). Determine ainda os números de dentes, ângulo de hélice, largura do denteado e diâmetros de cabeça. 6.24 Dois eixos paralelos devem ser conectados por um par de engrenagens helicoidais (engrenagens 1 e 2). A relação de velocidades angulares deve ser 1 1/3 :1 e a distância entre eixos 3,50 pol. Considerando que há disponibilidade de fre sas
com diametral pitch de 6 a li(inclusive), tabule os números de dentes, ângulo de hélice e largura do denteado para as várias combinações (de Zl e Z2) que satisfaçam
ús condições dadas. Qual é o melhor conjunto para este acionamento'? Por quê'? Faça o menor número de dentes t 5 para a menor engrenagem quando p" =6. 6.25 Dois eixos reversos, com ângu lo de 90", devem ser conectados por engrenagens helicoidais. A relação das velocidades angulares deve ser 1 1,5 : 1 e a distância entre eixos 5,00 pol. Supondo que as engrenagens tenham ângulos de hélice iguais, calcule o diametral pitch de uma ferramenta para gerar 20 dentes no pinhão se ela for (a) uma fresa e (b) uma ferramenta pinhão (Fellows). 6.26 As engrenagens helicoidais abaixo, cortadas com uma fresa de dentes normais, ângulo de pressão 20", diametral pitch 12, são acopladas sem jogo primitivo. Engrenagem 1 Engrenagem 2 -
36 dentes, hélice à direita, ângulo de hélice 30° 72 dentes, hélice à esquerda, ângulo de hélice 40"
Determine o ângulo dos eixos, a relação das velocidades angulares e a distância entre eixos. 6.27 Dois eixos reversos, com ângulo de 90" são conectados por engrenagens helicoidais (engrenagens 1 e 2), cortadas com fresa de dentes normais, ângulo de pressão 20", diametral pitch 12. Ambas têm hélice à direita e a relação de velocidades angulares é 15 : 1. d 2 =5,196 pol e P 1 =60". Uma modificação de projeto requer uma redução do diâmetro de cabeça da engrenagem 1 de 0,25 po l para propiciar folga no fundo do dente para um novo componente. Supondo que a mesma fresa deva ser usada para cortar qualquer nova engrenagem, mostre que o diâmetro de cabeça da engrenagem 1 pode ser reduzido sem modificar a relação de velocidades, o ângulo entre eixos e os números de dentes das engrenagens Z1 e Z2' O diâmetro de cabeça da engrenagem 2 e a distância entre eixos podem ser alterados se necessário. Na análise, calcule e compare os seguintes dados para as engrenagens originais e novas: a12, d 1, d 2, zl' Z2' Pl' P 2• 6.28 Uma engrenagem helicoidal com diametral pitch normal 6 deve impelir uma engrenagem cilíndrica de dentes retos. A relação das velocidades angulares deve ser 2 : 1 e o ângulo entre eixos 45°. Determine os diâmetros primitivos para as duas eng renagens e o ângulo de hélice para a engrenagem helicoidal. Faça um esboço, em verdadeira grandeza, das duas engrenagens (cilindros primitivos) em contato, semelhante Fig. 6.2 0, com o pinhão acima da engrenagem: largura das engrenagens deveao serda1 pol. Mostre as geratrizes dos dentes em contato eatambém uma geratriz no cone de cabeça do pinhão. Assinale e dimensione os ângulos de hélice e entre eixos. 6.29 Dois eixos reversos devem ser conectados por engrenagens helicoidais. A relação das velocidades angulares deve ser 1,5 : 1 e a distância entre centros, de 8,50 pol. Se está disponível uma engrenagem de um trabalho anterior, com 30 dentes, ângulo de hélice 30" e diametral pitch normal 5, calcule o ângulo entre eixos que deve ser usado. Ambas as engrenagens podem ter o mesmo sentido de hé lice e a
de 306.30 dentes o pinhão. Doispode eixosserreversos são conectados por engrenagens helicoidais. A relação de velocidades é 1,8 : 1 e o ângulo entre eixos 45°. Se d 1 =2,31 pol e d2 =
3,73 pol, calcule os ângulos de hélice sabendo que ambas as engrenagens têm o mesmo sentido de hélice. 6.31 Dois eixos reversos, com ângulo de 90°, devem ser conectados por engrenagens helicoidais. A relação de velocidades angulares deve ser 1,5 : 1 e a distância entre centros, de 5;00 pol. Selecione um par de engrenagens cortados por ferramenta pinhão (Fellows.) =
6.32 Dois eixos reversos devem ser conectados por engrenagens helicoidais. A relação de velocidades é 3: 1, o ângulo entre eixos 60 0 e a distância entre centros, 10,00 pol. Se o pinhão tem 35 dentes e um diametral pitch normal 8, calcule os ângulos de hélice e diâmetros primitivos sabendo que as engrenagens têm o mesmo sentido de hélice. 6.33 Um pinhão helicoidal, com diâmetro primitivo de 2 pol, impele uma engrenagem helicoidal de 3,25 pol como mostra a Fig. 6.20, I: =30°. A velocidade do ponto primitivo da engrenagem 1 deve ser representada por um vetor com 2 pol de comprimento e a da engrenagem 2, por um com 3 pol. Usando uma largura do denteado 1 pol, as engrenagens, graficamente a geratriz do dente no cone dedecab eça para de cada engrenagem, determine o ângulo de hélice, o sentido da hélice ea velocidade de deslizamento. 6.34 Uma fresa de dentes normais, ângulo de pressão 14,5°, diametral pitch 8, é usada para cortar uma engrenagem helicoidal. A fresa tem hélice à direita com um ângulo de avanço de 2°40'. um comprimento de 3.00 pol e um diâmetro externo de 3.00 pol. Faça um esboço. em verdadeira grandeza. da fresa cortando uma engrenagem helicoidal. hélice ú direita. 47 dentes e ângulo de hélice de 20°. O disco de engrenagem tem 1.5pol de la rgura. Mostre o cilindro primitivo da fresa sobre odentes disco dada engrenagem. engrenagem, Mostre com a hélice da ferramenta em po sição os três dentes da engrenagem e 1,5 correta voltas docom filete da fresa: posicione estes elementos através do passo frontal normal. Assinale os eixos da fresa e do dis co da engrenagem, o ângulo de avanço da fresa, o ângulo de hélice da engrenagem e a direção de rotação da ferramenta e do disco da engrenagem. 6.35 Repita o problema 6.34 para uma engrenagem helicoidal com hélice à esquerda. 6.36 Um parafuso sem-fim de duas entradas, com avanço de 2,00 pol, impele 1 e ângulo primitivos 90°. Seea uma coroaentre com eixos relação de velocidades de 20 entre eixosdodesem-fim distância é 9,00 pol determine os :diâmetros da coroa. 6.37 Um parafuso sem-fim e coroa, com eixos a 90° e distância entre centros de 7,00 pol, devem ter uma relação de velocidades de 18 : 1. Se o passo axial do sem-fim deve ser 1/2 pol, determine o número máximo de dentes no sem-fim e na coroa e seus diâmetros primitivos correspondentes. 6.38 Um parafuso sem-fim e coroa conectam eixos a 90°. Deduza equações para os diâmetros do sem-fim e coroa em termos da distância de centros a, relação de velocidades 0)1/0)1e ângulo de avanço I,.
6.39 Um parafuso sem-fim e coroa com eixos a 9 0 0 e distância entre centros de 6,00 pol devem ter uma relação de velocidades de 20 : 1. Se o passo axial do
sem-fim deve ser 1/2 pol, determine o menor diâmetro para o sem-fim que pode ser usado na transmissão. 6.40 Um parafuso sem-fim com quatro entradas aciona uma coroa de 60 dentes conângulo entre eixos de 90". Se a distância entre centros é 8,00 pol e o ângulo de avanço do sem-fim 20", calcule o passo axial do sem-fim e os diâmetros primitivos das duas engrenagens. 6.41 Um parafuso sem-fim com quatro entradas comanda uma coroa de 48 dentes, ângulo de hélice 20" e diâmetro primitivo 7,64 pol. Se os eixos estão em ângulo reto, calcule o ângulo de avanço e o diâmetro primitivo do sem-fim. 6.42 Um parafuso sem-fim de 6 entradas aciona uma coroa com uma relação de velocidades angulares de 8 : 1 e ângulo entre eixos de 80°. O passo axial do semfim é 1/2 pol e o ângulo de avanço 20°. Calcule os diâmetros primitivos do sem-fim e da coroa e o passo frontal da coroa. 6.43 Um parafuso sem-fim de cinco entradas aciona uma coroa de 33 dentes com um ângulo entre eixos de 90°. A distância entre eixos é 2,75 pol e o ângulo de avanço 20". Calcule os diâmetros primitivos, o avanço e o passo axial do sem-fim. 6.44 Um parafuso sem-fim e uma coroa com eixos a 90" e distância entre centros de 3,10 pol devem ter uma relação de velocidades de 7 : 1. Usando um ângulo de avanço de 20" determine os diâmetros primitivos e os números de dentes para as engrenagens. Adote uma fração simples para o passo axial. 6.45 Um parafuso sem-fim e uma coroa com eixos a 90" e distância entre centros de 3,00 pol devem ter uma relação de velocidades de 30 : 1. Determine um par de engrenagens e especifique os números de dentes, diâmetros primitivos e ângulo de avanço. Adote uma fração simples para o passo axial.
Trens de Engre nagens ••••••
•• • • •• • •
•
Muitas vezes é necessário combinar diversas engrenagens e assim obter o que é conhecido como um tr~rn de_engreJY;lgens-, Dada a velocidade angular de entrada é importante saber, determinar facilmente a velocidade angular de saída e seu sentido de rotação. A relação entre as velocidades 7.1 Introdução a Trens de Engrenagens.
angulares de en trada e saída é conhecida como e é expressa como we/w •.
':f!..l{lçii.2_t le velºçi4a4g~
_aJIg14lares
_AJ·_igJ1.~ll.\lm P!.I!hão comanc!l:l!!c:!o uma engr:~I!ªgem_cilindrica extçma dedentes retos e. uma interna. Em ambos os casos, a relação de velocidades anguTâres é inversamente propor~ional ao número de dentes como indicado. As engrenagens externas giram em sen tidos opostos e a interna no mesmo sentido de se u pinhão. Isto é indicado por um sinal menos na relação de velocidades do primeiro caso e por ~m sinal mais no se gundo. Até aqui não foi necessário~or um sinal algébrico à relação de velocidade de um par de engrenagens. Entretanto, quando se combinam ~ngrenagens para formareID:.JUn_t~JILº~._~Mrenagens, é importante considerar o sinjil porque ele indica o s~do de rotação~_Isto ~J~specialIll~º!~~deiro __ºl! .ª-nálise_~~s __<:!~~~!!..a~ns planetárias. Ocasionalmente é necessário mudar o sen~®_!,otª~ão de uma engrenagem ..se.n:lvariar..suavelocidade angu.h!r. Isto pode ser feito colocando uma engrenagem intermediária entre a motora e a movida. çua:n~mªengrenagem interº._§~ll!iºgA~ __ ~~~(ia-~e_ ~2.~~ão mas a!.~lação de velocidades perm~nece a mesma.
ww,. =~ w, =_~
~=+!!. w. =
w,
Zt
W2
Zt
Pode-se mostrar que a relação de vel ocidades angulares de um trem de engrenagens, onde todas engrenagens têm eixos fixos de rotação, é o produto dos núme ros de dentes de todas as engrenagens movidas dividido pelo produto dos números de dentes das motoras. Esta relação é dada sob forma de equação por - .! ! ! L CO.
COmotora
=
COmovida
Produto dos números de dentes das movidas Produto dos números d~ dentes das motoras
Para ilustrar o uso da Eq. 7.1, considere o trem de en grenagens da Fig. 7.2 onde as engrenagens 2 e 3 são montadas no mesmo eixo. A relação de velocidades é dada por _C O _e_ =_ c o _ 1 = CO.
co4
+
Z_2_X _ Z_4
Z1
X
Z3
o sinal
positivo é determinado por observação. Pode-se mostrar facilmente que a equação anterior é correta ~=-~e~=-~ Z1 co2
co4
Z3
W3
W2
~ W 4
i
22
2 1
X
24 2 3
Quando duas engrenagens estão fixas no mesmo eiXO, como as engrenagens 2 e 3 n a Fig. 7.2, formam uma engrenagem composta. Embora a relação de velocidades angulares seja usada para cálculos envolvendo um par de engrenagens, é mais conveniente, com um trem de engrenagens,
usar o inverso desta relação.
A razão é que a velocidade angular da motora é obtida
velocidade da do última motor eengrenagem só é necessário multiplicá-Ia por um é fator para encontrar adavelocidade do trem. Este inverso conhecido como o
)\7
hXl"í
~
J j, ) (.th') ~ 1\h)
.
"
Wmoyida COmotora
_ -
=
Produto dos números de dentes das"motdras Produto dos números de dentes das movidas
Em geral, as velocidades diminuem de modo que este valor será menor do que 1,00. Um trem de engrenagens típico está ilu strado no redutor de velocidades triplo da Fig. 7.3. 7.2 Trens de Engrenagens Planetários. A fim de obter uma relação de engrenagens desejada, é frequentemente vantajoso projetar um trem de engrenagens tal que uma das engrenagens tenha movimento planetário. Com este movimento, uma engrenagem não só gira em torno de seu centro, como este gira em torno de um outro. As Figs. 7.4a e b mostram dois trens planetários onde a engrenagem 1 é, às vezes, chamada de solar e a engrenagem 2 de planetária. Na Fig. 7.4a o braço 3 impele a engrenagem 2 em torno da engrenagem 1, que é uma engrenagem externa fixa. Como pode ser observado, a engrenagem 2 gira em to rno de seu centro B
~ enquanto centro gira 1,emum to rno do centro Como agerará engrenagem 2 rola no exterior daeste engrenagem ponto de sua A. superficie uma epiciclóide. A Fig. ".1b mostra o caso em que a engrenagem 1 é uma engrenagem interna. , Neste caso, um ponto na superfície da engrenagem 2 gerará uma hipociclóide. Devido às curvas geradas, o trem de engrenagens planetárias é, às vezes, chamado - de trem de engrenagens epicicloidais. 1"
lh r M r l/fu
i--
y ( / t v u t ib
\\'VI\V~.I\ I
tl,{)ri().
E ixo móvel de rotação da engrenagem 2
É mais difícil determinar a relação de velocidades angulares de um trem planetário do que a de um trem comum devido à rotação dupla da planetária. A relação de velocidades angulares pode ser obtida pelo método do centro instantâneo, ~lo método de fórmula ou pelo método de tabulacão. a método do centro instantâneo será reservado para o Capítulo 10 e os outros dois apresentados a seguir. a método de fórmula será tratado em primeiro lugar. Na Fig. 7.4 pede-se determinar w2!, sendo conhecido W31. Deve-se notar que W21 é definida como a velocidade angular da engrenagem 2 relativa à engrenagem 1 e W31 como a velocidade angular do braço 3 relativa à engrenagem 1.
Como a engrenagem 1 é fixa, isto é o mesmo que as velocidades angulares da engrenagem 2 e do braço 3 relativas ao referencial fixo. Na solução do problema, (J)23/(J)31 desempenha um papel importante. Consideremos que o trem de engrenagens da Fig. 7.4a seja modificado de modo que o braço 3 fique estacionário em lugar da engrenagem 1. O braço 3 torna-se então o referencial fixo e resulta um trem de engrenagens comum. A relação (J)23/(J)13
zdzr Se agora o mecanismo reverte à pode original, ser então isto avaliada como 3- móvel sua condição é, o braço e a engrenagem 1 fixa, a relação (J)23/(J)13ainda será - Zl/Z2' porque Quando um mecanismo é invertido. o movimento re.ll!~jyoentre as peças não é al terado. Pode-se agora obter uma solução para r / J 2 t} em termos das quantidades conhecidas (J)31 e (J)23/(J)13'escrevendo-se uma equação para (J)21 e dividindo por (J)31' como segue:
; 1 _ tI
0v ':S '\ 7
LL
Da comparação das Eqs. 7.3a e b observa-se porque é importante que o sinal algébrico correto de (J)23/(J)13seja substituído na equação 7.3. Consideremos a seguir o caso em que todas as engrenagens, bem como o braço ~ giram. Isto está ilustrado na Fig. 7.5, onde (J)31 e (J)41 são conhecidas e 12ede-se determinar (J)21' Ao resolver este problema (J)24/(J)34é a relação-chave porque é a relação de velocidades das engrenagens referidas ao braço e pode ser calculada facilmente. Pode-se escrever equações para (024 e (1)34e combiná-Ias de modo
que a relação
(024/(034
apareça. Isto está ilustrado a seguir.
W24 W 34
=W '-W41 21
=
W -'(04;' 31
W24
=W21
-
W41
W 34
W31
-
W41
+
W
41
(1 _ (
24) W 34
Na dedução das Eqs. 7.3 e 7.4, viu-se que, em cada caso a relação de velocidades ~ngulares relativas aoJ~r.~Jºiobti~ª_u~I!!.l?r:tI!!~Jro lugar e depois foram escritas e c.ombinadas._uasequaçôes de velocidades relativas para conterem esta relaçã~. Embora este método seja básico, significa que deve ser desenvolvida uma novllI equação para cada sistema planetário encontrado. A fim de evitar repetição, é possível a dedução de uma equação geral que possa ser aplicada a qualquer trem de engrenagens planetários. Eixo móvel de rotaçio
da engrenagem 2
i
1 , ,( \ ,1 ) ( 0 . 1 \
E ixo fixo de rotaçio da engrenagem 3
I
Q)
e do braço 4
W 24
=
W21 - W41
W34
=W31 - W41
.1 '\J/
(024 =(021 -
(041
(034
(041
(031 -
Se na Fig. 7.5 a engrenagem 3 for considerada a primeira e a eng renagem 2 a última engrenagem, a equação anterior pode ser escrita como =(Ou(Op -
(OUB (OPB
(OB (OB
relação de velocidades entre a última e a pnmelra engrenagens, ambas
(OUL =
(OPB
fi""')
ao braço. = velocidade angular da última engrenagem do trem, relativa à peça fixa. (O = velocidade angular do braço relativa à peça fixa. (O U
B
(O P
= velocidade angular da primeira engrenagem relativa
à peça fixa.
Ao se utilizar a Eq. 7.5, deve-se enfatizar que a primeira engrenagem e a última devem ser engrenagens que se acoplem com engrenagem ou engrenagens que tenham movimento planetário. Além disso devem estar em eixos paralelos porque as velocidades angulares não podem ser tratadas algebricamente a menos que os vetores que as representem sejam paralelos. Agora a Eq. 7.5 será usada para escrever a equação do trem de engrenagens da Fig. 7.4a. Considerando a engrenagem 1 como a primeira e a engrenagem 2 como a última: (Vu
(VUB
-
(V/J
'7
(V23
(VPB
21
(OB
wp
(VPB
(VUB
-
~ I
2 2
(V13
_
- z ;- -
(021 - (031
(0 21 -
(031
0-( 031
=(:; )
(031
\ \.
fl\~C'
\.
;)))~\
L o que concorda com a Eq. 7.3a. A aplicação da Eq. 7.5 a um tre m mais complica~d' é feita no exemplo seguinte. C(~l.~\Gtí
},I,-~"~:L:I
III
Se o braço 6 e a engrenagem 5 da Fig. 7.6 girasse no sentido horário (visto do lado direito) a 150 e 50 rad/min, respectivamente, determine (021 em intensidade e sentido. Use a Eq. 7.5 e considere a engrenagem 5 como a primeira e a 2 como a última. (OUB
OJ
u -
OJB
-----
(OPB
(026
= (021
(056
(026
wB
(Op -
(051
_
Z5
~ . Z4
W56
X X
-
(061
-
( 061
Z3 Z2
20 x 30 25 - 28--x 18 - 21
_w21 25 -150 2 T - 50-150
W21
=
;i(-
100)
+
+ 150
30,9 rad/min E ixo móvel de rotação das engrenagens 3 e 4
r / Eixo fixo de rotação da eng renagem 5
Eixo fixo de rotaç§o da engrenagem 2 e do braço 6
\ .c - -
Como o sinal de W21 é o mesmo que o de WS1 e w 61' W21 tem o mesmo sentido, isto é, sen tido horário visto pela extremidade direita. Ocasionalmente torna-se necessário analisar um trem planetário que não pode ser resolvido por uma simples aplicação da Eq. 7.5 como foi feito no exemplo 7.1. Por exemplo, se uma engrenagem)nj~na fixa 7 é acrescentada ao trem da Fig . 7.6 e se acopla com a engrenage~reoI1Ío mostra a Fig. 7.7 e pede-se calcular WS1 W21, dado é necessário usar a as Eq.engrenagens 7.5 duas vezes primeira aplicação considera 2, 3,para 4, 5solucionar e o braço o6 problema. e a segunda Aas engrenagens 2, 3, 4, 7 e o braço 6. Isto será ilustrado no exemplo seguinte.
jEIXO móvel de rotaçfo --'das engrenagens 3 e 4 1
Eixo fixo de rot8Çfo
da engrenagem 5
(li-
5 (2 ;-·
tJ
Eixo fixo de
rotaçfo da engrenagem 2 e
2(18)
do br aço 6
) 1. :
l/ (') \I w l~
Se W21 gira no sentido anti-horário (visto da extremidade direta) a 60 rad/min determine WS1 e seu sentido de rotação. Considerando primeiramente as engrenagens 2, 3, 4, 5 e o braço 6, seja a engrenagem 2 a primeira e a 5 a última. WUB
=(}Ju -
wB
w pB
wp
wB
WS6 W 26
21
=
-
WS1
-
W61
W21
-
W61
W
-
W
_
W
-
W
25
S1
=W
21
-
61 W 61
-
S1 60-W 61
61
Entretanto, a Eq. (a) não pode ser resolvida porque contém duas incógnitas, WS1 e W61. É necessário considerar agora as engrenagens 2, 3, 4, 7 e o bra ço 6, sendo a engrenagem 2 a primeira e a 7 a última. W76
=W71
-
W61
W 26
W 21
-
W 61
W76
= _Z2
X
18 x 28
Z4
30 x 76
Z3 X Z7
W26
21 _ - 95 -
W71
-
W 21
-
21
=-
95
W 61 W 61
21 x 15 29
21
25 (60 - 10,86)
Exemplo
=W
S1
10,86
7.3
Considere que no diferencial mostrado na Fig. 7.8, a vel ocidade angular do eixo A é 350 rad/min no sentido indicado e que a do eixo B é 2000 rad/min. Determine a velocidade angular do eixo C. Use a Eq. 7.5 e lembre-se que a primeira e a última engrenagens selecionadas para a equação devem acoplar-se com as engrenagens que têm movimento planetáJ;io. Sendo a engrenagem 4 a primeira e a 7 a última: WUB
Wu
- wB
WP11
wp
-
ª-
W7
W 48
=
W71 W 41
(l)B
WS1 W S1
30 x 24 64 x 18
_
41 W
-
_
31 W
22
w
-
B
1000 rad/min,
X ~
20
_
-
2 ~ :J 0 (M 7
sentid~
=
ffieSfflO
wB
Eixo móvel de rotação das engrenagens 5 e 6
Eixo fixo de rotação das engrenagens 3 e 4 edo braço 8
Eixo fixo de rotação da engrenagem 2
5 _
W71
-350
,/1,\)
8 - 1000-350
(, 7
[,D . W71
=-
(650) + 350 -
~
= - 406,3 + 350 = -
56,3 rad/min, sentido oposto a
WA
o método
da tabulação é outra maneira conveniente de resolver problemas de engrenagens pla~tárias. Para ilustrar sua utilização, considere o trem de engrenagem da Fig. ~U~' e o seguinte procedimento: 4~4Q
1. Desconecte a engrenagem 1 do referencial fixo e prenda-a ao braço 3, junta-
mente 1, 2 e com 3. a engrenagem 2. Agora não pode haver movimento relativo entre as peças
2. Gire o braço 3 (e as engrenagens do centro A.
1 e 2) de uma revolução positiva em torno
3. Libere as engrenagens do braço 3. Mantendo o braço 3 fixo, gire a en grenagem 1 de uma revolução negativa. Então a engrenagem 2 gira + z 1/Z2 revoluções. Os resultados dos passos 2 e 3 entram na Tab ela 7.1 junto com o número total de revoluções féitas por cada peça do trem em relação ao referencial fixo. Pode-se ver na linha "tot al" da Tabela 7.1 que com a eng renagem 1 estacionária, a engrenagem 2 gira (1 + Zl/Z2) revoluções para uma rev6iução do braço 3. Isto con corda com a Eq. 7.3a.
