MECÁNICA DE FLUIDOS P r o p i e d ad ad e s d e l o s f l u i d o s
Evaluación Evaluación continua Calcule el peso de un depósito de aceite si tiene una masa de 825 kg.
Si el depósito del Problema anterior tiene un volumen de 0.917 m 3, calcule la densidad, peso específico y gravedad específica del aceite.
La glicerina a 20 °C tiene una gravedad específica de 1.263. Calcule su densidad y su peso específico.
Una pinta de agua pesa 1.041 lb. Calcule su s u masa.
Un galón de mercurio tiene una masa de 3.51 slugs. Calcule su peso.
Al terminar este capítulo podrá:
1. Definir viscosidad dinámica. 2. Definir viscosidad cinemática. 3. Identificar las unidades de la viscosidad, tanto en el SI como en el Sistema Tradicional de Estados Unidos. 4. Describir la diferencia entre un fluido newtoniano newtoniano y otro no newtoniano. newtoniano. 5. Describir los métodos de medición de la viscosidad por medio del viscosímetro de tambor rotatorio, el viscosímetro de tubo capilar, el viscosímetro de bola descendente viscosímetro de Saybolt Universal. y el viscosímetro
6. Describir la variación de la viscosidad según la temperatura, tanto en líquidos como en gases. 7. Definir el índice de viscosidad. viscosidad. 8. Describir la viscosidad de los lubricantes por medio de los grados SAE y los grados ISO de viscosidad.
COEFICIENTE DE COMPRESIBILIDAD
Por experiencia, se sabe que el volumen (o la densidad) de un fluido cambia respecto a una variación en su temperatura o su presión. Los fluidos suelen expandirse cuando se calientan o despresurizan, y se contraen cuando se enfrían o presurizan.
Pero la cantidad del cambio de volumen es diferente para fluidos diferentes y se necesita definir las propiedades que relacionan los cambios en el volumen con los cambios en la presión y en la temperatura. Y una de esas propiedades es el módulo de elasticidad de volumen «k» .
Veamos esta afirmación: «Los fluidos actúan como sólidos elásticos respecto a la presión» ¿Porqué? Porque un fluido se contrae cuando se aplica más presión sobre él, y se expande cuando se reduce la presión que actúa sobre él
Por tal razón es apropiado definir un coeficiente de compresibilidad k (llamado también módulo de compresibilidad de volumen o módulo de elasticidad de volumen) para los fluidos como:
En términos de cambios finitos se expresa como:
EXPLICACIÓN: El coeficiente de compresibilidad «K» representa el cambio en la presión correspondiente a un cambio relativo en el volumen o la densidad del fluido, mientras la temperatura permanezca constante.
∆ = −
∆ =
= (
∆
)
∆ = í í (
= ó ó é é (
)
)
El signo menos expresa que a un u n incremento de presión corresponde un decremento de volumen.
EJEMPLO: Un liquido comprimido en un cilindro tiene un volumen de un litro (1000 cm3) a 1 MN/m2 y un volumen de 995 cm3 a 2 MN/cm2 ¿Cuál es su módulo de elasticidad volumétrico?
DATOS: Vo = 1000 cm 3 /kg Po = 1 MN/m2 Vf = 995 cm 3 /kg Pf = 2 MN/m 2
− =− −
V = 1 k=? 1000
995
×
×
1 1000 1
1000
=1
= 0,995
2−1 =− = 200 = 0,995 − 1 1
Calcule el cambio de presión que debe aplicarse al agua para que su volumen cambie un 1.0%. Si el coeficiente de compresibilidad del agua es de 316000 psi Cierto sistema hidráulico opera a 3000 psi. Calcule el cambio porcentual en el volumen del aceite del sistema, conforme la presión se incrementa de cero a 3000 psi, si el aceite de la máquina es similar al que se menciona en la tabla Encuentre el cambio de presión necesario para hacer que el volumen de aceite en una máquina disminuya el 1.00%. Exprese el resultado en psi y en MPa. Bajo las condiciones que se describen en el problema anterior, suponga que el cambio de 1.00% en el volumen ocurrió en un cilindro con diámetro interior de 1.00 pulg y longitud de 12.00 pulg. Calcule la distancia axial que recorrería el émbolo conforme ocurriera el cambio de volumen.
CONCLUSIONES:
El coeficiente de compresibilidad de una sustancia verdaderamente incompresible ( v constante) es infinito.
Un valor grande de k indica que se necesita un cambio también grande en la presión para causar un pequeño cambio relativo en el volumen y, de este modo, un fluido con un k grande en esencia es incompresible.