Tabela 7.1 Engrenagem 1
_ . ~ . _ ~ -
Movimento com o braço em relação
Engrenagem 2
+1
+1
I
+-
Braço 3
-----
+1
à peça fixa (item 2)
Movimento em relação ao braço (item 3) Movimento total em rela ção à peça fixa
z,
O
Z2
O
1 + 5-
+1
Z2
Considere que o hraço 4 da Fig. 7.9 gira no sentido anti-horário a 50 rad/min. Determine W21 em intensidade e sentido. Ver Tabela 7.2 W21_ W41
=
1
+ 1Zl/Z2
Uma vantagem notória do método tabular é o fato de po der-se obter mais de u.rnar~~ç!
de
W31
poderia ser facilmente obtido dos dados da tabela.
Eixo fixo de rotação
Eixo móvel de rotação
da engrenagem 2 e
da engrenagem 3
do bra ço 4
Engrenagem Engrenagem Engrenagem 1
Movimento com o braço em relação à peça fixa
Movimento em relação ao braço Movimento total em relação à peça fixa
+1 I
O
2
3
Braço 4
+1
+1
+1
IZ
ZI
+Z,
.1+ 2-
Z3
1--
Z,
ZI Z3
o exemplo 7.1 e a Fig. 7.6 serão agora resolvidos pelo método tabular. Como todas as engrenagens deste trem giram, é mais fácil trabalhar com as velocidades reais da engrenagem 5 e do braço 6, em lugar de um a revolução como no exemplo 7.4. Como o braço 6 gira a 150 rad/min, este deve ser o número de giros ao qual o trem inteiro é sujeito quando bloqueado para a linha 1 da Tabela 7.3 (por causa do zero para o braço 6 na linha 2). Com + 150 para a engrenagem 5 na linha 1, deve-se inserir - 100 na linha 2 para a engrenagem 5, a fIm de ser obt ido o total correto de + 50. Com o braço 6 estacionário, na linha 2, e a engrenagem 5 girando uma quantidade conhecida, pode-se facilmente determinar, para esta linha, a rotação das engrenagens 2, 3 e 4. 150 _ 100 (20
x 30)
28 x 18
150-100 x 25 21
o exemplo 7.3 também pode ser facilmente resolvido usando-se o método de tabulação.
Engrenagem 3
Engrenagem 2
Engrenagem 4
Engrenagem 5 Braço 6
Movimento com o braç o em relação à peça fixa
Movimento total em relação à peça fixa
150 -
X Z)
100 ( z5 _ _ _' Z4
X
Z2
7.3 Aplicações de Trelli Planetários. Os trens planetários encontram muitas aplicações em máquinas operatrizes, guinchos, caixas de redução para hélices de aeronaves, diferenciais de automóveis, transmissões automáticas, servo mecanismos para aeronaves e muitas outras. A Fig. 7.10 mostra um desenho esquemático de um trem planetário usado como redutor entre o motor e a hélice em um conjunto motor de aeronave. A Fig. 7.11 mostra a fotografia de um conjunto real. As caixas redutoras, usadas antigamente em aeronaves, trabalhavam com engrenagens cônicas de dentes ret os no trem planetário. Entretanto, foram substituídas por engrenagens cilíndricas de dentes retos porque, com estas, podem transmitir mais potência em um dado espaço físico.
Na Fig. 7.10, o motor aciona a engrenagem interna 3. A engrenagem 2 acopla-
se com a fixa 1 e com a 3, de forma que ela tem movimento planetário. O braço 4, ou suporte dos planetários, que é conectado à engrenagem 2, aciona a hélice em uma
velocidade inferior à do motor. Pode-se determinar com facilidade uma equação para a relação das velocidades do motor W31 e da hélice w41' a partir da Eq. 7.5: W31 W41
Fig. 7.11
Trem
planetário
usado Foote
eomo
redutor
Brothers
Gear
1 ..
W34 W14
entre o m otor
e a héliee de u m avião.
&Manufaeturing
(Cortesia
de
Corp.)
É interessante observar que seria impossivel obter uma relação de velocidades
tão alta quanto 2 : 1 porque isto sig nifica que a engrenagem 1 teria que ter o mesmo número de dentes da engrenagem 3, o que é impossível. Ao.§<:.determinar a rel-ª&.ão
limite para um dado rt.:dutºr, d~ve-se_Q..1?se!va!.Sl!!~J.2s!.ªsªsengI"~IlªKe!!~J~!IUlllt:. o mesmo diametral pitch.
Um trem de en grenagens planetárias usado como diferencial em um automóvel é mostrado na Fig. 7.1 2. A Fig. 7.13 mostra uma vista do diferencial com a carcaça aberta. Este mecanismo possibilita a um aut omóvel fazer curvas sem que as rod as trazeiras deslizem. Na Fig. 7.12, a engrenagem 2 é acionada pelo mot or através da em breagem, transmissão e árvore de tr ansmissão. A engrenagem 2 aciona a
engrenagem 3, que é solidária ao suporte 7 das planetárias. Se o veículo move·se Rara a frente em linha reta, as engrenagens 4, 5 e 6 gi ram como um conjunto_~li. qário ao suporte 7 e não há movimento relativo entre eles. As engrenagens 3 e 6 acionam os eixos. Quando o veiculo faz uma curva, as engrenagens 5 e 6 não giram mais com a mesma velocidade e as en grenagens 4 têm que girar em to rno de seu eixo além de girarem com o suporte. É interessante observar que se uma das rodas for mantida estacionária e deixada a outra livre para girar, esta girará com veloci· dade igual ao dobro da do suporte. Esta característica é uma desvantagem quando o veículo está ato lado na neve ou na lama. Há muitos projetos de trens planetários e uma larga faixa de relações possíveis. As aplicações mencionadas são só duas de uma grande variedade. Em muitas circunstâncias se verificará que é possível obter uma maior relação de redução com uma caixa menor, usando trens planetários em lugar de trens comuns de engrenagens. 7.4 Montagem de Trens Planetários. Quando se projeta um tre m planetário, deve·se considerar o problema de montá-Io com as planetárias igualmente espaçadas. Comengrenagens o trem ilustrado nanão Fig.se7.1 4 é possível para um planetárias dado número de dentes nas 1, 2 e 3 possa ter três que engrenagens igualmente espaçadas.
A fim de determinar o número de planetárias que podem ser usadas para um dado número de dentes nas engrenagens 1, 2 e 3, é necessário determinar o ângulo AOB na Fig. 7.15a resultante da engrenagem 3 ter sido girada de um âng ulo correspondente a um número inteiro de dentes, isto é, o passo angular, com a engrenagem 1 estacionária. O caso deve também ser investigado quando a engrenagem 3 é estacionária e a engrenagem 1 girou de um ângulo correspondente ao passo angular. Isto resulta no ângulo AOB', como mostra a Fig. 7.15b. O método abaixo foi desenvolvido pelo professor G. B. Du Bois, da ComeU University. Z3'
Considere os números de dentes nas engrenagens 1, 2 e 3 como sendo z l' Z2 e Se (}31 é igual ao movimento angular e a engrenagem 3 depois que ela girou
de um ângulo correspondente nagem 1, então
a um dente, (passo angular), com relação a engre-
°
31
1= - 1 revo uçoes Z3
o movimento angular do braço 4 com relação a engrenagem 1 quando a engrenagem 3 gi rou de um ângulo correspondente
041
=
031
X
W41 W31
a um dente é dado por
revoluções.
Da análise de velocidades do trem planetário da Fig. 7.10, que é idêntico ao que está sob consideração, W41
W31
=
Z3 Z3
+
Z1
o ângulo AOB é descrito pelo braço 4 quando a engrenagem 3 se move rela tivamente à engrenagem 1. Se a engrenagem 3 gira o correspondente ao passo angular, o ângulo AOB é igual a 041. Este é o menor ângulo possível entre engrenagens planetárias se lhes for permitida superposição~ Se a engrenagem 3 gira o correspondente a um número inteiro Me dentes c, então AOB
c
=
(041)
=
c
z3
+
revoluções Zl
Consideremos a seguir o caso da Fig. 7.15b onde a engrenagem 1 girou o correspondente ao passo angular com a engrenagem 3 estacionária e pede-se determinar o ângulo AOB/. Se () 13 é igual ao movimento angular da engrenagem 1 depois que ela girou um passo angular e () 43 é igual ao movimento resultante do braço 4 (ambos relativos à engrenagem 3), então
() 43
=
.a
O)'!.L
1713 X
0)43
0)13
~! _1_ 2 2 1 3
0)13
\ \'
+
( ) 43
~1 21
X
1
21 21
+
23
21
+
23
Comparando as Eqs. 7.5 e 7.7 pode-se observar que o braço 4 gira do mesmo ângulo indiferentemente se é a engrenagem 3 ou 1 que gira ~umemais passos angulares. ..",. \ e U . . Se o ângulo AOB é a fração de uma revolução entre planetárias, seu inverso será o número de planetárias. Tomando o inverso da Eq. 7.6, é possível obter uma expressão para o número de planetárias igualmente espaçadas em torno da engrenagem 1. Se n apresenta o número de planetárias, então:
Estas planetárias podem ou não se superporem, dependendo do valor de c. Agora é necessário determinar o número máximo de planetárias n max que pode ser utilizado sem superposição. Na Fig. 7.16 os raios de cabeça r a2 das duas engrenagens planetárias aparecem quase se tocando no ponto c. Da figura, 360 = AOB
0
nmax
0
180 = AOe
AOe
sen
=
1
Ae OA
', , 2 =
'2
z k + h" = -2 2 + -(k p
p
Z2
= 1 para dentes normais)
+
2
'2 = "
2p
1800
sen
(Z 2
1
+ 2)/(Z1
+ Z2)
z/2 p para uma engrenagem padronizada e como os passos diameComo , trais das engrenagens 1, 2 e 3 são iguais =
Para enwenagens não padronizadas a Eq. 7.9 pode ser usada para dar um valor aproximado li:: 11 max' Neste caso o val or fracionário de 2 2 resultante do empr ego da equação padronizada
seria substituído na Eq. 7.9. Como conferência final, deve-se fazer um esboço do conjunto.
Em um tre m planetário, semelhante ao da Fig. 7.14, a eng renagem 1 tem 50 e a 3 tem 90 dentes. Determine o número de planetárias igualmente espaçadas que pode ser usado sem superposição. As engrenagens são padronizadas. _
22 -
23 -
21 _
90 - 50 _ 20
2 ----2 --
180
0
sen -1(20
+ 2)/(50 + 20)
9,8 planetárias
=
o valor
de c deve ser o nú mero de passos angulares entre planetárias tal que quando dividindo 140 dê um número inteiro n. Para este caso c pode ser 140, 70, 35, 28 ou 20. Portanto, n
=
1, 2, 4, 5 ou 7 planetárias
igualmente espaçadas.
7.1 Na Fig. 7.17 a eng renagem 1 gira no sentido indicado a 240 rpm. Determine a velocidade do pinhão 9 (rpm) e a velocidade (m/min) da cremalheira 10, indicando o sentido. 7.2 Um guincho é operado por um motor acionando um par afuso sem-fim de 4 entradas que se engrena com uma coroa de 100 dentes. A coroa é enchavetada em um eixo que também tem um pinhão cilíndrico de dentes retos COm20 dentes. O pinhão se acopla com uma engrenagem cilíndrica de de ntes retos montada na extremidade do tambor do guincho. Faça um esboço do conjunto e calcule a
velocidade do tam bor se o motor trabalha a 600 rpm e o diâmetro do tambor é 12 pol.
10 Cremalheira
2 1(48)
7 1
Parafuso sem-fim
(60) de 2 entradas. hélice â esquerda
7.3 Dois rolos A e B, para cortar chapas de metal, são acionados através do tremuma de en grenagensperi daférica Fig. 7.18. rol os devem operar anos sentidos mostrados em velocidade de 45 Os pol/seg. (a) determine relação de velocidades angulares W2/W3 a fim de acionar os rolos na velocidade requerida. A engrenagem 1 gira a 1800 rpm. (b) determine o sentido de ro tação da engrenagem 1 e o sen tido "da hélice do sem-fim 6 para serem obtidas as rotações necessárias aos rolos. "
11 (50)
B, Diâmetro 38,438 em 10
Parafuso sem-fim de 3 entradas. helíce â esquerda
r '
7.4 No esboço da pre nsa mostrada na Fig. 7.19, 5 e 6 são parafusos de uma entrada e de sentidos opostos e 6 é enroscado em 5 COmoindicado. A engrenagem 4
é solidária ao parafuso 5. A placa B é impedida de girar por um rasg o que se encaixa na coluna. Se o passo de 5 é 6 mm e o de 6 é 3 mm pol, determine o sentido e o número de voltas do eixo A necessárias para baixar a placa B de 18 mm.
7.5 O trem de engrenagens da Fig. 7.20 mostra os aspectos assenciais da árvore de tra nsmissão para uma fresadora de engrenagens. O disco da engrenagem B e a co roa 9 são montados nO mesmo eixo e giram juntos. (a) se o disco da engrenagem B deve ser acionado no sentido horário, determine o sentido da hélice da fresa A. (b) determine a relação das velocidades angulares w /W para cortar 72 7 S dentes no disco da engrenagem B. 7.6 Um tre m de engrenagens tem o eixo A ao qual são enchavetadas as engrenagens 1 e 2, um eixo intermediário B com uma engrenagem composta deslizante 3,4,5 e um eixo C ao qu al são enchavetadas as engrenagens 6 e 7. As engrenagens são numeradas da esquerda para a direita e são todas cilíndricas de dentes retos com distância entre centros de 12 pol e diametral pitch 5. A engrenagem composta pode ser deslocada para a esquerda para dar uma relação de velocidades de 5: 1 através das engrenagens 1, 4, 3, 6 ou para a direita para dar uma relação de 25 : 9 através das engrenagens 2, 4, 5, 7. Faça um esboço do conjunto e calcule o número
de dentes em cada engrenagem se
Zs
= Z2'
Parafuso sem-fim 8 rosca.â direita! (16) rosca simples
7.7 No trem de engrenagens da Fig. 7.21 os parafusos 5 e 6 têm roscas de uma entrada de sentidos opostos com 8 e 9 fios por polegada, respectivamente. O parafuso 6 enrosca-se no 5 e este na carcaça. Determine a variação em x e y em intensidade e sentido para uma revolução do volante no sentido mostrado. As engrenagens 1 e 2 são compostas e estão solidárias ao eixo do volante.
7.8 A Fig. 7.22 mostra parte de um trem de en grenagens de uma fresadora vertica,l. A entrada de potência é na polia e a saída na eng renagem 12. As engrenagens compostas 1 e 2. 3 e 4, 10 e 11 podem deslizar para obtenção de vários engr enamentos. Determine todos os valores possíveis do trem entre a polia e a engrenagem 12.
~
1 (26) 2 (23)
11 (32) 10 (46)
~
7.9 A Fig. 7.23 mostra parte de um trem de engrenagens para uma fresadora vertical. As engrenagens compostas 1 e 2 podem deslizar de modo que ou a engrenagem 1 acopla-se com a 5 ou a 2 co m a 3. Igualmente, a 13 acopla-se com a 15 ou a 14 com a 16. (a) estando a engrenagem 2 acoplada com a 3, determine as duas velocidades possíveis dt;jlrvore para o motor girando a 1800 rpm, indicando os sentidos de rotação. (b)'féom a engrenagem 13 acoplada com a 15 e uma velocidade da árvore de 130 rpm, determine os números de dentes das engrenagens 1 e 5 se as engrenagens 1, 2, 3 e 5 são padronizadas e têm o mesmo diametral pitch. 7.10 A Fig. 7.24 mo stra, esquematicamente, uma transmissão automotiva convencional. A transmissão de potência é feita da ma neira seguinte: Primeira velocidade: a engrenagem 3 é deslocada para acoplar-se com a 6 e a transmissão de potência é feita pelas engrenagens 1, 4, 6 e 3. Segunda velocidade: a engrenagem 2 é deslocada para acoplar-se com a 5 e a transmissão de potência é feita pelas engrenagens 1,4, 5 e 2. Terceira velocidade: a engrenagem 2 é deslocada de modo que seus engranzadores acoplem-se com os da 1 e a transmissão é direta. Marcha à ré: a engrenagem 3 é deslocada para acoplar-se com a 8 e a tra nsmissão é feita pelas engrenagens 1,4, 7, 8, 3. Um veículo equipado cOm esta transmissão tem uma rela ção de 2, 9 : 1 no diferencial e diâmetro externo do pneu de 65 c m. Determine a velocidade de rotação do motor do veículo nas seguintes condições: (a) primeira velocidade a 32km/h. (b) terceira velocidade a 96km/h. (c) marcha à ré a 6,4km/h. 7.11 Na embreagem planetária da Fig. 7.25, o retém 6 pode estar avançado
ou não. Quando o sistema é um trem de estacionário. engrenagens planetárias e quando2 recuado, um tremavançado, comum porque o braço 5 fica Se a engrenagem
® \)o~ú~u
~1l\\r, 0
7 ')
-'T fo~-~
dtU'dlUl\aV-
Q~t0o.\
()J~llJJb'
16 (102)
~ Engranzadores
~
2 (21)
3(26)
1 (15)
Parao motor
6(19)
7(13)
5(24)
gira no sen tido mostrado a 300 rpm, determine (a) a velocidade da engrenagem-anel
4 quando o retém 6 está recuado é (b) a ve locidade do braço 5 quando o retém 6 está avançado.
r-'
. ' 6
Considerando um diferencial de en grenagens cônicas, como os usa dos em automóveis, prove que quan do uma das rodas traseiras do veículo for afastada do solo, girará duas vezes mais rápida do que o suporte do diferencial. 7.12
7.13 Se um caminhão está fazendo uma curva a 24 km/h, determine a veloci-
dade do suporte do diferencial em rpm. O raio da curva é 30 m até o centro do caminhão e a hitola é 1,80 m. O diâmetro externo dos pneus é 90 cm. 7.14 Para a transmissão de engrenagens cônicas planetárias da Fig. 7.26 determine a relação w Jw 3 quando a engrenagem 1 for estacionária.
7.15 No rolamento de esferas da Fig. 7.27, a pista interna é estacionária e a
externa gira com um eixo tu bular a 1600 rpm. Supondo que há rolamento puro
entre as es feras e pistas, determine a velocidade do anel retentor de esferas 4.
7.16 A Fig. 7.28 mostra um mecanismo conhecido como paradoxo de Fergusson. Para uma revolução do braço na direção mpstrada, encontre o número de revoluções das engrenagens 3, 4 e 5 e seus sentidos de rotação. As engrenagens não são padronizadas.
Braço 6
~
1 (70)
7.17 O eixo A gira, no sen tido mostrado na Fig. 7.29, a 640 rpm. Se o eixo B deve girar a 8 rpm e na direção indicada, calcule a relação de velocidades angulares
Qual deveria ser a relação sentido oposto? W2/W4
o
(1)2/(1)4
a fim de que o eixo B girasse 8 rpm no
3-
5
B
Parafuso sem-fim de 2 entradas, rosca à esquerda
Parafuso sem-fim de 3 ent radas, rosca à direita
11 Parafuso sem fim de 3 entradas, rosca à direita 3(40)
Fig. 7.31
7.18 No me canismo da Fi g. 7~
mostrado.
1°
engrenagem 2 gira a 60 rpm no se ntido Determine a velocidade e o sentido de ro tação da engrenagem 12.
7.19 Um mecanismo conhecido como engrenagem de Humpage é mostrado na Fig. 7.31. Determine a relação de velocidades angulares WA/WB' 7.20 No trem de en grenagens planetárias mostrado na Fig. 7.32 determine a relação de velocidades angulares W2/W7. Compare esta relação com a obtida se o braço 4 for conectado diretamente ao eixo de saída e as engrenagens 5, 6 e 7 forem suprimidas.
7.21 No trem de engrenagens do problema 7.20 a engrenagem 2 gira a 600 rpm
no sentido indicado e a 1 (e a 6) gira a 300 rpm no sent ido oposto. Calcule a velocidade e o sentido de ro tação da engrenagem 7. 7.22 Um trem planetário para um red utor de duas velocidades de um sup eralimentador de uma aeronave é mostrado na Fig. 7.33. A engrenagem 2 é acionada
por uma de 63 dentes (não mostrada) que opera a 2400 rpm. Em alta velocidade a engrenagem 2 liga-se com o eixo do superalimentador através de engrenamento adicional. Em baixa velocidade, a engrenagem 7 é mantida estacionária e o eixo B é conectado ao eix o do superalimentador com a mesma relação de engrenamento usada entre a engrenagem 2 e este último. Se o superalimentador opera em al ta velocidade a 24 000 rpm, calcule o valor da rotação para baixa velocidade.
Braço
6
7 (19) 4
3 (60) 4
A
2 (22)
Alojamento
do parafuso
do servo mecanismo
Fig. 7.34
7.23 A Fig. 7.34 mostra o conjunto de engrenagens planetárias e eixo motor para um servomecanismo de aeronave. Se o eixo A liga-se com o motor, determine a relação de velocidades angulares ro A/roB' 7.24 A Fig. 7.35 mostra um trem planetário para uma grande redução. (a) se o eixo A conecta-se com o motor, determine a relação de velocidades angulares ro)roB• (b) as engrenagens 2, 3 e 4 e as 5, 6 e 7 serão padronizadas ou não ? Por quê? (c) se o número de dentes na engrenagem 3 mudar de 51 para 52, calcule a relação de velocidades angulares ro A/roB'
7.25 A Fig. 7.36 mostra, esquematicamente, um redutor para hélice de aeronave. Determine a velocidade da hélice em int ensidade e sentido se o motor gira a 2450 rpm no sentido indicado. 7.26 Na unidade redutora com planetárias da Fig. 7.37, a engrenagem 2 gira :iO sentido indicado. a 300 rp.l.11 Determine a velocidade e o sentido de rotação da engrenagem 5. 7.27 No trem de engrenagens do problema 7.26, a engrenagem 2 gira a 300 rpm no sentido indicado, e a engrenagem 1 gira a 50 rpm no sen tido oposto. Calcule a velocidade e o sentido de rotação da engrenagem 5. 7.28 No trem planetário, mostrado na Fig. 7.28, a engrenagem 2 gira a 600 rpm no sentido indicado. Determine a velocidade e o sentido de rotação do bra ço 6 se a engrenagem 5 gira a 300 rpm no mesmo sentido da engrenagem 2.
Braço ...•...
5 Hélice
Braço
6
3,lt (46)
7.29 Se no trem de engrenagens do problema 7.28, a engrenagem 2 girar a 1000 rpm no sentido mostrado e a 5 for mantida estacionária, o braço 6 girará a 600 rpm no mesmo sentido da engrenagem 2. Determine a velocidade e o sentido de rotação que devem ser da dos à engrenagem 5 para imobilizar o braço 6 se a engrenagem 2 continua a girar a 100 rpm. 7.30 Para o trem de engrenagens da Fig. 7.39, o eixo A gira a 300 rpm e o B a 600 rpm nos sentidos mostrados. do eixo C.
Determine a velocidade e o sentido de rotação 4(42)
3(22)
5(18) 8(18) 2 (38)
7(30)
Fig.7.39
7.31 Na Fig. 7.40 o eixo A gira a 100 rpm no se ntido mostrado. Calcule a velocidade do eixo B e mostre seu sentido de rotação. 7.32 No tre m planetário da Fig. 7.41 o eixo A gira a 450 rpm e o B a 600 rpm nos sentidos mostrados. Calcule a velocidade do eixo C e especifique seu sentido de rotação. 7.33 O eixo A da Fig. 7.42 gira a 350 rpm e o B a 400 rpm nos sentidos mostrados. Determine. a velocidade e o sentido de rotação do eixo C. 7.34 No trem de engrenagens planetárias cônicas da Fig. 7.43, o eixo A gira no sentido indicado a 1250 rpm e o B a 600 rpm. Determine a velocidade do eixo C em intensidade e sentido. 7.35 Para o trem planetário da Fig. 7.33 calcule o número máximo possível de planetárias sem superposiçào e o número de planetárias igualmente espaçadas que podem ser usadas no trem. 7.36 Em um tre m planetário, semelhante ao da Fig. 7.14, a engrenagem 1 tem 41 dentes, a 2 tem 18 e a 3 tem 78 . As engrenagens 1 e 2 são padronizadas e a 3 não. Determine o número máximo de planetárias igualmente espaçadas que podem ser usadas. 7.37 Calcule o número máximo de planetárias compostas igualmente espaçadas que podem ser usadas no trem de engrenagens da Fig. 7.32.
7.38 Para o trem planetário da Fig. 7.37, calcule o número máximo de planetárias compostas que podem ser usadas.
6(18) 9(36)
1
6(42) 7 (24)
4
B
_
A .. -
7.39 No trem planetário da Fig. 7.44, o sup orte (peça 4) é a pe ça motora e a engrenagem solar é a peça movida. A engrenagem interna é mantida estacionária. A engrenagem solar deve gir ar com velo cidade 2,5 vezes da do suporte. O diâmetro primitivo da engrenagem interna deve ser aproximadamente 11,0 pol. (a) projete o trem de eng renagens determinando os números de dentes das engr enagens interna, solar e planetárias, usando diametral pitch 10, ângulo de pressão 20", dentes normais padronizados de engrenagens cilíndricas de dentes retos. Mantenha o diâmetro primitivo tão próximo de 11,00 pol quanto possível. (b) determine se podem ou não ser usadas três planetárias igualmente espaçadas.
Mecanismos de Computa ção ••• •
• ••
• •
•• •• •
•
· . •••••
o grande
avanço em controles automáticos e a tendência à automação tornaram~se possíveis através do desenvolvimento contínuo de mecanismos e máquinas de computação.: Estes computadores podem ser divididos em dois tipos: computadores digitais e computadores analógicos.
8.1 (omputadores Digitais. Estes computadores trabalham com quantidades na forma numérica e calculam em pa ssos discretos o resultado de uma série de operações matemáticas conforme os dados de entrada. Geralmente os computadores digitais realizam operações matemáticas através de com binação de somas: a multiplicação é feita por uma soma repetitiva, a integração por um somatório e as séries convergentes são substituídas por funções trigonométricas. Fabricam-se também máquinas calculadoras digitais para uma grande variedade de aplicações comerciais que vão, desde pequenas calculadoras manuais, até grandes máquinas de contabilidade. Desenvolveram-se também computadores digitais para funcionamento máquinasIsto operatrizes, máquinas de industriais montagem de e equipamento de automático controle de de processos. resultou em aplicações grande escala tal como fábricas automatizadas.
8.2 Computadores Analógicos. Estes mecanismos trabalham com grandezas ao invés de valores puramente numéricos e são essencialmente contínuos, no sentido matemático. Podem ser aplicados a soluções instantâneas ou contínuas de problemas específicos. As entradas e saídas destes mecanismos são representadas por quantidades físicas e as leis que regem a operação do computador são análogas às que regem o pro cesso a ser controlado. Os computadores analógicos podem ser
projetados para realizarem as operações normais de álgebra e cálculo, isto é, adição e subtração, multiplicação e divisão, integração e diferenciação, resolução de vetores e, o mais imp ortante, a geração de funções matemáticas ou tab eladas de uma ou mais entradas independentes. Os computadores analógicos podem ser mecânicos, elétricos, pneumáticos ou hidráulicos, ou então uma combinação destes tipos. Apesar do computador analógico ter grande aplicação na solução de problemas específicos, ele não pode ter um gra u de precisão tão grande quanto o computador digital. Os computadores analógicos podem ser usados para constituirem grandes máquinas computadoras para a solução de equações complicadas. Também são empregados como componentes no equipamento de controle de mísseis guiados, instrumentos de nav egação, unidades de te lemetria, equipamento de co ntrole de tiro, visores de bombardeio e muitos outros sistemas. Do pon to de vista do estudo de mecanismos, o computador analógico mecânico é de interesse básico. Os itens seguintes apresentam em detalhe os mecanismos que são capazes de realizar operações matemáticas simples. 8.3 Adição e Subtração. Há diversos mecanismos de adição e subtração, um dos quais está mostrado na Fig. 8.1. As barras 2 e 3 movem-se horizontalmente sobre os ro letes da barra 4 com rol amento puro. Por causa desta ação, a barra 4 também se desloca e o seu movimento é dado por
Para somar duas quantidades, a peça 2 é a justada na po sição correspondente ao valor da primeira parcela e a peça 3, na po sição da out ra parcela. O total é dado pela peça 4. Pelo fato do movimento da peça 4 ser a metade do movimento de S 2 + + S3 ' diz-se que a saída S 4 está na esc ala de 1/2. Para corrigir isto, a escala da peça 4 deve ser o dobro das escalas das peças 2 e 3 que devem ser iguais. 2
+=j--m------
@ tf
As barras e os roletes são substituídos por cremalheiras e pinhões se as forç as a serem transmitidas entre as peças forem muito grandes. Para realizar a subtração marcam-se escalas negativas nas barras. Outro mecanismo que pode ser usado como adicionador está mostrado na Fig. 8.2a. Este mecanismo é conhecido como diferencial articulado e embora seja de um a forma mais simples do que o mecanismo da Fig. 8.1, é um adicionador aproximado, enquanto que o outro é exato. O novimento da barra 4 é dado pela relação
Pode-se ver que as an gularidades das peças 2 e 3 introduzirão um erro no cálculo. Se a barra 5 tiver um sulco em cada extremidade e as peças 2 e 3 forem guiadas conforme indicado na Figo 802b, o erro será eliminado.
3 -------
(a)
3 -------
(b)
Sendo necessano somar rotações ao invés de quantidades lineares, pode-se usar um diferencial de engrenagens cônicas ou cilíndricas, conforme mostrado nas Figso 8.3a e b, respectivamente. Do estudo do diferencial de engrenagens cônicas como o usado em transmissão de automóveis, sabe-se que a velocidade do braço 5 na Figo 8.3a é a média das velocidades das engrenagens 2 e 4. Portanto,
A Eq. 8.2 também vale para o diferencial da Fig. 8.3b. A escala de 1/2 para a saída de 0 6 pode ser alterada facilmente para 1 acoplando-se a engrenagem
6 com outra engrenagem para dar uma razão de transmissão de 2 : 1.
Os dif erenciais de engrenagens comcas são disponíveis comercialmente em diversos tamanhos para uso em computadores e em controles: uma fotografia de um diferencial está apresentada na Fig. 8.4. Nas unidades comerciais o braço é chamado de cruzeta e as engrenagens cônicas, de engrenagens da cruzeta. As engrenagens de dentes retos solidárias às engrenagens cônicas 2 e 4 são conhecidas como engrenagens estremas e pode se obt ê-Ias em uma grande variedade de tamanhos para constituirem unidades-padrão. Diferenciais de engrenagens de dentes retos também são disponíveis comercialmente.
Os diferenciais de engrenagens cônicas e cilíndricas têm duas fontes de erro. Estas são o jogo primitivo e a imprecisão angular da transmissão. O jogo primitivo é o movimento angular possível entre as duas engrenagens estremas quando uma delas e o braço ou cruzeta forem mantidas imóveis. Por exemplo, na Fig. 8.3a se a
engrenagem 4 e a cruzeta 5 forem mantidas imóveis, a engrenagem 2 poderá girar
de um ângulo muito pequeno pela aplicação de um pequeno torque. Este movimento perdido ou jogo primitivo é a soma dos jogos primitivos dos dentes das engrenagens, folgas nos mancais e deformações nas partes estruturais do diferencial. Atualmente é possível a aquisição de diferenciais com jogos primitivos de 5 a 10 minutos para torques de 0.0144 a 0.0432 kgm em diâmetro de aproximadamente 25 mm. A imprecisão da tran smissão é a falta de uniformidade da razão de velocidades angulares no dif erencial. Teoricamente, a razão de velocidades angulares entre duas engrenagens deve ser constante, nas devido à excentricidade da circunferência primitiva e aos erros entre os dentes, há uma pequena variação. Esta imprecisão resulta em um erro de posicionamento. Outro modo de se obter uma adição é com um diferencial de rosca ou parafuso diferencial, empregado quando as entradas são angulares e deseja-se uma saída linear. Também é vantajoso quando atuam grandes forças na s peças. A Fig. 8.5 mostra o desenho de um diferencial de ros ca simples onde o ponteiro se desloca axialmente com o parafuso, porém, não gira. As entradas, em unidades angulares, são realizadas nas engrenagens 2 e 3 e a soma das duas quantidades é dada em uma escala linear, pelo ponteiro 4. No caso de uma rosca simples como o mostrado na figura, o movimento do ponteiro é a soma dos movimentos produzidos pela engrenagem 2 girando enquanto a 3 está fixa e pela engrenagem 2 deslocando-se axialmente se m rotação, enquanto a engrenagem 3 gira. A equação para a saída S 4 é da da por
92 e 0 3 são as en tradas angulares, graus P x = passo axial do parafuso N =número de filetes no parafuso
8.4 Multiplicação e Divisão. A multiplicação e a divisão podem ser realizadas de diversas maneiras. A Fig. 8.6 mostra um multiplicador de ré guas baseado na Xl
semelhança de triângulos.
Na figura, a barra 2 se desloca de uma distância
a
partir de 04 (a peça 6 está fixa). Isto moverá a peça 7 de uma certa distância para cima. A peça 6 é agora movimentada para a direita, para a posição x2 (peça 4 fixa), o que também moverá a peça 7 para cima. Portanto, devido aos deslocamentos Xl e x2' a peça 7 estará a uma distância x3 a partir de 04' Por semelhança de triângulos
I
I I
2 ~
-~ I
J
A fim de ter uma faixa de empr ego suficiente este mecanismo deve ser relativamente grande, o que torna dificillimitar as deflexões das peças a menos que ele seja muito robusto. Isto aliado à dificuldade encontrada no desgaste e na impr ecisão dos cursores limita as aplicações práticas deste mecanismo. Mais adiante serão apresentados processos de multiplicação mais precisos~ 8.S In tegraçio. A Fig. 8.7 mostra um in tegrador. O disco 2 gira acionando as esferas que são posicionadas pela peça 3. As esferas por sua vez acionam o cilindro 4. Mantém-se um movimento de rolamento puro entre o disco e as esferas e entre o cilindro e as esferas. As,variáveis de entrada são o deslocamento angular do disco 2 e o deslocamento axial r das esferas. O resultado é obtido no cilindro 4. Portanto, a ação do mecanismo fornece a relação
porque o espaço percorrido pela esfera superior sobre o disco 2 deve ser igual ao espaço percorrido pela esf era inferior sobre o cilindro 4. Integrando a equação precedente, vem
onde r é uma função de lJ 2• O valor IIR é a cons tante do integrado ,. e é muito importante no projeto de um sistema integrador. Este mecanismo também pode ser empregado como um multiplicador fazendo f constante durante cada operação. O mecanismo então irá gerar
A Eq. 8.5 também pode ser expressa em termos de x, y e z. Seja a ro tação representada por x, a posição r da peça 3 por y que é ig ual a f(x) e a saída por z. Substituindo estas quantidades na Eq. 8.5 z
= -}
lJ 2
lJ 4
fY d X .
Estas quantidades estão mostradas, esquematiclimente. na Fig. 8.8. No integrador., a entrada x e a saída z são rotações de eixos, en quanto que a entrada y é li distância das esferas ao centro do disco. Para realizar o movimento axial correspondente a y, usa-se normalmente um parafuso de avanço. Assim, a rotação do parafuso, que é proporcional ao deslocamento do porta-esferas, pode ser usada para representar y. Portanto, a entrada e a saída serão rotações de eixos. A determinação das escalas em um integrador é mais dificil do que em out ro mecanismo apresentado até agora. A fim de determinar a escala da saí da, seja 51
a escala da variável x que entra pelo disco,
52
a escala da variável y que entra pelo
parafuso de avanço e S 3 a escala da variável de saída z. Na determinação da escala da sa ída, deve-se levar em conta o fato de qu e a rotação do parafuso de av anço representa um deslocamento linear y. Se o parafuso tem n filetes por unidade de comprimento e po ssui uma entrada, a posição radial r do porta-esferas é r
S y
=_ 2 _
n
Comparando-se a Eq. 8.5b com a equação a ser calculada, z = f ydx, vê-se que sendo conhecidos Sl e S 2 ' S3 deve ser dada pela seguinte expressão: S
=
3
SlS2 Rn
Através desta expressão pode-se determinar a escala da saída. O integrador é um mecanismo muito preciso e o seu ta manho é designado pelo diâmetro do disco. Os modelos comerciais disponíveis variam, em tamanho, de 38 a 130 mm. A precisão usual destas unidades é da ordem de 0,5 % para torques de 38 mm. Entretanto, um fabricante apresenta em catálogo uma unidade com precisão de 0,01 % com torque de entrada de 0,0144 kgm e um disco de 38 mm de diâmetro. Este tipo de integrador tem dois defeitos inerentes: (a) o torque de sa ída é limitado porque o funcionamento do integrador depende do atrito de rolamento
eEste (b) desgaste as es feras deslizam (causando desgaste) quando operam no centro um do disco. pode ser r eduzido incorporando-se no projeto do integrador modo das esferas girarem quando estiverem no centro do disco.
Além de sua função básica como integrador, este mecanismo pode ser empregado para realizar outros cálculos que não exijam diretamente a integração. Em alguns exemplos a constante do integrador l/R foi suprimida para simplificar a operação. 1 O integrador pode ser usado para dar uma saída proporcional ao quadrado da va riável de entrada. Para tal, a posição y do porta-esferas deve variar linearmente com x, conforme mostrado
na Fig. 8.9.
Pode-se obter o produto de duas variáveis independentes usando-se dois integradores e um diferencial acoplados como indica a Fig. 8.9.
r I
UdU+UdL'
2
-
~
-
2
JU dv
b
As funções seno e co-seno podem ser geradas simultaneamente usando-se dois integradores conforme mostrado na Fig. 8.11. O sinal negativo que resultaria de J sen 8 d 8 é eliminado operando-se os porta-esferas em defasagem de modo que os cilindros dos dois integradores girem em sentidos opostos. Além de integração, o integrador tipo disco e esfera pod e ser usado para diferenciação aproximada. 2 Embora a diferenciação seja o con trário da integração, não é possível inverter-se o mecanismo para efetuar esta operação. O integrador 1
G. W. Michalec, "Design Guide Analog Computing Mechanisms", Machine Design, Março 1959.
z Ibidem.
não pode efetuar uma derivação teoricamente correta, mas com a introdução de um dif erencial e dois pares de engrenagens obter-se-ão resultados com precisão suficiente para muitas aplicações. A Fig. 8.12 mostra o diagrama de bloco para esse cálculo, onde u é a variável de saí da e é aproximadamente igual a dy/dx. O diferencial é empregado para subtração, resultando a seguinte equação para a saída: ky- k
2
J ud x
2u + y = T
J udx
u = -
dy dx
2(~ )+ u dx
=
k
dy uzdJ :
Pode-se ver que a resposta u não é a der ivada exata de y em relação a x, havendo um erro que é o fator (2/h) (du/ dx) . Para que a resposta seja correta, du/dx deve
ser igual a zero. Isto é uma cond ição impossível porque o porta-esferas não deveria ter mo vimento. Entretanto o erro pode ser reduzido usando-se um valor de k o maior possível sem prejudicar o movimento do porta-esferas. 8.6 Funções Trigonométricas. As funções seno e co-sen<>.sendo regulares e contínuas são geradas facilmente por diversos mecanismos' muito conhecidos. O Garfo Escocês é um dos ma is co muns, mostrado na Fig. 2.7. Pode-se usar um mecanismo cursor-manivela para gerar uma função seno e co-seno aproximada. A Fig. 8.13 apresenta o esboço de um trem de engrenagens planetárias projetado para transformar movimento de rotação em movimentos lineares senoidais ou co-senoidais.
Na Fig. 8.13 a engrenagem 1, de dentes internos, é fixa. A engrenagem 2 tem um diâmetro primitivo igual à metade do diâmetro primitivo da engrenagem 1 e é acionada pelo bra ço 3. Quando a engrenagem 2 se desloca no interior da eng renagem 1, um ponto B situado na circ unferência primitiva da engrenagem 2 traçará uma hipociclóide. Como as duas engrenagens têm uma razão de 2 para 1, a hipociclóide será uma linha reta e o ponto B se deslocará, ao longo do diâ metro da engrenagem 1, com movimento harmônico simples. Portanto, a peça 4 ir á gerar uma função seno ou co-seno. A Fig. 8.13a mostra a geração de uma função senoidal e a Fig. 8.13b, a de uma função co-senoidal. Deve-se notar que no primeiro caso a pos sição inicial está na vertical, enquanto que no segundo caso está na horizontal. Os ger adores de seno e co- seno do tipo mostrado na Fig. 8.13 são dis poníveis comercialmente com uma precisão de 0,2 % . O diâmetro externo dessas unidades é cerca de 50 m m e pesam em torno de 60 g ramas. A Fig. 8.14 mostra a fotografia de uma unidade comercial. Um mecanismo para gerar tangentes e secantes está apresentado na Fig. 8.15, onde a engrenagem 2 gira de um ângulo de entrada O . A peça 3 desliza em um a ranhura situada sobre a engrenagem 2 e está articulada com a peça 4 qu e por sua
vez é obrigada a se deslocar verticalmente. Quando a engrenagem 2 gira, a peça 4 se desloca na vertical e sendo A constante, y medirá o valor de tg O e S, o valor de
de sec e . A 45°. J ' será igual a A o qu e determinará a es cala de y . A 0° S será igual a A e a 60°. S será igual a 2A. o q ue determinará a escala de S. Devido à descontinuidade das du as funções. este mecanismo é útil somente em uma faixa limitada do ângulo de entrada.
Se for exigida uma saída rotacional, será necessário colocar uma cremalheira na peça 4 pa ra o cálculo da tangente ou no bloco 4 p ara o cálculo da secante. Um pinhão engrenado com a cr emalheira àaria a va riável de saída.
As funções trigonométricas também podem ser geradas por cames, o que será apresentado mais adiante. Um calculador de componentes é um me canismo que decompõe um vetor r em componentes ortogonais x e y. Na realidade, é um gerador simultâneo de seno e co-seno dando as funções x
y
= r cosO
= r senO
onde r e O são variáveis independentes. A Fig. 8.16 mostra um esboço de um calculador de componentes. Nota-se que ele é se melhante a um Garfo Escocês duplo. A única diferença é que no Garfo Escocês r é uma distância fixa, ao passo que no calculador de componentes r é ajustável através do pinhão 3 e da cre malheira 4. Quando a entrada O é introduzida no mecanismo, também é necessário introduzir uma compensação no pinhão 3 de modo que o movimento O não afete r. Se o pinhão 3 for permanect:r estacionário, a rotação da engrenagem 2 (e portanto a cremalheira 4) causaria movimento axial da cremalheira e uma variação em r. Para efetuar esta compensação, colocam-se no circuito um diferencial e um par de engrenagens, mostrado na figura.
Deve ser mencionado que se forem necessárias saídas rotacionais para x e y, colocam-se cremalheiras nas peças 6 e 7, en grenadas com pinhões para a saída. Neste mecanismo a cremalheira 4 e o pinhão 3 podem ser substituídos fixando-se o pino 5 a uma porca que pode ser ajustada por um parafuso e uma engrenagem cônica. Em ambos os tipos de mecanismo as un idades são de construção dispendiosa e devido ao grande atrito das peças deslizantes. devem ter dimensões relativamente grandes. Teoricamente, este mecanismo pode ser operado de modo inverso para calcular
re
O
para valores dados de x e y. Entretanto, geralmente isto não é prático devido
à existência de pontos mortos. Portanto, quando a unidade é usada como um calculador de res ultantes, é necessário acrescentar meios para superar esses pontos mortos. 8.7 Inversão. A Fig. 8.17 mostra um me canismo para calcular inversos. A peça 2 gira em torno do ponto 02 e tem em cad a extremidade um rasgo para receber as peças 3 e 5. A peça 3 é articulada com a peça 4 e a pe ça 5 é articulada com a peça 6. Quando a peça 2 gira, a peça 4 se desloca horizontalmente a uma distância constante A medida a partir de 02' enquanto a peça 6 se desloca verticalmente a uma distância constante B medida a -partir de 2, Por semelhança de triângulos
°
AB X = -
Y
Este mecanismo também pode ser usado para determinar cosec.(J e cot ( J em combinação com os mecanismos das Figs. 8.13 e 8.15.
8.8 Quadrados. Raízes Quadradas e Raízes Quadradas de Produtos. Um mecanismo para efetuar estas operações é apresentado na Fig. 8.18. A peça 2 ar ticula-se com a peça 7 e tem um rasgo em cada extremidade para receber as peças 3 e 5. O ângulo ABC é um ângulo reto. A peça 3 articula-se com a peça 4 e a peça 5 articula-se com a peça 6. As peças 4 e 6 são obrigadas a se deslocarem horizontalmente enquanto a peça 7 se desloca na vertical. Por semelhança de triângulos,
(8.8)
No mecanismo xl' X 2 e y são variáveis. Entrando-se com os valores de Xl e x2 no mecanismo, y indicará a raiz quadrada do produto de Xl e x2. Entrando-se com Xl e y ou x2 e y no mecanismo, a saída indicará o quadrado de y dividido por Xl
ou
x2•
Se fixarmos o ponto A de modo que a peça 4 não se desloque e x 2 se torne uma distância constante D, obtém-se um quadrado e uma raiz quadrada. Portanto,
Entrando-se com y no mecanismo, Xl marcará o quadrado de y. Entretanto, se a en trada for Xl' Y marcará a raiz quadrada de XI. Um cone e um cilindro podem ser in terligados conforme indica a Fig. 8.19 para constituirem outro tipo de mecanismo de elevar ao quadrado. O número de voltas do cilindro 4 é proporcional ao qu adrado do núm ero de voltas do cone 2. A polia intermediária 3 move-se axialmente em uma distância proporcional ao número de voltas do co ne. Sendo R 2 o raio do cone no ponto de contato com a polia e R4 o raio do cilindro, para uma pequena rotação d()2 do cone, o cilindro irá girar de:
onde k é uma constante determinada pelo ângulo do vértice do cone e pel o avanço da polia por unidade de 0 2 ' Portanto,
ke2 e 2R . 2
4 -
4
Este mecanismo pode ser operado no sentido inverso para obtenção da raiz quadrada de uma variável. Retirando-se a polia intermediária 3 e substituindo-a por dois arames flexíveis, obtém-se uma variante do mecanismo da Fig. 8.19. São necessários dois arames para permitir a rotação nos dois sentidos: enquanto um é enrolado o outro é desenrolado. Os arames são guiados por sulcos existentes no cilindro e no cone. A Fig. 8.20 apresenta a fotografia de um mecanismo deste tipo. 8.9 (ames e Engrenagens de Computação. As carnes podem ser projetadas para gerar uma grande variedade de funções. Por esta razão, considerou-se desejável a sua apresentação neste item ao invés de fazê-Io junto com as outras operações matemáticas. As carnes dos tipos comuns apresentados no Capítulo 3 são usadas frequentemente para computação. A mais simples é a carne de dis co de contorno circular (excêntrico) que proporciona movimento harmônico simples a um seguidor radial de face plana. Há outro tipo de carne cuja aplicação reside em primeiro lugar em pr ojeto de mecanismos de computação. É conhecido como carne de contorno e está mostrado na Fig. 8.21. Com este tipo de came as peças rolam uma sobre a outra sem deslizamento. Isto facilita o seu projeto por duas razões: (a) o ponto de contato P permanecerá sempre sol-re a linha de centros e (b) ambas as superficies rolarão uma sobre a outra, mantendo a mesma distância entre centros. Usando-se estes fatores,
pode-se deduzir as equações para as distâncias do ponto de contato aos centros das carnes.
Na Fig. 8.21, Rz e R3 são as distâncias instantâneas do pon to de contato aos os centros. Se a carne 2 gira segundo um pequeno ângulo d O z e a carn e 3 segundo d 8 3, o ponto de contato sobre a carne 2 se desloca de R z d O z e o ponto de contato sobre a carne 3 se de sloca de R 3 d83• Para rolamento puro,
C
R
3
=
1+
(d 0 3/d 0 2)
Essas carnes pod em ser usadas para gerar diversos tipos de funções, três das quais estão ilustradas a seguir. 1. Função Quadrada.
Para gerar a função quadrada
d03 d02
2k ()
=
2
pode-se determinar o contorno das carnes que irão gerar a função quadrada, através das equações de R2 e R 3• Póde-se operar as carnes de modo inverso, para obtenção de raízes quadradas. 2. Função
Iogaritmica.
Para gerar o logaritmo,
d03 d02
_
1
-
2,303
()2
~ :2
2,303 0 z
=
3
c 1+2,3030z
R
=
3
2,303 COz_ I + 2,303 0z
Com estas equações pode-se determinar os contornos das carnes que irão gerar o logaritmo dado. A operação inversa irá gerar antilogaritmos.
3. Função Trigonométrica. Para ilustrar a geração de uma função trigonométrica, consideremos
dOz dO
=~
J
I
sec z
=
cos
zo Z
Para transmissão de grandes torques as carnes pod em ser substituídas por engrenagens com superficies primitivas idênticas aos contornos das cames. Esta substituição é possível em vi rtude da açã o de ro lamento puro das cames. Tais engrenagens são co nhecidas como engrenagens de contorno ou engrenagens não circul ares. Na Fig. 8.22 vê-se a fotografia de um par de engrenagens não circulares. Com relação às equações de Rz e R3 deduzidas para as três funções é evidente O quando 0z O e em (2) R O quando 0z O . Em (3) R O que em (1) R 3 = Quando um =dos rai os chega3 a=zero, resulta em=um projeto impra= quando 0z =z 90". ticável. Com as funções ilustradas, o fato de que a es cala de 0 z não pode começar em zero nos primeiros dois casos e não chegar a 90" no terceiro caso provavelmente não limitará a geração dessas funções. Há casos, entretanto, onde tais lim itações constituiriam uma desvantagem e deve-se enco ntrar um meio de eli minar este problema quando necessário. Outro problema que às vezes aparece no projeto de
carnes de contorno é que em certas funções o valor de d0 3/d0 2 pode tomar-se igpal a-I,o que acarreta valores infinitos para R2 e R3. Qualquer destes probl~tnas deve ser evitado se ocorrerem na faixa de trabalho da função. Pode-se conseguir à isto somando-se uma constante que podea ser subtraída mais tarde por um diferencial. Comofunção um exemplo, consideremos função
di) d0 = 2 sen 3
2
°
2
cos
°
2
2 (2 sen0 cos02) 2Csen0 2 cos02 + 1
R3
= -------~ C
1 + 2 sen02 cos02
Quando 02 =O, R 2 =O: quando 02 = 135°, d0 3/d0 2 = - 1. Para evitar estas condições, deve-se adicionar à função uma 'constante k0 2 tal que
dO'
=
d/
2 sen0 2 cos02 + k
2
Após a geração da nova função, k0 2 seria subtraído para dar a função original 03 = sen202· O diagrama esquemático para este cálculo está mostrado na Fig. 8.2 3.
Camesde contorno
Dif. (sub.1
Outro tipo uma de carne que é na usado para computação é uma came de disco com ranhura face.frequentemente Embora a ranhura possa ter diversas formas, geralmente é uma espiral. A saída pode ser através da translação de um seguidor ou, se a ranhura possuir dentes, através da rotação de um seguidor. Este segundo tipo é conhecido como uma came de engrenagem ou como engrenagem frontal em espiral. Usando-se uma espiral de Arquimedes para a linha primitiva da engrenagem frontal, obtém-se um dispositivo de elevar ao quadrado. A Fig. 8.24 mostra um mecanismo onde 8 2 é a entrada (radianos) e 8 3 a saída (radianos). R 3 é o raio primitivo do pinhão e K uma constante. Devido ao rolamento puro existente entre a linha primitiva da espiral e a circunferência primitiva do pinhão,
o _ 3 -
KO~ .
2R
3
Deve-se que esta semelhante à Eq. 8.10 relativa ao mecanismo de elevar ao notar quadrado tipoequação cone e écilindro. A principal vantagem deste tipo de came ou engrenagem é que a entrada pode ser feita com mais de uma volta da engrenagem 3, proporcionando assim alta precisão. De acordo com Rothbart 3, têm sido usados mecanismos com até oito voltas no eixo de e ntrada e para engrenagens frontais em espiral de Arquimedes, obtivéram-se precisões de uma parte em 3 o o . 8.10 Sistema Articulado Gerador de Função. Usa-se, às vezes, um mecanismo de quatro barras para gerar uma função que pode ser soma, multiplicação, potenciação, cá lculo de logaritmos ou de geração de funções trigonométricas. A peÇa Fig. 28.25 mostra tal mecanismo, dotado ponteiros para indicar a entrada x na ea saída y =f(x) na peça 4. Em operação real, entretanto, a entrada e a saída seriam provavelmente em forma de rotações de eixos.
Os geradores de fução deste tipo são difíceis de se pr ojetarem, porém, seu custo de produção é muito menor do que a maioria dos mecanismos de computação apresentados anteriormente. Os sistemas articulados podem ser feitos com grande precisão e têm .tta confiabilidade devido ao fato de que as articulações são as únicas
partes onde pode ocorrer um erro. Infelizmente, não há modo, atualmente. de se determinar com facilidade o tamanho de cada peça de um sistema articulado para gerar uma função teoricamente correta e todos os pontos da escala. No Capítulo 9 será apresentado um método com precisão em três pontos. Na referência,4 de onde o método dos três pontos foi retirado, encontram-se métodos para quatro e cinco pontos. Prec~ão. Em elementos computação, duas fontes principais de erro: 8.11 (a) erros cinemáticos ou teóricosdeque resultam dehá uma aproximação na geração de uma função e (b) erros de fabricação que resultam de tolerâncias de fabricação e de folgas nas peças das máquinas necessárias para a operação. De todos os mecanismos apresentados, os únicos que têm erros cinemáticos são o adici0nador da Fig. 8.2a e o sistema articulado gerador de função, da Fig. 8.25. O integrador pode ter um err o característico de dispositivos de atrito, conhecido por erro de deslizamento. Todos os mecanismos terão erros de fabricação que devem ser mantidos tão pequenos quanto possível, compatíveis com os custos. ' 8.12 Di ag ra mas de Bloco. Na execução de um projeto de um computador analógico, deve-se obter a relação entre a entrada e a saída, sob forma matemática. Conseguido isto, o projetista põe-se a mecanizar a equação usando elementos de computação padronizados. Na determinação do modo pelo qual certa equação pode ser resolvida, o projetista determina o que é conhecido por diagrama de bloco. O diagrama de bloco é feito de um conjunto de símbolos, geralmente quadrados, ou círculos, nos quais cada símbolo representa um cálculo separado, por exemplo, adição, multiplicação e integração. Esses quadrados são ligados por linhas que representamo fluxo de va riáveis de uma operação para a próxima. Geralmente é possível exprimir-se a equação em mais do que uma forma. Isto deve ser feito e também o diagrama de bloco para cada forma da equação. Deve-se selecionar então o diagrama de bloco que parece dar a melhor solução ao problema. Como um exemplo, consideremos a equação
x = um multiplicador -;=um divisor + = um adicionado r (se for usado um diferencial, a saída será dividida por 2, Q
o que foi omitido por simplicidade.) um mecanismo de elevar ao quadrado
=
Considerando as três possibilidades, pode-se ver que o primeiro e o terceiro diagramas exigem, cada um, quatro elementos, enquanto que o segundo exige somente três. Também se o valor de x for próximo de zero, o divisor no diagrama da Fig. 8.26c seria uma fonte de dificuldades. Portanto, o segundo diagrama parece ser a melhor escolha. Depois de selecionado o diagrama de bloco é necessário determinar os componentes isolados do computador. soluçõesnaalternativas para o mesmo cálculo elementar e pode-sePode fazerhaver uma diversas escolha baseada precisão desejada, nas limitações de peso e tamanho, no custo, na faixa de variáveis, nas exigências de calibração e em out ros fatores.
Há diversas maneiras de se resolver a equação z = xy. A Fig. 8.27 mostra um diagrama de bloco para a equação usando carnes logarítmicos, um adicionador
(diferencial), um paromite-se de engrenagens e carnes antilogarítmicos. Deve-senomencionar que ocasionalmente o bloco denominado par de engrenagens, diagrama de bl oco, para simplicidade, como foi feito na Fig. 8.26.
Desejando-se calcular z =xy sem o uso de carnes logarítmicos ou um multiplicador, a equação pode ser expressa usando-se o princípio dos quartos de quadrados, que estabelece que um quarto do quadrado da som a de dois números menos um quarto do quadrado de sua diferença é igual ao seu produto. Portanto, conforme mostrado na Fig. 8.28, Z =xy
••+y
2 -
(X+y)2
=
4
(X-y)2
-4 -
(••+y)2 4 -
A fim de mostrar como as diversas unidades são ligadas em um comp utador, a Fig. 8.29 apresenta um um diagrama esquemático para o arranjo dos elementos de computação do Exemplo 8.1
Billings, J. H., Applied Kinematics, 3." Edição, D. Van Nostrand Company, 1953. Lockenvitz, A. E., J. B. Olipent, W. C. Wilde e J. M. Young, "Geared to Compute". Automation, Agosto 1955. Michalec, G. W., "Ana/og Computing Mechanisms", Maehine Design, Março 19, 1959. Rothbart, H. A., Cams, John Wiley and Sons, 1956.
Soroka, W. W., Ana/og Methods ill Computatioll alld Sim ll/atioll, Me Graw-HilI Book Company, 1954. Svoboda, A., Complltillg Mechanisms anel Linkages, Me Graw-HilI Book Company, 1948.
3
Movida
log % + logy
Carnes logar(tmicos
2
Par de engrenagens U=O, 51 3
Motora 2
logar(tmicos
Movida
Carnes lantilogl
Carnes logar(tmicos 2
Motora 2
Motora
8.1 Desenvolva expressão para determinar o erro no cálculo feito pelo diferencial articulado uma mostrado na Fig. 8.2a. 8.2 Para o diferencial de engrenagens cilíndricas mostrado na Fig. 8.3b, prove que ()6 =«()2 + ()4)/2. 8.3 Em um diferencial de rosca para somas como o da Fig. 8.5, as escalas das engrenagens 2 e 3 são 45°; equivale a 1 unidade. Calcule a escala de S4 se o passo axial da rosca é 6 mm e é de duas entradas. 8.4 A vazão de um líquido através de um orifício é dada por Q
Q a
h
=3,59 x 10-5 a
Jh
= vazão (m js) = área do orifício (mm') = altura da coluna de líquido 3
(m)
Usa-se um mecanismo semelhante ao da Fig. 8.6 para a multiplicação depois que Jh tenha sido calcu~do. Faz-se A igual a 100 mm e Xl é -lh, x2 é a e 2
x3 é Q. Se a escala de é 25 mm determine a escala de Q.Jh
=
2,08 m
112
e a escala de
a
é 25 mm
=1440
mm ,
8.5 No integrador mostrado na Fig. 8.7, se o porta-esferas for acionado segundo r
=
f(l),
sendo ~~ constante, mostre que o número de voltas
()4
registrado pelo
cilindro será dado por ()4 = ~ :
A=~eB=r
(At
r
+
B)dt
°
t
8.6 Faça um esboço mostrando como interligar dois integradores de modo que a saída do segundo integrado r seja o inverso da entrada do primeiro integrador. 8.7 Usando dois integradores, interligue-os de modo que a saída do segundo integrador seja z = J xydx. 8.8 Usa-se um integrado r como um mecanismo de elevar ao quadrado, conforme mostrado na Fig. 8.9. Se o disco gira de 30° para uma unidade de deslocamento de x e a escala de y é a mesma, calcule a escala do eix o de saída z. A rosca tem uma entrada e o se u passo é de 6 mm e o raio R do cilindro é 3,2 mm. 8.9 Projete um mecanismo para gerar as funções trigonométricas seno e co-seno simultaneamente. 8.10 Prove que o ponto B na Fig. 8.13b se desloca segundo um movimento harmônico simples, ao longo da lin ha horizontal que passa por O, quando o braço 3 gira.
8.11 Desenhe um conjunto de escalas para o gerador de tangente e secante mostrado na Fig. 8.15. Fazendo A igual a 50 mm, determine a escala para a tangente e para a secante, de O a 60°em intervalos de 10°. Mostre a distância A em cada escala. 8.12 A Fig. 8.30 apresenta uma modificação do mecanismo Peaucellier. Prove que os deslocamentos x e y dos cursores são relacionados pela equação:
y
Fig. 8.30
8.13 Deve-se projetar um mecanismo de elevar ao quadrado tipo cone e cilindro, conforme mostrado na Fig. 8.19. Se o raio R4 do cilindro é 6,5 mm e o ângulo do con e é 15°, determine o avanço da polia intermediária por unidade de ° 2 para gerar a função 04 =O ~. 8.14 Determine as equações dos raios R2 e R 3 de um par de cames de contorno para a geração da função ° 3 = senO + k 0 2• Repita para ° 3 = k e (J 2 . 8.15 Determine as equações dos raios R e R de um par de cames de contorno para a geração da função 3 = k (J 2 , onde k 2> 1.3 Repita para 8 3 = loge 2 + k ) . 8.16 As equações dos raios de um par de cames de contorno são as seg uintes:
°
(°
C cos0 2 + Ck 1 + cos02 + k R
_ 3
-
C
1 + cos02 + k
2 Determine e 3 dos eixos das cames. a função que relaciona os deslocamentos angulares ° ° 8.17 Determine as equações dos eixos R.1 e R 3 de um par de cames de contorno para a geração da função ° 3 =loge cos02• E possível R2 ou R3 se tornarem nulos ou infinitos? Caso afirmativo adicione uma constante à função para evitar esses valores. 8.18 Determine as equações para os raios Ri e R2 de um par de cames de
contorno para a geração da função
°
3
= sen ( ~ ).
É possível R2 ou R3 se
tornarem nulos ou infinitos? Caso afirmativo adicione uma constante
à função
para evitar esses valores. 8.19 Deve-se projetar um par de cam es de co ntorno para a geração da função ° 3 =O~,onde ° 2 varia de 1 a 10 unidades. Calcule os raios R2 e R3 para uma distância entre centros de 75 mm, com ° 2 variando de,O°a 100°, de 10° em 10°. Desenhe as carnes em contato na posição 2, de modo semelhante ao da Fig. 8.21, em escala 2 : 1. Faça os cubos com 25 mm de diâmetro. 8.20 Deve-se projetar um par de cames de con torno para a geração da função 0 .1 = 10glO02' A distância entre centros é de 75 mm e ° 2 deve variar de 0° a 360°, de 20° em 20°. Calcule os raios R2 e R3, começando ° 2 em 60°, a fim de obter um valor em rad ianos maior do que um. Desenhe, em escala 2 : 1, as cames em contato na posição inicial. 8.21 Deve-se projetar Um par de carnes de contorno para geração da função 0J = tg ° 2, A distância entre outros é de 75 mm. Calcule os raios R2 e R3 com 02 variando de 00 a 800,de 10° em 10°. Desenhe as cames em contato na posição 2, em es cala 2: 1, de modo semelhante ao da Fig. 8.21. 8.22 A Fig. 8.31 mostra um mecanismo de computação consistindo de um par de carnes de computação, uma cremalheira e pinhão e um integrador. As cames foram projetadas para a geração da função ° 3 =sen ° 2 + ° 2, O diâmetro primitivo
do pinhão é d e o diâmetro do cilindro do integrador é D. (a) determine o ângulo 83, em graus. para uma rotação de 8 2 = 30". a partir da posição inicial das cames. (b) determine a distância entre o ponto de contato das cames e o eixo de ro tação de 82, ·para 8 2 =30". (c) deduza uma expressão para o ângulo de salda 8z do cilindro do integrador, em função de d, De 8 2 " Indique o valor de r pa ra o início da computação quando ()2 =, o . Integrador
,----------,
8z-
I I
I
J]D
---
I
4"
Fig. 8.31
8.23 Deve-se projetar uma engrenagem frontal em espiral para gerar a função ()3 = ()~ . Sendo o raio do pinhão 6,5 mm, desenhe a espiral de Arquimedes para a engrenagem frontal; para () entre 40" e 360°, de 20" em 20". Use para a origem de () um eixo ve rtical orientado para baixo. O ângulo () deve se r medido no sentido anti-horário. 8.24 Considerando a relação z = (x + y)2 - (2x - y)2, escreva esta equação soh tantas formas quanto for possível e desenhe o diagrama de bloco para cada forma da equação. 8.25 Faça os diagramas de bloco para a solução das seguintes equações:
z
z
=J
sen [~
(x
=
(ax
+ b)2 dx
+ y)]cos[~
(X-y )]
e - k[
-
R. RI + R,
+ Rc + R. + Rc
]
8.29 umnQ esquema de computação necessários para para efetuarem o Faça cálculo exemplodos8.2.elementos Use diferenciais de engrenagens cônicas adição e subtração e carnes de con torno para elevar ao quadrado. 8.30 (a) faça o diagrama de bloco para a solução da seguinte eqqação:
(b) faça um esq uema dos elementos necessários para efetuarem o cálculo. Use diferenciais de engrenagens cônicas para adição e subtração e carnes de con torno para elevar ao quadrado.
Indique todas as direções de rotação.
Introducão ,
à
Síntese ..... •
·• . •. • •
•
e••• •
••
Antt:dQr~~nte,2lo estudo dos mecanismo~.1-~_
~ \! Ç _ º-º~ _ º~
processo é chamado de síntese dos mecanismos .. Como já foi mencionado, projetar uma carne pa ra Um desejado diagrama de deslocamento é o único problema de síntese que pode ser sempre resolvido. Na aplicação da síntese par a o projeto de um mecanismo, o problema divide-se em tres partes: (a) olmo de mecanismo a ser utiliza9-Q, (b) o número de articulações e conexões necessário para produzir o movimento desejado, e, (c) ~ dirnçpsões ou comprimentos das ligações necessárias. Essas divisões são frequentemente chamadas de síntese do tipo, do nÍlIDc::rQ_t:Aa qimensões. Embora os projetistas tenham se interessado pela síntese durante muitos anos, talvez odemaior impulso desse estudo tenha advindo dogerar desenvolvimento dos mecanismos computação; é necessário freqüentemente, funções arbitrárias por meios mecânicos. Em alguns casos, um mecanismo conhecido, já existe para gerar a função, mas, muitas vezes o projetista não tem essa sorte e deve recorrer à síntese para resolver seu problema. Na aplicação da síntese, um fator que deve ser constantemente lembrado é o da p'recisão exigida do mecanismo. Algumas vezes, é po ssível projetar uma articulação que, teoricamente, deverá gerar uma dada função. Muitas vezes, contudo, o projetista deve satisfazer-se com uma aproximação dessa função. A diferença
entre a função desejada e a função que o mecanismo projetado produz é conhecida como erro estrutural. Além disso, existem os erros devidos à fabricação do mecanismo. Esses erros, resultantes das tolerâncias dos comprimentos das barras articuladas e das folgas dos pontos de articulação, são chamados de erro mecânico. Métodos para o cálculo desses erros mecânicos são dados por Hartenberg e Denavit1 e também por Garret e Ha1l 2• No início do desenvolvimento da síntese, os métodos gráficos tiveram um papel destacado. Isso deve ter sua srcem no fato de que alguns desses primeiros métodos eram, indubitavelmente, baseados em tentativa e erro que mais tarde evoluiram para métodos mais racionais. Com o contínuo desenvolvimento da síntese vários métodos analíticos foram introduzidos. Três desses métodos serão ~resentados para ilustrar os princípios envolvidos, as dificuldades encontradas e a aplica~Q_Êos métod,?~: Um método gráfico também será apresentado. 9.1 Espaçamento de Pontos de Precisão. Ao se projetar um mecanismo para gerar determinada função, é praticamente impossível reproduzi-Ia com exatidão a menos de alguns poucos pontos. Esses pontos são conhecidos como pontos de precisão
e devem poisjáserfoi lo calizados de maneira a minimizar erro geradoé estruentre esses pontos. Como mencionado anteriormente, o erro oproduzido tural e pode ser expresso como se segue:
f(x) =função g (x) =função
desejada reproduzida
9.1 éintervalo Na em Fig.um mostrado 2humcom gráfico da variação do erro estrutural de uma função gerada o centro do intervalo em x =a.
IR. S. Hartenberg e J. Denavit, Kinematic Synthens of Linkages, McGraw-Hill Book Company, 1964. 2 R. E. Garrett e A. S. Ha ll, "Effect of Tolerance and Clearance in Linkage Design," Trans. ASME, r- Vol. 91,No.l,fevereiro,1969.
:'
...~CANjSM.O,!
Qrv~ílWCkJ~ ,
Intervalo = 2h h '-h ~ ~ I ~ < +
Intervalo = ;0-10: I
21&
V il
Parte'
r.u~t ,
o erro
é zero nos pontos a •• a2 e a3, que são os pontos de precisão anteriormente mencionados. Da figura, pode-se observar que o erro máximo e I produzido pelo mecanismo indo do ponto aI para o ponto a 2 é consideravelmente menor do que o erro ~2' produzido entre a2 e a3• Usando-se uma teoria desenvolvida por Chebyshev3, é possível locar-se os pontos a •• a2 e a3 da Fig. 9.1, de tal man eira que e I =e 2• A Fig. 9.2 mostra essa localização e a Fig. 9.3 ilustra o método de locação dos três pontos sobre de precisão pelo espaçamento de Chebyshev. uma asemicircunferência o eixo x, com raio h e centro no ponto a.Traça-se Inscreve-se essa semicircunferência um semipolígono regular de maneira que dois de seus lados sejam perpendiculares ao eixo x. As linhas traçadas perpendicularmente ao eixo x, a partir dos vértices desse semipolígono determinam, no eixo, os pontos de precisão a •• a 2 e a3• A Fig. 9.4 mostra a construção no caso de quatro pontos de precisão. Pode-se observar que para três pontos de precisão, o polígono é um hexágono e para quatro pontos, um octógono. ~1 !L ºutras palavras, o número de lados do polígo~o é igual a duas vezes o número de pontos de precisão desejado. 9,2 Projeto de uma Articulação de Quatro-Barras para Valores Instantâneos de Velocidade e Aceleração Angulares. Um método foi desenvolvido por Rosenauer4, de modo que uma articulação de quatro-barras possa ser projetada para que cada ligação dê um desejado valor instantâneo de velocidade angular e de ace leração angular. Segue-se a descrição desse método. Uma articulação de quatro-barras é mostrada na Fig. 9.5, na qual as ligações são representadas por vetores que formam um polígono de or igem O. Pode-se observar que a ligação OA tilz um ângulo (}2 com a horizontal, AB tilz um ângulo (}3' CB um ângulo ()~e CO um ângulo (}1' Cada um desses ângulos é medido no mesmo sentido. Se a ligação OA tem um comprimento a, AB um comprimento b, CB um comprimento c e CO um comprimento d, o polígono fechado pode ser escrito vetorialmente como
3 R.
S. Hartenberg e J. Denavit, Kine11UltieSynthellill of Linkagell, McGraw-Hill Book Company,
1964. 4 N.
Rosenauer, "Complex Variable Method for Synthesis of Four-Bar Linkages," AUllt. J. Appl. Sei.,
Vol. 5, No. 4, pp. 305-308, 1954.
Deve-se observar que o vetor c, que representa a ligação BC, é subtraído no polígono porque o vetor está na direção CR A maneira de se facilitar o manuseio de vetores, numericamente, é representá-Ios por números complexos. Um número complexo pode ser representado graficamente por um ponto em um plano onde a parte real é marcada em um eixo hori2Dntal e a parte imaginária, sobre um eixo vertical. Na Fig. 9.6 vemos i= ponto a pode Unindo-se + bi, onde + bi à srcem, omarcado número ocomplexo ser representado por um vetoro ponto cujo coamprimento ré F i . i igual a .Jfi + b . Se o ân"gulo entre o vetor e o eixo real é c x , a equação do vetor pode ser expressa como
.2
~'! w :~ b
Eixo
real
bi, pois a &sa relação podeemsersérie dedruzida de a + de rcos o c e desenvolvimento de Maclaurin e sen = o c e cos c x , X
,
b
= rsen
oc.
Pelo
A relação acima pode ser aplicada aos vetores que representam as quatro barras. Portanto,
Se essa equ açào for derivada em relação ao tempo e as velocidades angulares brem represen tadas por
d~l
=
O,
Derivando-se outra vez em relação ao tempo e representando-se as ace lerações angulares por dw + dt
-= iX
~
dw) dt
=O ,
Se as equações 9.3, 9.4 e 9.5 forem agora representadas por suas brmas vetoriais, teremos:
A solução da5equações 9.6 podem ser obtidas ,usando-se determinantes, como se segue:
1
lJ=
-d
w2
O
(ia2 -~)
O
-1 -w* -(ia . ~
D
1 w2
c=
_(2) 4
(ia2
-~)
w3 (i~ D
-wD
=
-. O
O
=
Sendo cada vetor multiplicado pelo mesmo fator ~, consideremos
~
= - 1.
Isto é permissível porque a, b e c são todos função de C / . O sinal negativo é utilizado a fim de colocar a articulação no campo positivo. Fazendo-se essa substituição e ordenando-se de maneira que o termo imaginário apareça em últ imo lugar, temos as seguintes equações
"I
=(1).+(1)3«(1).+-
bl =(1)2(1).+«(1)2 C1
=(1)2(1)3«(1)2
d . =C1
(1)3)
-
(1).+)
-
(1)3)
- ai -bl
então os vet ores são
Uma articulação de quatro-barras deve ser projetada para os seguintes valores instantâneos:
ai = 3 . 1 (3 - 1)
=
bl
=54
=6·3(6
- 3)
6
c 1 =6'1(6
-1)=30
d 1 = 30 - 6 - 54 = - 30
+
252 = 25,71
b = ,J542
+
302 = = 61,78
c = ,J302
+ 602
d = ,J302
+.
a =
, J
62
= 67,08
52 = 30,41.
OABC. A articulação mostrada na9.7 os mostra a articulação desejada, Fig. A 9.7Fig. indica comprimentos relativos apropriados das ligações mútuas e suas posições angulares correspondentes, para darem as velocidades angulares e acelerações instantâneas desejadas.
Os co mprimentos reais das ligações podem ser alterados desde que suas proporções mútuas permaneçam as mesmas; entretanto, as posições angulares não podem ser alteradas. 9.3 Projeto de Articulação a Quatro-Barras como Gerador de Função. Freqüentemente é necessário projetar-se uma articulação para gerar uma dada função, por exemplo, y = log x. A Fig. 9.8 mostra uma articulação a quatro-barras preparada para gerar a função ly = f(x) dentro de uma determinada faixa. Como a ligação OA move-se entre os limites c P 1 e c P " com uma entrada x, a ligação BC dá os valores de y = f(x) entre os lim ites 1 /1 1 e 1/1". Pode-se perceber que na articulação existem três razões independentes que definem a proporção da articulação. Também deve ser -considerada a relação (e fatores de escala) entre c P e c P 1 e 1 /1 1 , Ao todo, existem sete variáveis que devem ser 1 /1 e os ângulos iniciais consideradas ao se p rojetar a articulação para gerar y =f(x} A magnitude da tarefa de sintetizar essa função é evidente. .
Foi desenvolvido por Freudenstein 5 um método, pelo qual uma articulação a quatro-barras pode ser projetada para gerar uma função e que é preciso para um número finito de pon tos chamados pontos de precisão mas que é aproximada entre esses pontos. Em outras palavras, a função ideal e' a função real gerada coin- :..~. , cidirão somente nos pontos de precisão. Entre esses pontos, a função real ddiRirá , l i , '\1 ((, da função ideal de um valor que dependerá da distância entre .os pontos e da . natureza da função ideal. Retomando à Fig. 9.8, a função somente será exata em 1 /1 1 e 1/1" e em um det erminado número de pontos entre esses valores. No desenvolvimento do método de Freudenstein, o primeiro passo é relaP e 1 /1 utilizando ao Fig. cionar número de relações. relacionamento pode deduzido cconsiderando-se 9.9 onde uma retaEsse paralela à ligação OA foi ser traçada pelo ponto B e uma reta paralela à ligação AB foi traçada pelo ponto O, determinando o paralelogramo OABD. As ligações formam uma figura fechada e a soma das componentes em x dos comprimentos a, b e c devem ser igual ao Sp. Preudenstein, 1955.
"Approximate Synthesis of Four-Bar Linkages,"
Trans. ASME, Vol. 77, p. 853,
ot l i
,'í
bcos
a2 -
b2
r :x = .
b2
+ d2
+ c2 + ,[2
2a c
-
cr
-
2 - 2a cc os (. p
.
2d
+
d
eC os
- l /J )
.
d
.p -
aC o s
l/ J
=
C O s(.p - l /J ).
(9.16)
onde Ri' R']. e R são três relações independentes. A equação 9.18 dá a mais 3 simples relaçã o possível entre t P e l / J . Usando essa equação, o método poderá ser agora ampliado para projetar-se uma articulação para gerar uma função que seja exata em três pontos. Para maior precisão, aproximações para quatro e cinco pontos foram desenvolvidas. Entretanto, esses sistemas são muito mais complicados e não serão aqui incluídos. Os pares de ângulos (tP, l/J) que correspondem aos pontos de precisão são substituídos na equação 9.18, dando três equações simultâneas. As re lações podem então ser determinadas para a solução dessas equaçres. Se a articulação passa por (tP l' l/JI~(tP 2' l/J 2 ) e (tP 3, l/J3~ então:
cos(tP1 -l/JI) -COS(tP2 cos(tP1 -l/JI)
-
COS(tP3-l/J3)
W1 w 6 -
w 2 Ws
W W 2 3
w tw 4
-
-l/J2)
Ws
=w 6
onde i =1, 2 ou 3. Destas relações podemos determinar os comprimentos das ligações nas equações 9.17. Na dete rminação dos comprimentos a e c, um sinal negativo deve ser interpretado no seqtido vetorial ao se traçar a articulação. ~ ~Jt,c:h\;\,,-
Exemplo9.2
~~~~,
DjW(~~
'lJ.
(\..\
~
~J
•
0i ::'1 [\
'\'"
M lJ\
1~,fWJl'
,H , f 'J
,
j( ( ,~
'Y\w,.lw. .
r(
'Q < H C ~ C '
.\ ;-
Pl
'
!rlftlLIJJ»-
Determinar uma articulação a quatro-barras para gerar Y = xl•S, onde x varia entre 1,0 e 4,0. Utilizar o espaçamento de Chebyshev e os valores: 4 > . =30°, Á 4 > =90°, t/J. =90° e j},t/J =90". Supor ti = I,Oem.
Yr =8,0
Y I = 1,317
2,5 - 1,2 3 '\)
4>3 = 4>1
+
t/J 1 = t/J.
+
t/J 2
=
t/J I
+
t/J
=
t/J
YI - Y.
Y2 - YI
= 90 + 1,317 - 1,0 x 90 = 94,08° 8,0 - 1,0
j} ,t/J
= 94,08 + 3,96 - 1,32 x 90 = 128,02° 7
j} ,t/J
= 94,08 + 7,4 - 1,32
YI - Y .
Y3 - YI
+ 3,799 3- 1,2 x 90 = 114,0°
j} ,t/J
YI - Y .
7
I + YJ - Y.
3
4>1
- COS
4>2
= 0,8087 - 0,2583 = 0,5504
= COS 4 > 1
- COS
4>3
= 0,8087 + 0,4067 = 1,2154
wI = w2
x3 - X I j},4 > = 36,03 xl- x.
COS
x 90
172,25"
=
(1)5
(1)6
=eos(
= -0,0727
= eos(
=
~,550) ~,003) - (1,215) (- 0,073) (1,215) ~,545) - ~,550) ~,920) t
......
..... ........
..
.........
.
........
..
.....
........
..
.....
.....
.....
.....
.....
.....
30-
a = --
ti
= --
Rz
cl
1,0
,578 0 1,0
= 1 73em '
c = R- = 0440 = 2,273 em I
'
.
..- .. .- .-
.....
.. . ..- .-
, , , , ,
" ,,
,
, , , , , , , ,
"" ""
" . / . /
30· "
. /
""
%2
2.5
Um outro método de síntese, usando equações de movimento, foi desenvolvido na obra de Raven. 6 Consideremos a articulação de quatro-barras, conforme a Fig. 9.12, onde 04 varia como uma função de 02' Uma equação vetorial, em ter mos de números complexos, para essa articulação pode ser assim escrita:
6 H. Haven, "Position, Velocity, and Acceleration Analysis and Kinematic Synthesis of Plane and Space Mechanisms by a Generalized Procedure Called the Method of lndependent Position Equations,"
L.C. Card No. 58-58, Univcrsity Microfilms, Ann Arbor, Michigan, 1958.
!:::I
A equação 9.21 pode, portanto, ser assim escrita:
li'
,! 'I
I;
\ 2 1 VV
'o , )
(9.22)
Separando os termos reais dos imaginários e resolvendo em funçào de (J3 e R3 sen (J3, temos: __
R3 cos
~~~I ',\ ---" j
O ângulo (J3' desconhecido, pode ser eliminado das equações 9.23, elevando-as ao qu adrado e somando membro a membro:
-
- -: > -
': ' )
\
J I
:lI
!
I'
P =tg
(R2
1
I
L
"
cos (J2 - 1) R2 sen (J2
-----
Pela complexidade da equação 9.26 é óbvio que algum outro processo, além da substituição direta, deve ser utilizado para ajustar a articulação a fim (J4' como uma função de (J2' de gerar Um método? que apresenta resultado satisfatocio é o de locar uma série de curvas de R 3 constante em eixos de coordenadas (J2 e 4, para valores dados de cQl!ht.lcida_s. como curvas de movimento. Para escolher Rz e R4, Essas ~ lIr Y ll~ l'ªº
°
I
rI.
I
120-00
180-00
Teta 2 Fig. 9.13 (Reproduzida com a permissão de R. S. Brown & H. H. Mabie, "Application or Curve Matching to Designing Four-Bar Mechanisms," Journa/ o/ Mechanisms, Volume 5, Number 4, 1971 (Winter 1970), p. 566, Pergamon Press Ltd).
•ai•
18000
~ 120-00
60-00
Df '
-
Ponto
A B C D E
-
~ onnO" 010" OU 170"01~ ~ ontro 10" o 20" ou 16Cf 0170· l'entre 20°. 3If ou 15(f.16á' 'Yentre 3d. 4f t ou 1 40 ". 15 (f 'Y maior do que 4 0" • menor do que 1
Morto
(Deed
Point J
60-00
«f.
Fig. 9.14 (Reproduzida com a permissão de R. S. Brown & H.H. Mabie, "Application or Curve Matching to Designing Four-Bar Mechanisms," JOllrna/o/ Mechanisms, Volume 5. Number 4, 1971. (Winter 1970). p. 567, Pergamon Press Ltd).
umà~ahiculação a fim de gerar uma dada função, loca-se inicialmente, em papel transparente, a curva R3 desejada, em função das coordenadas f:}J e 82, Essa curva é então superposta ao gr áfico das curvas de movimento. A curva do gráfico que melhor se adaptar à curva traçada dá a proporção aproximada da articulação. A Fig. 9.13 mostra um exemplo de curvas de movimento locadas por computador para RI =1,0, R2 =0,7 e R4 =2,0. A variação na largura das linhas da Fig. 9.13 indica valores de ângulos de transmissão de acordo com a legenda dada na Fig. 9.14 onde é mostrada apenas uma das curvas de desenvolvimento (R 3 =1,6~ tirada da Fig. 9.13. Para se obter um sistema prático, é lógico que é necessário ter-se locado curvas de movimento para muitas combinações de R2• RJ e R4. Esse sistema de síntese é conhecido como curvas combinadas e a referência citada nos dá vários exemplos desse método. 9.4 Projeto Gráfico de Articulações a Quatro-Barras como um Gerador de Funçio. Existem muitos méto~os gráfl90s de síntese já desenvolvidos. Um deles
será ap resentado aqui e outros são dados em uma excelente obra do professor A. S. HaU, da Universidade de Purdl/::8. O métod0 9 a ser discutido é aquele em que as proporções de uma articulação a quatro-barras, podem ser definidas a fim de darem uma determinada correspondência de movimento de entrada para movimento de saída, em três posições. A Fig. 9.15 mostra um esquema onde a ligação 2 de comprimento conhecido passa pelas posições AI' A2 e A3 e leva a ligação 4 (ou um ponteiro a ela ligado) às posições angulares BI' B2 e B3• A distância 0204 é também conhecidl\ e se deseja det erminar os co mprimentos das ligações 3 e 4.
O caminho mais fácil para abordar o problema é o de in verter o mecanismo, considerando-se a ligação 4 como fixa e a 1 como móvel. Enquanto o mecanismo passa por seu ciclo, é evidente que o ponto O] descreve uma circunferência de centro 04 e que o ponto A descreve uma circunferência de centro B Determi-
8 A. 9
S. Hall, Kinematics and Linkage Design, Prentice-Hall, 1961. I. E. Kass, "G raphic Linkage Design," Machine Design, December 10, 1959.
nando-se o centro desta última circunferênc~a, determina-se a posição do ponto B e, consequentemente, os comprimentos deJ e 4. A Fig. 9.16 mostra a construção gráfica para determinar o ponto B A ligação 4 é considerada fixa e a ligação 1 gira no sen tido anti-horário com centro no ponto O .P passando pelos ângulos ri e f J que são iguais*"mas de sentido oposto aos ângulos (J . e {3. O ponto 02 desloca· se para duas posiçres 02 e O ; enquanto o ponto A desloca-se para A'2 e A; (posições da rotação de A 2 e A 3)' O ponto A; é a interseção do arco de raio OzA com centro em 02 e do arco de raio 04A2 girando com centro em 04' O ponto A '3 é obtido de maneira análoga com o arco de raio 02 A e centro O ; e o arco de raio 04A3 e centro 04' Com os pontos A!, A; e A; determinados, levantam-se as mediatrizes de AlA; e de A;A;. Sua interseção define o ponto B. Embora seja possível uma solução geométrica, deve-se ressaltar que não há meios de se saber, antes que um esquema seja feito, se a solução dará um mecanismo prático. Deve-se examinar seus pontos mortos, reversres e vantagens mecânicas. Se a solução não for prática, o comprimento ou a posição da ligação 2 ou ainda o comprimento da ligação 1 devem ser mudados e faz-se uma nova tentativa. Esse método pode ser aplicado também, para uma articulação tridimensional. O leitor deve recorrer ao artigo original para encontrar a descrição desse método. Além dos métodos apresentados, existem muitos outros, analíticos ou gráficos, que podem interessar ao projetista. Segue-se uma lista parcial de referências.
Hrones, ~. A., and G. L. Nelson, Al1a/ysis of lhe Four-Bar Lil1kage. Tcchnology Prcss, M. I: T., and John Wiley and Sons, 1951. Pike, E. W., T. R. Silverberg, and P. T. Nickson, "Linkage Layout", Machine Desigl1, Vol. 23 pp. 105-110; 194, November 1951. Rosenauer, N., and A. H. Willis, Killematics of Mecha llisms, Associated General Publications, Sidney, Australia, 1953. Shaffer, B. W., and J.ASME Coch in, "Synthcsis of the Quadric Chain Whcn thc Position of Two Mcmbcrs Is Prcscribed,", Papcr 53-A-I44. Svoboda, A., ComplIling Mechanisms and Lil1kages, McGraw-HiII Book Company, 1948.
9.1 Utilizando o método de Rosenauer, projetar uma articulação a quatrobarras que dê os seguintes valores instantâneos: W1
= 6 radjseg
w3
= I rad/seg
IX.•
= 8 rad/seg
w4
= 4 radjseg
I X- +
= 4 rad /seg
Traçar um esboço do mecanismo na escala
1 X1
= Oradjseg
1
l
l
.
I cm = 10 unidades.
Utilizando o método de Rosenauer, projetar uma articulação a quatrobarras que dê os seguintes valores instantâneos: 9.2
W2
= 6 radjseg
1 X2
= 3radjseg
w
= 1rad/seg
1 X3
= 8 rad/seg2
w4
= 3radjseg
iJ(-+
3
l
= 5 rad /seg1.
Traçar um esboço do mecanismo na escala 1cm = 10 unidades. 9.3 Utilizando o método de Rosenauer, projetar uma articulação a quatro-
/"'"'
barras que dê os seguintes valores instantâneos: Wl
- 3 rad/seg
1 X1
= Orad/seg2
w3
1rad/seg
1 X3
= 10rad ;seg
w4 =
3radjseg
IX~
= 5 radjseg 2•
1
Traçar um esb oço do mecanismo na escala 1cm = 10 unidades.
9.4 Pelo método de síntese, desenvolvido por Rosenauer. um determinado sistema para certas condições cinemáticas dá as equações vetoriais seguintes para três das quatro-barras:
a)
Traçar a articulação completa na escala 1 cm = 10 unidades.
b)
Escrever a equação vetorial para C em números complexos.
9.S Uma articulação a quatro-barras foi projetada para que os vetores representativos das ligações possam ser expressos pelas seguintes equações:
Se w nauer. 2
=6
radiSeg e
=O,
!X
calcular w4 e
!X4
utilizando o método de Rose-
2
9.6 Uma articulação a quatro-barras valores instantâneos:
foi projetada para dar os seguintes
w2
= 6 rad/seg
!X
w3
= 1rad/seg
!X
w4
= 3 rad/seg
!X
2
= OradiSeg
2
= 10 rad iSeg
2
3
4
= 5radiSeg
•
2
Se a barra a for mudada para que sua eq uação seja a = 6 + 20 i. determinar a equação vetorial da barra b, supondo que os comprimentos e as posiçres das barras c e d não são alteradas. a)
9.7 Uma articulação a quatro-barras foi projetada pata que os vetores representativos das ligações possam ser expressos pelas seguintes equações:
Se w2 =6 radj'Seg e método de Rosenauer.
1X 2
=3 rad/Seg2 ,
calcular w3, w4'
1X
3
e
1X 4
utilizando o
9.8 Utilizando o método de Freudenstein, determinar a proporção de uma articulação a quatro-barras para gerar y = tg x quando x varia entre 0° e 45", Usar o espaçamento de Chebyshev. Tomar < / > s = 45°, l i < /> = 60°, "'. = 135° e li'" = 90°. Fazer um esboço da articulação com a barra fixa d = 1,0 em. 9.9 Utilizando o método Freudenstein, determinar y = articulação a quatro-barras paradegerar 10glOx, quando ax proporção varia entre de1 uma e 10. Usar o espaçamento de Ch ebyshev. Tomar < / > . = 45°, l i < /> = 60°, "'. = 135° e li'" = 90°. Fazer um esboço da articulação com a barra fixa d = 5,0 em e verificar os pontos mortos. 9.10 Utilizar o método de variáveis complexas, derivar a Eq. 9.15 do método
de Freudenstein. 9.11 O mecanismo de plaina limadora mostrado na Fig. 9.17 pode ser usado como uma função geradora de lJ 4 em função de lJ 2• Usando variáveis complexas, provar que a relação entre lJ 4 e lJ 2 é dada por lJ 4 + R 2 sen(lJ2 - lJ 4) = =O onde R =_r_2_. ,
2
0204
9.12 Utilizando a relação dada no problema anterior para o mecanismo de plaina limadora da Fig. 9.17, locar a curva de coordenadas lJ 2 e lJ 4 para os
valores constantes de
R2
= ~, 1
e 2. Supor
lJ 2
e
lJ 4
variando de - 90° a 270°.
9.13 Em uma articulação a quatro-barras, o comprimento da barra 2 é de 38 mm e ela gira no sentido horário, partindo de sua posição inicial (posição 1) a 30 ° sobre a horizonta~ para 60° (posição 2) e para 90° (posição 3~ Quando a barra 2 gira da posição 1 para a posição 2, a barra 4 gira de 13°. Quando a barra 2 gira da posição 2 para 3, a barra 4 gira de 20°. Se o comprimento da barra 1 (0204) é de SOmm, determinar graficamente os comprimentos das barras 3 e 4. Verificar o funcionamento do sistema, desenhando-o nas posições 2 e 3. 9.14 Em um a articulação a quatro-barras, o comprimento da barra 2 é de SOmm e el a gira no sentido horário, partindo de ~ua posição inicial (posição 1) a 60 " sobre a horizontal, para 90" (posição 2) e para 120" (posição 3). Quando a barra 2 gira da posição 1 para a posição 2, a barra 4 gira de 10°. Quando a barra 2 gira da posição 2 para 3, a barra 4 gira de ISO. Se o comprimento da barra 1 (°2°4) é de 76 mm, determinar graficamente os comprimentos das barras 3 e 4. Verificar o funcionamento do sistema, desenhando-o nas posições 2 e 3.
Problemas Unidades do Sistema Métrico
Capítulos 4, 5 e 6
Problemas U ni da de s do S i st em a Mé t ri co
Uma evolvente é gerada em uma circunferência de base que tem um r aio'b de 102 mm. Quando a evolvente é gerada, o ângulo que corresponde a Eva varia de O a 15°. Para incrementos de 3° par a este ângulo, calcule os ângulos de pressão a correspondentes e raios, para pontos na evolvente. Plote esta série de pontos em coordenadas polares 4.1
e ligue~s uma um curva contínuadepara representarparaa evolvente. 4.2 com Escreva programa computador o problema 4.1 fazendo, 76,2 -- 102 e 127 mm. Determine os valores correspondentes de ângulo de pressão a e raio, para cada valor de 'b. 4.3 A espessura de um dente de engrenagem evolvental é 7,98 mm com um raio de 88,9 mm e um ângulo de pressão de 14,5°. Calcule a espessura do dente e o raio em um ponto na evolvente que tem um ângulo de pressão de 25° . 4.4 Se as evolventes que formam o contorno de um dente de engrenagem forem prolongadas, seus flancos se encontrarão e o dente ficará pontudo. Determine o raio em que isto ocorre para um dente que tem uma espessura de 6,65 mm em um raio de 102 mm e um ângulo de pressão de 20° . 4.5 A espessura de um den te de uma engrenagem evolvental é 4,98 mm em um raio de 50 ,8 mm e um ângulo de pressão de 20°. Calcule a espessura do dente na circunferência de base. 4.6 Os raios primitivos de duas engrenagens acopladas são 5 1,2 e 63,9 mm e os raios externos são 57,2 e 69,9 mm, respectivamente. O ângulo de pressão é 20°. Faça um =
esquema destas engrenagens em escala 1 : 1 tal como o mostrado na Fig. 4.10, e marque o início e o fim do contato. O pinhão é a peça motora e gira no sentido horário. Deter· mine e mostre os ângulos de aproximação e afastamento para ambas as engrenagens. Desenhe as evolventes necessárias para determinar 'P F e 'PA pelo método aproximado do Apéndice. 4.7 Um pinhão de 50,Omm de raio primitivo gira no sentido horário e aciona uma cremalheira. O ângulo de pressão é 20° e a altura da cabeça do pinhão e da cremalheira é 5,0 mm. Faça um esquema, em escala 1 : 1, destas engrenagens, e assinaleo início e o fim do contato. Determine e indique os ângulos de aproximação e afastamento para o pinhão. Desenhe as evolventes necessárias para determinar 'P F e 'PA pelo método aproximado do Apéndice. 4.8 Duas engrenagens de dentes retos, iguais, com 48 dentes, engrenam-se com raios primitivos de 96,Omm e alturas de cabeças de 4,Omm. Se o ângulo de pressão é 14,5°, calculeo comprimento de ação g Q < e a razão frontal de transmissão EQ<' 4.9 A razão frontal de transmissão é definida como o arco frontal de transmissão dividido pelo passo frontal ou como a relação do comprimento de transmissão com o passo base. Prove que Arco frontal de transmissão passo frontal
Comprimento de transmissão passo base
Descreva uma equação para o comprimento de ação ga para um pinhão que comanda uma cremalheira em termos do raio primitivo" o raio base 'b, a altura de cabeça ha e o ângulo de pressão a. 4.11 Um pinhão com um raio primitivo de 38,Omm impele uma cremalheira. O ângulo de pressão é 14,5°. Calcule a máxima altura de cabeça possível para a cremalhei· ra sem haver interferência evolvental no pinhão. 4.10
4.12
Um uma pinhão com 24 dentes, módulo 2 mm,osângulo de pre ssãoraios 20°,base, dentes normais impele engrenagem de 40 dentes. Calcule raios primitivos, saliência,profundidade e espessura de dente na circunferência primitiva. 4.13 Um pinhão com 18 dentes, módulo 3mm, ângulo de pressão 25°, dentes normais, impele uma engrenagem de 45 dentes. Calcule os raios primitivos, raios base, alturas de cabeça e de pé e a espessura do dente na circunferência primitiva. 4.14 Um pinhão de 42 dentes, módulo 0,2 mm, ângulo de pressão 120°, dentes normais, impele uma engrenagem de 90 dentes. Calcule a razão frontal de transmissão. 4.15 Se os raios de um pinhão e uma engrenagem são aumentados tal que cada um se torne uma cremalheira, o comprimento de transmissão, teoricamente, se toma um má· ximo. a equação para o comprimento transmissão sob normais estas condições calculeDetermine a razão frontal de transmissão máxima para de sistemas de dentes com ân· e gulos de pressão 14,5° ,20° e 25° . 4.16 Um pinhão com 20 dentes, módulo 6mm, ângulo de pressão 20°, dentes rebaixados, aciona uma cremalheira. Calcule o raio primitivo, raio base, altura de trabalho, altura total e a espessura dos dentes da cremalheira na linha primitiva. 4.17 Uma cremalheira de dentes normais, ângulo de pressão de 20°, tem uma saliéncia de 6,Omm. Calcule o passo base e mostr e-o como uma dimensão da cremalheira, em escala 1 : 1.
Determine o número de dentes em uma engrenagem evolvental de dentes retos, normais, ângulo de pressão 14,5°, tal que os diãmetros das circunferências de base e de pé sejam iguais. 4.19 Determine para um par de engrenagens de dentes retos: (a) uma equação para a distância entre eixos a como função dos números de dentes e do diametral pitch. (b) as várias combinações de engrenagens de dentes normais, ângulo de pressão 20°,que 4.18
podem ser usadas para operar uma distância entresereixos de 120 mmecom uma razão de velocidades angulares de 3: 1.a O módulo não deve inferior a 2mm as engrenagens não podem ser adelgaçadas.As engrenagens devem ser fresadas. 4.20 Um pinhão com 30 dentes, normais, ângulo de pressão 25°, módulo 4mm, impele uma cremalheira. Calcule o comprimento de transmissão e a razão frontal de transmissão. 4.21 Um pinhão com 24 dentes, módulo 12mm, ângulo de pre ssão 20°, dentes normais, aciona uma cremalheira. Se o pinhão gira no sentido anti-horário, a 360 rpm, determine, graficamente, a velocidade de deslizamento entre um dente do pinhão e da cremalheira no início do contato, no ponto primitivo e no fim do contato. 4.22 Duas árvores, cujos eixos estão afastados de 216mm devem ser acopladas com engrenagens de dentes retos com uma razão de velocidades angulares de 15: 1. Usando um módulo 4mm, selecione dois pares de engrenagens que melhor se ajustem aos requisitos acima. Que modificação teria que ser tolerada nos dados para cada co n· junto utilizado? 4.23 Uma ferramenta fresa, dentes normais, módulo 3mm, ângulo de pressão 14,5°, é usada para usinar uma engrenagem de dentes retos. A ferramenta tem hélice à direita com um ângulo de 2°40', um comprimento de 75 mm e um diâmetro externo de 75mm. Faça um esquema em escala 1: 1 da ferramenta, usinando uma engrenagem de dentes retos de 48 dentes. O disco da engrenagem tem 38 mm de espessura. Mostre o cilindro primitivo da ferramenta sobre o disco de engrenagem com o passo da hélice da fresa em correta relação com o passo frontal do dente da engrenagem. Mostre três dentes da engrenagem e 1 1/2 voltas da hélice da fresa: posicione estes elementos por meio do passo frontal. Assinale os eixos da fresa e do disco da engrenagem, o ângulo de avanço da ferramenta e a direção de rotação da fresa e do disco de engrenagem. 4.24 Para um ângulo de pressão de 22,5° no sistema de dentes normais, calcule o número mínimo de dentes para um pinhão engrenar·se com uma cremalheira sem interferência evolvental. Também calcule o número de dentes em um pinhão para engrenar·se com uma engrenagem de igual tamanho sem interferência evolvental. 4.25 Um pinhão comdentes. 24 dentes, módulo 3 mm, ângulo de de pre ssãoque 20°,a circunimpele uma engrenagem com 56 Determine o raio de cabeça modo ferência de cabeça de cada engrenagem passe pelo ponto de interferência da outra. Calcule o valor de k para cada engrenagem. 4.26 Duas engrenagens iguais, módulo 5 mm, ângulo de pressão 20°, engrenamse de modo que a circunferência de cabeça de cada uma passa pelo ponto de interferência da outra . Se a razão frontal de transmissão é 1,622 calcule o número de dentes e o raio de cabeça para cada engrenagem. 4.27 Duas engrenagens evolventais, ângulo de pressão 20°, são montadas à distância entre eixos de referência. A circunferência de cabeça de cada engrenagem passa
pelo ponto de interferência da outra. Deduza urna equação para k como função de z, onde z é o número de dentes e k urna constante que quando dividida pelo diametral pitch é a saliência. 4.28 No esquema de urna engrenagem mostrado na Fig. 4.25, os dentes têm ângulo de pressão de 20° e são normais. Se o diâmetro primitivo é 125mm e o módulo 5 mm, calcule o raio do pino que fica em cont ato com o perfil no ponto principal. Calcule o diâmetro m medido sobre dois pinos opostos.
4.29 Um pinhão com 40 dentes, módulo 2,5 mm, ângulo de pressão 14,5°, den. tes normais, é montado com urna cremalheira, sem folga. Se a cremalheira é afastada 1,27mm calcule o jogo primitivo produzido. 4.30 Um pinhão com 18 dentes, módulo 2mm, ângulo de pr essão 20°, dentes normais, impele urna engrenagem de 54 dentes. Se a distância entre eixos com que as engrenagensoperam é 73,27 mm, calcule o ângulo de pressão de funcionamento. 4.31 Um pinhão com 36 dentes, normais, módulo 2,5 mm, ângulo de pressão 14,5°, impele urna engrenagem com 60 dentes. Se a distância entre eixos é aumentada em 0,650mm, calcule (a) os raios das circunferências primitivas de funcionamento, (b) o ângulo de pressão de funcionamento e (c) o jogo primitivo produz ido. 4.32 Um pinhão com 24 dentes J;ebaixados, módulo 6 mm, ângulo de pressão
20°, aciona urna engrenagem de 40 dentes. Calcule (a) a distância entre eixos máxima teórica com que estas engrenagens podem operar separadas para continuar a haver movi-
mento e (b) o jogo primitivo nas novas circunferências primitivas quando as engrenagens são separadas da distância calculada em (a). 4.33 Um pinhão com 24 dentes tem uma espessura de den tes de 6,477mm em um raio primitivo de 37~ mm e um ângulo de pressão de 20°. Uma engrenagem de 40 dentes tem uma espes sura de dentes de 5,842mm em um raio primitivo de 63,Omm e um ângulo de pressão de 20°. Calcule o ângulo de pressão e a distância entre eixos se estas engrenagenssão montadas sem jogomódulo primitivo. 4.34 Um pinhão de 20 dentes, 2~ mm, ângulo de pressão 20°, impele uma engrenagem de 45 dentes. Usando um computador, calcule o jogo primitivo produzido quando a distância entre centros é aumentada de 81,25 para 82,00 mm em inc rementos de 0,025 mm. 4.35 Um pinhão de 34 dentes, módulo 0,3 mm, impele uma engr enagem de 60 dentes. Se a distância entre centros é aumentada de 0,127 mm, compare o jogo primitivo produzido utilizando os ângulos de pressão de l4~0, 20° e 25°.
Um pinhão com 12 dentes deve ser usinado por uma fresa de dentes normais, ângulo de pressão 20°, módulo 12mm. Faça um esquema teórico dos dentes do pinhão e da cremalheira em montagem padronizada, como mostra a Fig. 5 .2a. Desenhe a evolvente do pinhão pelo método aproximado mas não trace os flancos do dente do pinhão. Mostre o efeito, no dente do pinhão, de afastar a cremalheira básica até que sua linha de cabeça passe pelo ponto de interferência. Esta disposição deve ser mostrada tracejada e sobreposta ao primeiro esquema com o lado do dente da cremalheira passando pelo ponto primitivo. Indique a circunferência de base, a circunferência primitiva de corte, afastamento da ferramenta, ângulo de pressão e linhas _primitivas(de corte e padronizada) da cremalheira. 5.2 Um pinhão de 24 dentes deve ser usinado por uma fresa de dentes normais, ângulo de pressão l4~0, módulo 2~ mm. Calcule a distância mínima que a ferramenta terá que ser afastada para evitar o adelgaçamento. Calcule o raio da circunferência pri. mitiva de corte e a espessura do dente nesta circunferência. 5.3 Uma engrenagem de 26 dentes deve ser usinada por uma fresa de dentes normais, ângulo de pressão 20°, módulo 3,5 mm. Calcule a máxima distância que a ferramenta deve avançar no disco da engrenagem sem causar adelgaçamento. Calcule o raio 5.1
da circunferência primitiva de corte e a espessura de dente nesta circunferência. 5.4 Uma engrenagem de 16 dentes é cortada por uma fresa de dentes normais, ângulo de pressão 20°, módulo 6 mm, que foi afastado de 0,5000 mm. Determine se este afastamento é suficiente para eliminar o adelgaçamento. Se assim for, calcule a espessurade dente na circunferência primitiva de corte e na circunferência de base. 5.5 Uma engrenagem de 35 dentes deve ser cortada com uma fresa de dentes normais, ângulo de pressão 20°, módulo 6 mm. Calcule a alteração da ferramenta a partir da posição de referência para ser obtida uma espessura de dente de 10,2mm em uma circunferência para a qual o ângulo de incidência frontal é 20°.
pinhão de módulo 20 dentes4mm. deve ser cortado uma fresa dentesdanormais, ângulo5.6 deUm pressão 20°, Qual será apor alteração na de posição ferramenta
para ser obtida uma espessura de dente de 6,960mm em uma circunferência para a qual o ângulo de incidência frontal é de 14,5°? 5.7 Um pinhão de 20 dentes deve ser cort ado por uma fresa de dentes normais, ângulo de pressão 20 0, módulo 4mm. Calcule a espessura mínima de dente que pode ser obtida sobre uma circunferência para a qual o ângulo de incidência frontal é de 14,50. O dente não deve ser adelgaçado. 5.8 Um pinhll'o com 11 e uma engrenagem com 14 dentes foram cortados por uma fresa de dentes normais, ângulo de pressão 20 0, módulo 3 mm. Para evitar adelgaçamento a fresa foi afastada de 1,0698 mm no pinhão e 0,5434 mm na engrenagem. Calcule o ângulo de pressão e a distância entre eixos em que estas engrenagens operarão. Determine a diferença entre a distancia entre eixos calculada acima e a distância de referência, comparando-a com xml + xm2. 5.9 Prove que
(xml +xm2)
5.10 Um pinhão de 12 e uma engrenagem de 15 dentes devem ser cortados com uma fresa de dentes normais, ângulo de pressão 20 0, módulo 6mm, para operar em uma distância entre eixos de 83,50mm. Determine se estas engrenagens podem ser cortadas sem adelgaçamento para operar nesta distancia entre eixos. 5.11 Usando os dados do exemplo 5.2, calcule os raios de cabeça dos discos das engrenagens,a profundidade de corte e a razão frontal de transmissão. 5.12 Um pinhão e uma engrenagem de 13 e 24 dentes, respectivamente, devem ser cortados por uma fresa de dentes normais, ângulo de pressão 20 0, módulo 6 mm, pa· ra operar em uma distância entre eixos de 115,9mm. Calcule o ângulo de pressão em que as engrenagens operarão e os valores de xml e xm2. Faça xml e xm2, inversamente proporcionais ao número de dentes. Verifique se xml é grande o suficiente para evitar o adelgaçamento. Determine os raios de cabeça dos discos das engrenagens, a profundidade de corte e a razão frontal de transmissão. 5.13 Usando os dados do exemplo 5.3 verifique se o valor de xml é suficiente para evitar o adelgaçamento. Calcule os raios de cabeça dos discos das engrenagens, a profundidade de corte e a razão frontal de transmissão. 5.14 Um pinhão de 12 dentes tem uma espessura de dente de 6,624mm em sua circunferência primitiva de corte. Uma engrenagem de 32 dentes que se engrena com ele temasespessura de dente 4,372mm em sua primitiva de de corte. ambas engrenagens foramde cortadas por uma fresacircunferência de dentes normais, ângulo pres-Se 0 são 20 , módulo 3,5 mm, calcule a correção xm usada para usinar cada engrenagem e o ângulo de pressão de funcionamento. 5.15 Um pinhão com 35 dentes, não padronizado, tem uma espessura de dente de 4,604 mm em um raio de 61 ,25 mm e um ângulo de incidência frontal de 20 0. O pinhão se engrena com uma cremalheira no raio de 61,25 mm com jogo primitivo zero. Se a cremalheira tem ângulo de pressão de 20 0, dentes normais, módulo 3,5 mm, calcule a distância do centro de pinhão à linha primitiva de referência da cremalheira.
5.16 Um pinhão de 11 dentes deve acionar uma engrenagem de 23 dentes com uma distância entre eixos de 54,Omm. Se as engrenagens são cortadas por uma fresa de dentes normais, ângulo de pressão 20°, m6dul0 3mm, calcule o valor de xml e xm2 de modo que o início do contato durante o corte do pinhão ocorra no ponto de interferência do pinhão. 5.17 Um pinhão com 20 dentes, ângulo de pressão 20°, módulo 2,5 mm, acioÉ nena uma engrenagem com 30 dentes com uma distância entre eixos de 62,5 mm. cessário substituir estas engrenagens por um par que tenha uma relação de velocidades 1 1/3: 1 e ainda mantenha a mesma distância entre eixos. Usando a mesma ferramenta que usinou as engrenagens srcinais, selecione um par de engrenagens que se afastem o menos possível das éngrenagens padronizadas. Determine as correções das engrenagens, os raios de cabeça e a profundidade de corte. 5.18 É necessário conectar dois eixos cuja distância entre centros é 99,06mm com um par de engrenagens de dentes retos tendo uma relação de velocidade de 1,25 : 1. Usando uma fresa de dentes normais , ângulo de pressão 20°, m6dulo 2,5 mm, recomende um par de engrenagens cuja relação de velocidades angulares se aproxime tanto quanto possível de 1,25: 1 sem apresentarem adelgaçamento. Calcule as correções das engrenagens, os diâmetros externos, profundidade de corte e a razão frontal de transmissão. 5.19 Um pinhão e engrenagens de 27 e 39 dentes, respectivamente, devem ser cortados por uma fresa de dentes normais, ângulo de pressão 20°, módulo 4mm, para serem obtidos dentes com saliênciasdiferentes. A fresa é afastada de 0,720 mm. Determine para cada engrenagem o diâmetro primitivo, o diâmetro de cabeça, a profundidade de corte e a espessura de dente na circunferência primitiva. 5.20 Um par de engrenagens de saliências diferentes de 18 e 28 dentes é cortado por uma fresa de dentes normais, ângulo de pressão 20°, módulo 4mm, com coneção 1,524mm. Compare a razão frontal de transmissão destas engrenagens com a de um par de engrenagenspadronizadas de mesmos passo e números de dentes. 5.21 Um pinhão de dentes normais, ângulo de pressão 200., módulo 1,25 mm, com 30 dentes, deve engrenar-se com uma engrenagem de 40 dentes, à distância entre eixos de referência. Sendo necessário um jogo primitivo de 0,1016mm, calcule quanto a ferramenta deve avançar no pinhão e na engrenagem, para ser obtido este jogo. Suponha que os dentes de ambas as engrenagens devam ter suas espessuras diminuídas da mesma quantidade. 5.22 Um pinhã"ocom 20 dentes, ângulo de pressão 20°, módulo 3mm, deve se engrenar com uma engrenagem de 40 dentes em uma distância entre eixos de 90,52mm. Se a ferramenta é recuada de 0,2271 mm quando cortando o pinhão e 0,1096mm quando cortando a engrenagem, calcule o jogo primitivo produzido. 5.23 Duas engrenagens de saliências diferentes de 18 e 30 dentes, respectivamente, cortadas com uma fresa, ângulo de pressão 20°, módulo 4 mm, são projetadas para ter jogo primitivo zero quando a ferramenta é afastada de 1,2700 mm. Calcule os valores de xm e xm2 se estas engrenagens forem modificadas para terem jogo de 0,1270 mm su1
pondo que os dentes sejam estreitados da mesma quantidade.
5.24 Um pinhão de 18 dentes, ângulo de pressão 20°, módulo 2 mm, aciona uma engrenagem de 42 dentes. Sendo de ação de semi-afastamento, calcule a relaçã9 entre os comprimentos de afastamento e de aproximação. 5.25 Duas engrenagens de ação de semi-afastamento se engrenam sem jogo primitivo. O pinhão tem 20 e a engrenagem 48 dentes. Se as engrenagens são cortadas com uma fresa, ângulo de pre ssão 20°, módulo 2,5 mm, calcule a razão frontal de transmissão. 5.26 Um par de engrenagens de ação de afastamento deve ser projetado para funcionar sem jogo primitivo. O pinhão deve ter 20 e a engrenagem 44 dentes e devem ser cortados com uma fresa, ângulo de pressão 20°, módulo 3 mm. Calcule se pode ser obtida uma razão frontal de transmissão de 1,40, usando engrenagens de ação de afastamento completo ou semi-afastamento, ou ambos.
6.1 Um par de engrenagens cõnicas de dentes retos tem uma relação de velocidade W. /W2 e as li nhas de centro de seus eixos se interceptam segundo um ângulo ~. Se cunsiderannos as distâncias x e y a partir do ponto de interseção, ao longo dos eixos, prove que a diagonal de um paralelogramo com lados x e y será a geratriz comum dos cones primitivos das engrenagens. 6.2 Uma coroa cõnica de dentes retos tipo Gleason, com 24 dentes, módulo 5,08 mm, é acionada por um pinhão de 16 dentes. Calcule o diâmetro e o ângulo primitivos do pinhão, a saliência e a p rofundidade, a largura do denteado e o diimetro primitivo da engrenagem. Faça um corte axial, em verdadeira grandeza, do pinhão e engrenagem acoplados, usando dimensões adequadas para os cubos e nervuras como mostra a Fig. 6.70. 6.3 Uma coroa cõnica de dentes retos tipo Gleason, com 48 dentes, módulo 2,12mm, é impelida por um pinhão de 24 dentes. (a) calcule o ângulo primitivo do pinhão e o ângulo entre eixos. (b) faça um esboço (em escala) dos cones primitivos das duas engrenagens acopladas. Mostre o cone complementar de cada en grenagem e assinale-os, bem como os cones primitivos. 6.4 Um par de engrenagens cõnicas com eixos ortogonais, iguais, tipo Gleason, tem 20 dentes e um módulo 6,35 mm. Calcule o diâmetro primitivo, a saliência e a profundidade, a largura do denteado, o comprimento da geratriz, o. ângulo de cabeça, o ângulo de pé e o diâmetro de cabeça. Faça um es boço do corte axial, em verdadeira grandeza, das engrenagens acopladas, usando proporções razoáveis para o cub o e a nervura como mostra a Fig. 6.70. Faça o desenho com os valores calculados. 6.5 Um pinhão cõnico de dentes retos, tipo Gleason, com 21 dentes, módulo 4,23 mm, impele uma engrenagem de 27 dentes. O ângulo entre eixos é 90°. Calcule o ângulo primitivo, a saliência e a profundidade e a largura do de nteado para cada en grenagem. Faça um esboço do corte axial' em verdadeira grandeza, das engrenagens acopladas usando dimensões adequadas para o cubo e a nervura como mostra a Fig.
6.70.
6.6 Um pinhão cõnico de dentes retos, tipo Gleason, com t40en , dulo 6,35 mm, impele uma engrenagem de 20 dentes. O ângulo entre eixos é 90°. Calc e
a saliência e a profundidade e espessura do dente para cada engrenagem, e ainda os raios primitivos e de base das engrenagens cilíndricas retas equivalentes. Faça um esboço das engrenagens equivalentes, em verdadeira grandeza, mostrando dois dentes em contato como na Fig. 6.7 b. 6.7 Um pinhão cônico de dentes retos, tipo Gleason, COm 16 dentes, módulo 5,08 mm, aciona uma engrenagem de 24 dentes. O ângulo entre eixos é 45°. Depois de fazere os necessários, corte axial,razoáveis em verdadeira grandeza, do pinhão da cálculos engrenagem acopladosesboce usandoumproporções para o cubo e as nervuras como mostra a Fig. 6.70. 6.8 Um par de engrenagens cônicas de dentes retos, tipo Gleason, acopla-se com ângulo entre eixos de 75°. O módulo é 2,54mm e os números de dentes do pinhão e da engrenagem são, respectivamente, 30 e 40. (a) calcule os ângulos primitivos e as saliências e as profundidades do pinhão e da engrenagem. (b) faça um es boço, em verdadeira grandeza, dos cones primitivos e complementares das duas engrenagens em contato. Assinale os cones primitivos, os cones complementares e os ângulos primitivos de ambas engrenagens. (c) destaque, no esboço, a saliência e a profundidade do pinhão, assinalando-os clararnente. 6.9 Prove, com a ajuda de um e sboço adequado, que em uma en grenagem cônica de dentes retos, tipo Gleason, o ângulo de cabeça do pin hão é igual ao ângulo de pé da engrenagem e que 0a ° + 0a' 6.10 Uma engrenagem helicoidal de 14 dentes deve ser cortada por uma fresa de dentes normais, ângulo de pressão 20°, módulo 2,5 mm. Calcule: (a) o ângulo mínimo de hélice que esta engrenagem deve ter a fim de ser cortada, com montagem padronizada, sem adelgaçamento. (b) quanto terá que ser afastada a fresa pa ra evitar o adelgaçamento se o ângulo de hélice for 20°. =
6.11
Um pinhão helicoidal 12 dentes cortado decom fre sa dentes normais, ângulo de pressão 20°, de módulo 3 mm.deve Se ser o ângulo hél uma ice for 20°de, calcule quanto a fresa deve ser afastada para evitar o adelgaçamento. 6.12 Duas engrenagens cilíndricas de dentes retos, iguais, com 48 dentes, largura do denteado de 25, 4 mm e módulo 4 rnm, acoplam-se no acionamento de uma máquina de fad iga. Calcule o ângulo de hélice de um par de engrenagens helicoidais para substituir as engrenagens cilíndricas se a largura do denteado, distância entre centros e relação de velocidades devem permanecer as mesmas. Use as seguintes ferramentas: (a) pinhão com módulo 4 mm, (b) fresa com módulo normal 4 mm. 6.13 Duas engrenagens cilíndricas de dentes retos normalizadas foram cortadas com uma fresa de dentes normais, ângulo de pre ssão 20°, módulo 2,5 mm, para terem uma relação de velocidades de 3,5: 1 e distância entre eixos de 168,75 mm. Deve-se usinar engrenagens helicoidais com a mesma ferramenta para substituirem as cilíndricas, mantendo-se a mesma distância entre eixos e mesma relação de velocIãaâes. rmine o ângulo de hélice, números de dentes e largura do denteado das novas engrena ens, mantendo o ângulo de hélice em um valor mínimo. 6.14 Duas engrenagens cilíndricas de dentes retos devem ser substituídas or engrenagens helicoidais. As retas foram cortadas por uma fresa de dentes' ais, ângulo de pr essão 20°, módulo 3 mm, têm relação de velocidades de 1,75 : 1 e a distância en-
tre eixos de 132 mm. As engrenagens helicoidais devem ser cortadas com a mesma fresa
e manter a mesma distância entre eixos. O ângulo de hélice deve ficar entre 15° e 20° e a relação de velocidades entre 1,70 e 1,75. Determine os números de dentes, ângulo da hélice e relação de velocidades. 6.15 Em uma caixa de engrenagens, duas engrenagens cilíndricas de dentes retos padronizadas (m6dulo 1,5 mm e ângulo de pressão 20° , dentes normais) com 36 e 100 dentes são acopladas à distância entre eixos padronizada. Decide-se substituí-Ias por engrenagens a helicoidais com ângulo hélice de 22°eixos e os se mesmos números de Determine variação necessária na de distância entre as engrenagens sãodentes. cortadas (a) com uma fresa de dentes norr.lais, ângulo de pressão 20°, módulo 1,5 mm, (b) com uma ferramenta pinhão (Fello\ 's) de 20° , m6dulo 1,5 mm. 6.16 Um par de engrenagens helicoidais, eixos paralelos, deve ser cortado com uma fresa, de dentes normais, ângulo de pressão 20°, módulo 3 mm. A relação de velocidades angulares deve aproximar-se tanto quanto possível de 2: 1. O ângulo de hélice deve ser 20° e a dis tância entre eixos deve ficar entre 152,40 mm e 158,75 mm. Calcule o passo frontal e o m6dulo no plano de rotação. Determine os números de dentes, diâmetros primitivos e distância entre eixos. 6.17 Um pinhão cilíndrico de dentes retos com 20 dentes, m6dulo 2~ mm, aciona duas en grenagens, uma com 36 e outra com 48 dentes. Deseja-se substituir as três engrenagens por engrenagens helicoidais e mudar a relação de velocidades entre os eixos das engrenagens de 20 e de 48 dentes para 2: 1. A relação de velocidades e a distância centros entre os eixos das engrenagens de 20 e de 36 de ntes devem permanecer as m smas. Usando uma fresa de dentes rebaixados, ângulo de pressão 20°, módulo 3 mm, e antendo o ângulo de hélice tão pequeno quanto possível, determine o número de ) ntes, ângulo de hélice e seu sentido, largura do denteado e diãmetro de cabeça para cada engrenagem. Calcule a variação na distância de centros entre os eixos onde originalmente vêm montadas as engrenagens de 20 e 48 dentes. 6.18 Um pinhão cilíndrico de dentes retos, 24 dentes, módulo 2mm, impele duas engrenagens, uma com 36 e a o utra com 60 de ntes. É necessário substituir as três engrenagens por helicoidais, mantendo as mesmas relações de velocidades e distância entre eixos. Usando uma fresa de dentes rebaixados, ângulo de pressão :'.0°, módulo 1,5 mm e mantendo o ângulo de hélice tão baixo quanto possível, determine o número de dentes, ângulo de hélice e seu sentido, largura do denteado e diâmetro de cabep para cada engrenagem. 6.19 Dois eixos paralelos devem ser conectados por um par de engrenagens helicoidais (engrenagens 1 e~2). relação de velocidades angulares ser 1,25 : helicoidal 1 e a distância entre eixos, 114,3 mm.A A engrenagem 2 deve impelir umadeve engrenagem 3 cujo eixo faz um ângulo reto com o da 2. A relação de velocidades angulares entre as engrenagens 2 e 3 deve ser 2: 1. Usando uma fresa, dentes normais, ângulo de pressão 20°, módulo 2,75 mm, determine o número de dentes, ângulo de hélice e diãmetro primitivo de cada engrenagem e a distância entre eixos Q2 3. 6.20 Dois eixos paralelos devem ser conectados por um par de engrenagens helicoidais (engrenagens 1 e 2). A relação de velocidades angulares deve ser 1,75 : 1 e a distância entre eixos 69,85 mm. A engrenagem 2 deve im pelir uma terceira engrenagem helicoidal (engrenagem 3) com uma relação de velocidades angulares 2: 1. Três fresas
estão disponíveis para cortar as engrenagens: fresa A (módulo 3,5 mm, ângulo de pres-
são 20°, dentes normais), fresa B (módulo 2,75 mm, ângulo de pressão 20°, dentes normais) e fresa C (módulo 2 mm, ângulo de pressão 20°, dentes normais). (a) es colha a fresa que resulte no menor ângulo de hélice ~. (b) que fresa permitirá a menor distância entre eixos 023, entre os eixos 2 e 3, mantendo um ângulo de hélice menor do que 35°? 6.21 A fórmula para a distância entre eixos de duas engrenagens cilíndricas
de
dentes retos ou helicoidais é dada por 0= [(ZI + z2)/2]m, onde o depende dos números de dentes das engrenagens Z I e Z2 e do mód ulo m. Mostre que 023 independe de m para três engrenagens (dentes retos, paralelas e helicoidais) acopladas cuja distância entre eixos 012 e relações de velocidades angulares WI /W2 e W2/W3são conhecidas. 6.22 Duas engrenagens cilíndricas de dentes retos, ângulo de pressão 20°, dentes normais, módulo 1,5 mm, com 36 e 90 dentes devem ser substituídas por engrenagens helicoidais. A distância entre eixos e a relação de ve locidades angulares devem permanecer as mesmas. Se a largura das engrenagens não pode exceder 12,7 mm devido às limitações de es paço, determine um par de en grenagens helicoidais que mantenha o ângulo de hélice tão pequeno quanto possível. Use uma fresa de dentes normais, ângulo de pressão 20°, módulo 1,5 mm e determine os números de dentes, ângulo de hélice, largura do denteado e diâmetros de cabeça. 6.23 Duas engrenagens cilíndricas de dentes retos, ângulo de pressão 20°, módulo 1,5 mm, com 32 e 64 dentes normais devem ser substituídas por engrenagens helicoidais. A distância entre eixos e a relação de velocidades angulares devem permanecer as mesmas. Se a largura das engrenagens não pode ultrapassar 11,11 mm devido a limitações de espaço, determine qual das seguintes fresas deve ser usada, mantendo o ângulo de hélice tão pequeno quanto possível: fresa A (módulo 1,5 mm, ângulo de pressão 20°, dentes normais) ou fresa B (módulo 1,25 mm, ângulo de pr essão 20°, dentes normais). Determine ainda os nú meros de dentes, ângulo de hé lice, largura do de nte ado e diâm etros de cabeça. 6.24 Dois eixos paralelos devem ser conectados por um par de engrenagens helicoidais (engrenagens 1 e 2). A relação de velocidades angulares deve ser 1 1/3: 1 e a distância entre eixos 88,90mm. Considerando que há disponibilidade de fr esas com módulos de 2 a 4m m (inclusive), tabule os números de dentes, ângulo de hélice e largura do denteado para as várias combinações (de ZI e Z2) que satisfaçam às condições dadas. Qual é o melhor conjunto para este acionamento? Por quê? Faça o menor número de dentes 15 para a menor engrenagem quando mn 6. =
6.25 Dois eixos reversos, com ângulo de 90°, devem ser conectados por engrenagens hel icoidais. A relação das velocidades angulares deve ser 1 1,5 : 1 e a distância entre eixos 127,Omm. Supondo que as engrenagens tenham ângulos de hélice iguais, calcule o módulo de uma ferramenta para gerar 20 dentes no pinhão se ela for (a) uma fresa e (b) uma ferramenta pinhão (Fellows). 6.26 As eng renagens helicoidais abaixo, cortadas com uma fresa de dentes normais, ângulo de pressão 20°, módulo 2 mm, são acopladas sem jogo primitivo. Engrenagem 1 - 36 den tes, hélice à direita, ângulo de hélice 30° Engrenagem 2 - 72 dentes, hélice à esquerda, ângulo de hélice 40°
Determine o ângulo dos eixos, a relação das velocidades angulares e a distância entre eixos. 6.27 Dois eixos reversos, com ângulo de 90° são conectados por engrenagens helicoidais (engrenagens 1 e 2), cortadas com fresa de den tes normais, ângulo de pressão 20°, 2 mm. mm Ambas hélice à direita e a relação de ve locidades angulares d2 15 : 1.módulo 131,64 e (3têm 1 60°. Uma modificação de projeto requer uma reduçãoé do diâmetro de ca beça da engrenagem 1 de 6, 35 mm para propiciar folga no fundo do dente para um novo componente. Supondo que a mesma fresa deva ser usada para cortar qualquer nova engrenagem, mostre que o diâmetro de cabeça da engrenagem 1 pode ser reduzido sem modificar a relação de velocidades, o ângulo entre eixos e os números de dentes das engrenagens ZI e Z2. O diâmetro de cabeça da engrenagem 2 e a distância entre eixos podem ser alterados se necessário. Na análise, calcule e compare os seguintes dados para as engrenagens originais e novas: a I 2 , di, d 2 , Z I , Z 2 , (3 1 , (3 2 • 6.28 Uma engrenagem helicoidal com 21 dentes módulo normal 4 deve im pelir uma engrenagem cilíndrica de dentes retos. A relação das velocidades angulares deve ser 2 : 1 e o ângulo entre eixos 45° . Determine os diâmetros primitivos para as duas engrena· gens e o ângulo de hélice para a engrenagem helicoidal. Faça um esboço, em verdadeira grandeza, das duas engrenagens (cilindros primitivos) em contato, semelhante ao da Fig. 6.20, com o pinhão acima da engrenagem: a largura das engrenagens deve ser 25, Omm. Mostre as geratrizes dos dentes em contato e também uma geratriz no cone de cabeça do pinhão. Assinale e dimensione os ângulos de hélice e entre eixos. 6.29 Dois eixos reversos devem ser conectados por engrenagens helicoidais. A relação das velocidades angulares deve ser 1,5 : 1 e a distância entre centros de 215,9 mm. Se está disponível uma engrenagem de um tra balho anterior, com 30 den tes, ângulo de hélice 30° e módulo normal 5, calcule o ângulo entre eixos que deve ser usado. Ambas as engrenagens podem ter o mesmo sentido de hélice e a de 30 dentes pode ser o pio nhão. 6.30 Dois eixos reversos são conectados por engrenagens helicoidais. A relação de velocidades é 1,8: 1 e o ângulo entre eixos 45°. Se di 57,735 mm e d2 93,175 mm, calcule os ângulos de hélice sabendo que ambas as engrenagens têm o mesmo sentido da hélice. =
=
=
=
6.31 Dois eixos reversos, com ângulo de 90°, devem ser conectados por engrena· gens helicoidais. A relação de velocidades angulares deve ser 1,5: 1 e a distância entre centros, de 125,0 mm. Selecione um par de engrenagens cortados por ferramenta pinhão (Fellows). 6.32 Dois eixos reversos devem ser conectados por engrenagens helicoidais. A relação de velocidades é 3: 1, o ângulo entre eixos 60° e a distância entre centros, 254,Omm. Se o pi nhão tem 35 dentes e um módulo normal 3, calcule os ângulos de hélice e diâmetros primitivos sabendo que as engrenagens têm o mesmo sentido de hélice. 6.33 Um pinhão helicoidal, com diâmetro primitivo de 50,Omm, impele uma engrenagem helicoidal de 84,Omm como mostra a Fig. 6.20, L 30°. A velocidade do ponto primitivo da engrenagem 1 deve ser representada por um vetor com 50,Omm de comprimento e a da en grenagem 2, por um com 72,5 mm. Usando uma largura do denteado de 26,Omm, para as engrenagens, determine graficamente a geratriz do dente =
no cone de cabeça de cada engrenagem, o ângulo de hélice, o sentido da hélice e a velocidade de deslizamento. 6.34 Uma fresa de dentes normais, ângulo de pressão 20°, módulo 3 mm, é usada para cortar uma engrenagem helicoidal. A fresa tem hélice à direita com um ângulo de avanço de 2°40', um comprimento de 75,Omm e um diâmetro externo de 75,Omm. Faça um esboço, em verdadeira grandeza, da fresa cortando uma engrenagem helicoidal, hélice à direita, 47 dentes e ângulo de hélice de 20°. O disco de engrenagem tem 38,Omm de lar gura. Mostre o cilindro primitivo da fresa sobre o disco da engrenagem, com a hélice da ferramenta em posição correta com os dentes da engrenagem. Mostre três dentes da engrenagem e 1,5 voltas do fil ete da fresa; posicione estes elementos através do pas so frontal normal. Assinale os eixos da fresa e do disco da engrenagem, o ângulo de av anço da fr esa, o ângulo de hélice da engrenagem e a direção de rotação da ferramenta e do disco da engrenagem. 6.35 Repita o problema 6.34 para uma engrenagem helicoidal com hélice à esquerda. 6.36 Um parafuso sem-fIm de duas entradas, com avanço de 64,292 mm, impele uma coroa com relação de velocidades de 19 ~ : 1 e ângulo entre eixos de 90°. Se a distância entre eixos é 235 mm determine os diâ metros primitivos do sem-fim e da coroa. 6.37 Um parafuso sem-fIm e coroa, com eixos a 90° e distância entre centros de 178,Omm, devem ter uma relação de velocidades de 17,5: 1. Se o passo axial do semfIm deve ser 26,192mm, determine o número máximo de dentes no sem-fJm e na coroa e seus diâmetros primitivos correspondentes. 6.38 Um parafuso sem-fIm e coroa conectam eixos a 90°. Deduza equações para os diâmetros do sem -fIm e coroa em termos da dis tância de centros a, relação de velocidades Wl /W2 e ângulo de avanço À. 6.39 Um parafuso sem-fIm e coroa com eixos a 90° e distância entre centros de 152,Omm devem ter uma relação de velocidades de 20 : 1. Se o p asso axial do semfim for 17,463 mm, determine o menor diâmetro para o sem -fim que pode ser usado na transmissão. 6.40 Um parafuso sem-fim com duas entradas aciona uma coroa de 31 dentes, ângulo entre eixos de 90°. Se a di stância entre centros é 210,Omm e o ân gulo de avanço do sem-fim 18,83°, calcule o passo axial do sem-fIm e os di âmetros primitivos das duas engrenagens. 6.41 Um parafuso sem-fIm com três entradas comanda uma coroa de 35 de ntes, ângulo de hélice 21,08° e diâmetro primitivo 207,8 mm. Se os ei xos estão em ângulo reto, calcule o ângulo de avanço e o diâmetro primitivo do sem-fJm. Um parafuso sem-fJm de 4 entradas aciona uma coroa com uma relação de velocidades angulares de 8 ~ : 1 e ângulo entre eixos de 90°. O passo axial do semfim é 18,654 mm e o ângulo de avanço 27 ,22°. Calcule os diâ metros primitivos do sem fIm e da coroa. 6.42
Um parafuso sem-fim de seis entradas aciona uma coroa de 41 dentes com um ângulo entre eixos de 90°. A distância entre eixos é 88,90 mm e o ângulo de avanço 26,98°. Calcule os diâmetros primitivos, o avanço e o passo axial do sem-fJm. 6.43
Um parafuso sem-fim e uma coroa com eixos a 90 e distância entre centros de 76,20mm devem ter uma relação de velocidades de 7! : 1. Usando um ângulo de avanço de 28,88 determine os diâmetros primitivos. Selecione números de dentes para a coroa tomando parafusos com 1 a 10 filetes. 6.45 Um parafuso sem-fim e coroa com eixos a 90 e distância entre centros de 102,0mm devem ter uma relação de velocidades de 16~ : 1. Determine vários pares que possam ser usados com parafusos de 1 a 10 filetes. Especifique os números de dentes e diâmetros primitivos. 0
6.44
0
0
,
Indice
Re m issi v o
A
Ação de afastamento, engrenagens de, 142, 144 Aceleração, determinação, por cálculo, 20 Adelgaçamento, carnes, 70-73, 77 engrenagem, cilíndrica reta, 108, 109 cônica, 154, 155, 158 Afastamento da ferramenta fresa, 132, 134, 136,167 Altura, de cabeça, 100 engrenagem, cilíndrica reta, 100, 112, 113, 139, 140 cônica, 155 de ação de afastamento, 144 helicoidal, 170 de dente, engrenagem, cilíndrica reta, 112 cônica, 157 de pé, engrenagem, cilíndrica reta, 100, 112, 113, 139, 140 cônica, 155 de trabalho, engrenagem, cilíndrica reta, 112,131
cônica, 157 Análise, mecanismo, cursor-manivela, 21, 22 Ângulo, de afastamento, 101, 102 de aproximação, 101, 102 de atrito, 176 de cabeça, 155 de cone com plementar, engrenagem cônica, 155 de espiral, 158,159,168,177 coroa-parafuso, 173, 175 engrenagem helicoidal, 162-164 de incidência frontal em um ponto, 96 de pé, 155 de pressão, came,47,48,53,73, 75, 76 de corte, 133, 139 avanço de face, 159, 168 computador digital, 220 deslocamento, determinação analítica em mecanismo cursor-manivela, 20 diâmetro primitivo, engrenagem, cilíndrica reta, 110 cônica, 150, 157 helicoidal, 163, 167 düerencial de automóveis, 199
engrenagens, cilíndricas, 223 cônicas, 223 empuxo axial, 168 engrenagem, cicloidal, 93, 123 helicoidal dupla, 168 planetária epicicloidal, 187 solar, 187 excêntrico, 22 carne, 55 fim do contato, 102 geração de dente, processo Fellows, 111, 167 gráfico deslocamento-tempo, 53 largura da face, engrenagem, cilíndrica reta, 100 cônica, 157 helicoidal, 168 mecanismo, de arrasto, 23 de escape, 37-38 de manivela dupla, 19 movimento, cicloidal, 53, 56, 57 polinomial de oitavo grau, 56, 59 parada de seguidor de carne, 48 parafuso sem-fim cilíndrico, 174 pontos mortos, 17 profundidade de corte, 139, 157 raio de arredondamento, engrenagem, 100, 112, 113 sistema de distância entre centros modificada, 131, 132 trem de engrenagem epicicloidal, 187 análise, cinemática, 317 cinética,456 aplicações, 197 montagem, 200 de fun cionamento, 120, 133, 139-140 engrenagem, cilíndrica reta, 102, 111, 112 cônica,157 helicoidal, 162, 164 normal, 162, 164 de transmissão, 17 entre eixos, engrenagens, cônicas, 152-153 helicoidais reversas ou esconsas, 171 primitivo, 151 -\rco de ação, 102 Avanço do parafuso sem-fim, 173
Balancim, 19 Bendix-Weiss, junta universal, 32
Cadeia, 9 cinemática, 10 restrita, 10 Calculadores, de funções trigonométricas, 230 de quadrados e raízes quadr adas, 233 Carne, 5, 6, 45 adelgaçamento, 68, 69, 73, 79 ângulo de pressão, 48, 53,7 3, 77 automotivo,45 cilíndrico, 51 comprimento da face do segu idor, 48, 62, 63
de disco, 5,46 de retorno deslocamento-tempo, comandado, 50 diagramas 53 excêntrico, 22,55 fabricação de, 61 invertido, 51 mestre, 61 movimento, cicloidal do seguidor, 53, 56, 57 de velocidade constante modificada do seguidor,53 do seguidor, tipos de, 53 especificado do seguidor, 45 harmônico do seguidor, 53, 55, 58 parabólico do seguidor, 53 polinomial de oitavo grau do seguidor, 56,
60
perfil,236-237 especificado, 45 ponta,46,49,62,63 projeto, analítico, 62 gráfico, 46 raio, de curvatura, 68, 69,77 mínimo, 46, 62, 66 da superfície primitiva, 68, 69, 79 retorno comandado, 50 seguidor, deslocado, 46-48 oscilante de face plana, 48 oscilante de rolete, 50, 76 radial de face plana, 5, 46, 62
radial de rolete, 47,48,67 segunda aceleração, 56 superfície primitiva, 47, 48, 50, 67, 77 terceira derivada do des locamento do seguidor, 56 tridimensional, 5, 79, 80 Carretão, 186 Catraca, Centro, 36 instantâneo, de rotação, 234, Chebyshev, espaçamento de, 253 Ciclo de movimento, 8-9 Cicloidal, engrenagem, 93,123 movimento, 53, 55, 57 Circunferência, comprimento, da face do seguidor, 48, 62, 64 de ação, 102, 103 de base, 94,100,101 de cabeça, 100, 101 de pé, 100, 101 primitiva, de corte, 110,111,119,132 de funcionamento, 119, 135 de referência, 96,100,101,119 Coeficiente de flutuação de velocidade, computador analógico, 220 cone, complementar, engrenagem cônica, 153 geratriz , 156 primitivo, 152 geratriz, 151 Combinação de curvas, 267 Conicidade, 152 Constante de mola, 261-262 Contato entre dentes localizado, 158 Coroa e parafuso sem-fim, 173 ângulo, atrito, 176 de avanço, 175, 176 de hélice, 175 avanço, 175 diâmetro primitivo, da coroa, 175 do parafuso sem-fim, 175 parafuso sem-fim, cilíndrico, 174 tipo ampulheta, 174 passo axial, 173-175 transmissão reversível, 176
Dente, de engrenagem, perfil normal , 112 octoidal, 155 Diagrama, de bloco, 242 Diame traJ pitch transversal, 163 Diâmetro, externo, engrenagem, cônica, 155 helicoidal, 170 primitivo, engrenagem, cilíndrica reta, 96, 111 cônica,151-152 helicoidal, 167 parafuso sem-fim, 175 Diferencial arti culado, 221 Distância entre eixos, engrenagens, cilíndricas retas, 120, 136 helicoidais, 167
Engrenagem, cilíndrica reta, ação de afastamento, 142 adelgaçamento, 108, 130 afastamento da ferramenta, 132, 134, 136 altura, de cabeça, 100,112,113,139 do pé, 100, 112, 113, 139, 140 total, 112 útil, 112, 131 ângulo, de afastamento, 102 de aproximação, 102 de incidência frontal em um ponto, 96 de pressão, 101, 112 de corte, 133,139-140 frontal de fu ncionamento, 120, 133, 140 arco de ação, 102 cicloidal, 93, 123 circunferência, de base, 94, 96, 100 de cabeça, 100-101 de pé, 100-101
razão de velocidades, 175
primitiva,
r-
fNDICE
REMISSIVO
XXI
rrrrrrrrrrrr
rr r r
rr r
r-. r
r r
rrrr-
,r. rrr
normal, 112 rebaixado, 113 diametral pitch. 110-111
diâmetro primitivo, 96,111 diferencial, 223 espessura do dente, 100, 112, 113,133. 140 envolvente, 96 face do dente, 100-101 fim do contato, 102 f1anco de dente, 100-101 folga no fundo do dente, 112, 113 de corte, 132 de funcionamento, 119,135 de referência, 96,100,119 comprimento de transmissão, 102, 103 cremalheira, 100-101 dente,
Gleason, adelgaçamento, 155, 158 altura, de trabalho, 157 total, 157 ângulo, de espiral, 158, 159 de pé, 155 de pressão, 157 entre eixos, 152 de base, 97,100 de cabeça, 139 primitivo, 100 razão,
de velocidades, 94, 96 frontal de transmissão, 102, 104 sistema, de distância entre eixos modificada, 131, 132 de saliências diferentes, 131,140 superfície primitiva, 100 variação da distância entre centros, 120,
função evolvental, 99 geração, de engrenagem, processo Fellows, 111 por ferramenta fresa, 110 136 início do contato, 102 cônica, intercambiabilidade, 109, 113 espiral, 159 interferência, interna, 158 da envolvente, 108, 130 zerol,158 em engrenagens internas, 122, 123 coroa, 152 interna, 122 de contorno, 238 jogo primitivo, 100-101,118 espinha de peixe, 169 largura da face, 100-101 frontal, em espiral, 240 linha, intermediária, 184 de ação, 93, 102 Miter 152 primitiva, planetária, 187 de corte, 132 solar, 187 de referência, 100, 132 Engrenagens, cônicas, 150 não padronizada, 113, 130 altura, número mínimo de dentes do pinhão, 115, 117,118 de cabeça, 155 padronizada, 113 de pé, 155 passo, angulares, 153 ângulo, base, 100-101, 104, 105 frontal, 100-101 complementar, 155 perfil, de cabeça, 155 do dente, 100-101 de pé, 155 evolvental, 93 cilíndricas retas, pinhão,100-101 não padronizadas, 113, 130 ponto, padronizadas, 113 de interferência, 108 cone complementar, 152 primitivo, 96, 102 coniflex, 159 profundidade de corte, 139 coroa, 154 proporções dos dentes, 112, 113 de computação, 235 raio, diametral pitch, 150, 157 de arredondamento, 100, 112, 113 geratriz de cone complementar, 156
primitivo, 151 cone primitivo, 152 contato localizado, 158 de dentes, espirais, 159 hipoidais, 159 dentes octoidais, 155 diâmetro, de cabeça, 155 primitivo, 152 espessura do dente, 157 evolvente esférica, 152 geratriz do cone primitivo, 151 internas, 158 Miter, 152 proporções, 157 razão de velocidade, 150 seção transversal, 152 sistema, de cabeças diferentes, 155 Gleason,155 superfície primitiva, 150 zerol,158 helicoidais,162 parafuso sem-fim, 173 profundidade de corte, 157 esconsas helicoidais, 162, 171 helicoidais, 162 afastamento da ferramenta fresa, 167 altura da cabeça, 170 ângulo, de hélice, 163, 164 de pressão frontal, 162, 164 de pressão normal, 162, 164 entre eixos, 171 avanço da face, 168 diametral pitch, 163, 167 diâmetro externo, 170 distância entre eixos, 167 duplas, 169 engrenagem espinha de peixe, 169 esforço axial, 168, 169 ferramenta pinhão (Fellows), 167 força, 165 fresa transversal, 167 largura da face, 168 número mínimo de dentes do pinhão, 165,166 paralelas, 162, 167 passo frontal normal, 163, 164 plano, de rotação, 163
de velocidades, 167, 171 frontal de transmissão, 168 reversas ou esconsas, 162,111 sentido da hélice, 167, 171, 172 usinagem com ferramenta fresa, 162 Engrenagens, hipóides, 159 intercambiáveis, 109, 113 36 Engrenamento intermitente, Erro estrutural e mecânico, 251 Espaçamento de Chebyshev, 253 Espessura do dente, engrenagem, cilíndrica reta, 100, 112, 113, 133, 140 cônica, 157 Evolvente, 96 Evolvente esférica, 152
Fabricação de Carnes, 61 Face do den te, 100 Fase de movimento, 8 Ferramenta fresa, 167 Flanco do dente, 100 Folga no fun do do dente, 112, 113, 132 Forças, em engrenagens helicoidais, 165 nos dentes, 165 Função evolventa1, 99
Garfo escocês, 22 Gerador, de seno e co-seno, 230 231 de tangente e secante, 230
Início do contato, 102 Integra dor , 225-227 de disco e esfera, 225, 226 Interferência, da envolvente, 108,130 em engrenagens internas, 123 Inversão, 10, 233 do mecanismo cursor-manivela, 21
Jogo primitivo, 100, 118 Junta,
normal,162 razão,
de Hooke, 29 de Oldham, 26
universal, 29 Bendix-Weiss,32 de velocidade constante, 31 homocinética, 30 Rzeppa,32 Tracta,34
Lei de Grashoff, 19 Linha, de ação, 10,93,102 de transmissão, 10 primitiva, 100 de funcionamento, 132 de referência, 132 Locação de pontos com exatidão, síntese, 251
Manivela, 3, 19-20 Máquina, definição de, 6 Mecanismo, 6 cursor-manivela, 3, 20 aceleração, 21 deslocamento, 20 inversões, 21 velocidade, 21 de alavanca articulada, 25 de catraca, 36 de engrenamento intermitente, 36 de escape, 36 de Genebra, 35 de manivela, deslocada,25 dupla e cursor, 23 de movimento intermitente, 35 catraca,36 engrenamento intermitente, 36 escape, 36 roda de Genebra, 35 de plaina-limadora, 23 de quatro-barras, 16 pontos mortos, 17 projeto de, como gerador de função, 259, 267,268 para velocidades e aceleração angulares instantâneas, 253 de retorno rápido, 23 Whitworth, 23 excêntrico, 22 garfo escocês, 22 inversão do cursar-manivela, 21
junta, de Hooke, 29 de Oldham, 26 universal, 29, 30 Bendix-Weiss,32 Rzeppa,32 Tracta,34 juntas universais homocinéticas, 30 pantógrafo, 27 Peaucellier, 26 rotores de câmara, 27 soprador Roots, 27 traçador de retas, 26 de Watt, 26 Peaucellier, 26 Mecanismos, de computação, 220 adição e subtração, 221 analógicos, 220 biela, 2, 20 cadeia restrita, 10 calculador de componentes, 232 carnes de contorno, 235 constante do integrador, 226 contato, engrenagens cilíndricas retas, fim do, 102 início do, 102, 103 diagrama de bloco, 242 diferencial, articulado, 221 de engrenagens, cilíndricas retas, 223 cônicas retas, 223 de rosca, 224 digitais, 220 engrenagem, conjugada,93 frontal em espiral, 240 engrenagens cônicas retas tipo coniflex, 159 de contorno, 238 e carnes de computação, 235 não circulares, 238 fator de escala do integrador, 226 -227 funções trigonométricas, 230 gerador de seno e co-s eno, 230,231 integração, 225 integrador de esfera e disco, 226 inversão, 233 juntas universais homocinéticas, 30 Bendix-Weiss, 32 Rzeppa,32 Tracta,34 mecanismo,
de elevar ao quadrado tipo cone e cilindro,234 gerador de função, 241 multiplicação e divisão, 224 multiplicador de réguas, 224 precisão, 242 princípio dos quartos dos quadrados, 244 quadrados, raízes quadradas e raízes geradoras de produtos, 233 razão de contato, 102, 104, 168 de retorno rápido, 23 de manivela, deslocada, 25 dupla e cursor, 23 plaina-limadora, 23 razão de tempos, 23 Whitworth, 23 espaciais, 361 traçadores de retas, 26 de Watt, 26 de Peaucellier, 26 Método, de Raven, 264 de Rosenauer, 253 Motor, aIterna tivo, 4 Movimento, 7 absoluto, 10 alterna tivo, 7 angular,13 ciclo de, 8 cicloidal, 53, 55, 57 de oscilação, 8 de rotação, 8 de translação, curvilínea, 7 retilínea, 7 de velocidade constante modificada, 53 determinado do seguidor, 45 do seguidor, tipos de, cicloidal, 53, 56, 57 harmônico, 53, 56-60 parabólico, 53 -55 polinomial de oitavo grau, 56-60 velocidade constante modificada, 53, 54 esférico, 8 fase do, 8 harmônico simples, 23, 53, 55, 58 helicoidal, 8 parabólico modificado, 53 período de, 8 plano, 7
transmissão de, 10 Multiplicação, e divisão, 224 mecanismo de, 224
Normal, comum, 10 Número mínimo de dentes do pinhão, 115, 117, 118,165, 166
Oldham, junta de, 26 Oscilação, 8
Pantógrafo, 27 Par, de deslizamento, 9 de elementos, 9 inferior, 9 rotativo, 9 Parafuso, diferencial, 224 sem-fim tipo ampulheta, 174 Passo, axial,175 base, 100, 105 de hélice, 175 frontal, engrenagem, cilíndrica reta, 100, 113 helicoidal, 163 normal, 163, 164 Peça, 9 Perfil do dente, 100 Período de movimento, 8 Pinhão, 100-101 Pistão, 3, 20 Plano, de rotação, 163 normal,162 Pontas em contornos de carnes, 47,62,64 Ponto, de interferência, 108 de transferência, 317 primitivo, 96, 102 Princípio dos quatro quadrados, 244
polinomial de oitavo grau, 59-60 relativo, 10
Projeto gráfico de carnes, 46 Proporções no dente, 112, 113
Raio, base, engrenagem cilíndrica reta, 97, 100 de curvatura, carne, 68-73,77 superfície primitiva de carne, 48, 67-73, 77-9 externo, engrenagem não padronizada, 140 mínimo, carne, 48, 62, 66, 67 superfície primitiva da carne, 68-73,79-80 primitivo, 100 Raven, obra de, 264 Razão, de tempos de mecanismo, de ret orno rápido, 23 de velocidade angular, 11 de velocidades, 187 carne e seguidor, 11 coroa e parafuso sem-fim, 175-176 engrenagens, cilíndricas retas, 96 cônicas, 150 helicoidais, esconsas, 171 paralelas, 167 mecanismo articulado, 13 trem de engrenagens, comum, 187 planetário, 187 Rebaixado, dente, 113 Referência, circunferência primitiva de, 119 linha primitiva de, 132 Relação de velocidades angulares, 185 angulares, 185 Roda, de balanço e escape, 37 de Genebra, 35 Rolamento puro, 11 Rosenauer, método de, 253 Rotação, 8 Rotor, cinemática, 276 Rotores de câmara, 27 motor Wankel, 28 soprador Roots, 27 Rzeppa, junta universal, 32
Seção, axial, engrenagem cônica, 152 transversal, engrenagem cônica, 152 Seguidor, deslocado, 48 oscilante, de face plana, 48 de rolete, 47,49,50,76 radial, de face plana, 6, 46, 62 de rolete, 48, 67 Segunda aceleração, 56-60 Sentido da hélice, engrenagem helicoidal, 167, 171,172 Síntese, 250 concordância de curvas, 265-267 de tipo numérica e dimensional, 250-251 erro mecânico e estrutural, 251 locação, de Chebyshev, 253 de pontos com exatidão, 251 método, de Freudenstein, 259 de Rosenauer, 253 gráfico, 267 números complexos, 254 obra de Raven, 264 projeto de mecanismo de quatro barras, como gerador de função, 259, 267 para valores instantâneos de velocidades angulares e de acelerações, 253 Sistema, articulado gerador de função, 241 de saliências diferentes, engrenagem, cilíndrica reta, 131, 140 cônica, 155 Soprador Roots, 27 Superfície primitiva, carne, 48, 50, 67,77 engrenagem, cilíndrica reta, 100 cônica,150
Terceira derivada do deslocamento do seguidor 56 ' Translação, 7 alternativa, 7 curvilínea, 7 retilínea, 7 Transmissão de movimento, 10
Trens de engrenagem, aplicações dos trens planetários, 197 carretão, 186 comum, 187 diferencial de engrenagens cônicas, 199, 223 epicicloidais, 187 intermediária, 184 método, de solução por fórmula, 190 tabular, 195, 196 montagem de trens planetários, 200 planetária, 187 aplicações, 197 montagem, 200 relação de velocidades angulares, 184, 185 solar, 187 valor do trem, 187
Velocidade, angular, 11 de deslizamento, 11 determinação, por cálculo, 21
Watt, mecanismo traçador de retas, 26 Whitworth, mecanismo de retorno rápido, 23
Usinagem de engrenagens com ferramenta fresa, 110,162
Composto em Tim es Roman pelo processo de Fotocomposição MONOfOTO no Se tor de Co mposição
de
CIENTIFICOS EDITORA S. A. -LIVROS Rio deTÉCNICOS Janeiro - E Brasil
SEDEGRA - RIO Imprimiu