El volumen y la presión son inversamente proporcionales (el volumen decrece al aumentar la presión y, en consecuencia ∂P/∂v es una cantidad negativa) y el signo negativo en la definición.
VISCOSIDAD
Cuando dos cuerpos sólidos en contacto se mueven uno con respecto al otro, se crea una fuerza de fricción en la superficie de contacto en la dirección opuesta al movimiento.
La magnitud de la fuerza necesaria para mover el bloque depende del coeficiente de fricción entre el bloque y el piso.
La situación es semejante cuando un fluido se mueve con respecto a un sólido o cuando dos fluidos se mueven uno con respecto al otro.
Es posible moverse con relativa facilidad en el aire, pero no en el agua o en aceite.
Se manifiesta la existencia de una propiedad que representa la resistencia interna “f luidez”,, y esa propiedad es la viscosidad de un fluido al movimiento o la “fluidez” FUERZA DE ARRASTRE
Es la fuerza que un fluido fluyente ejerce sobre un cuerpo en la dirección del flujo y la magnitud de esta esta depende, en parte, parte, de la viscosidad
Para obtener una relación para la viscosidad, considérese una capa de fluido entre dos placas paralelas muy grandes separadas por una distancia l . Ahora se aplica una fuerza paralela constante F a la placa superior, en tanto que la placa inferior se mantiene fija. El fluido, en contacto con la placa superior, se pega a la superficie de esta y se mueve con ella a la misma velocidad.
En el flujo laminar estacionario, la velocidad del fluido entre las placas varía de manera lineal entre 0 y V , y así, el perfil de velocidad velocidad y el gradiente de velocidad son: ()
=
=
=
()
Durante un intervalo diferencial de tiempo dt
Razón de deformación
da = V dt .
El desplazamiento o deformación angular
=
Se puede verificar de manera experimental que, para la mayoría de los fluidos, la razón de deformación (y, por lo tanto, el gradiente de velocidad) es directamente proporcional al esfuerzo cortante
Los fluidos para los cuales la razón de deformación es proporcional al esfuerzo cortante se llaman fluidos newtonianos en honor de sir Isaac Newton. En el flujo tangencial unidimensional de fluidos newtonianos, el esfuerzo cortante se puede expresar mediante la relación lineal:
donde la constante de proporcionalidad se llama coeficiente de viscosidad o viscosidad dinámica (o absoluta) del fluido =
1 poise = 0,1 Pa.s 1 Centipoise = 0,01 Poise
.
=
.
= .
Una gráfica del esfuerzo cortante, en función de la razón de deformación (gradiente de velocidad) para un fluido newtoniano es una recta cuya pendiente es la viscosidad de ese fluido, como se muestra en la figura.
La fuerza cortante que actúa sobre una capa de fluido newtoniano (o, por la tercera ley de Newton, la fuerza que actúa sobre la placa) es:
Para los líquidos, la viscosidad se expresa en forma aproximada como:
T es la temperatura absoluta a, b, y c con constantes que se determinan de manera experimental.
Para el agua, se emplean los valores a = 2.414 x 10 -5 N s/m2, b = 247.8 K c = 140 K
Considérese una capa de fluido con espesor dentro de una pequeña brecha entre dos cilindros concéntricos, como la delgada capa de aceite en una chumacera. El par de torsión (torque) es :
T = FR
La velocidad tangencial es:
V= w.R
El área de la superficie mojada del cilindro interior
A = 2πRL
El par de torsión se puede expresar como: Sabemos que:
Pero:
=
=.
= . (2).
Reordenando: =.
Pero:
(.)
2 .
= 2
Se puede usar esta ecuación para calcular la viscosidad de un fluido midiendo el par de torsión a una velocidad angular especificada. Por lo tanto, se pueden emplear dos cilindros concéntricos como un viscosímetro, aparato con el que se mide la viscosidad.
= revoluciones por minuto (RPM)
Entonces: =.
2 2
Multiplicando a ambos miembros por «R» obtenemos el Torque:
=.=.
4
En la tabla se incluye una lista de las viscosidades de algunos fluidos
DETERMINACIÓN DE LA VISCOSIDAD DE UN FLUIDO
Se va a medir la viscosidad de un fluido con un viscosímetro construido con dos cilindros concéntricos de 40 cm de largo (Fig.). El diámetro exterior del cilindro interior es de 12 cm y la brecha entre los dos cilindros es de 0.15 cm. El cilindro interior se hace girar a 300 rpm y se mide el par de torsión que resulta ser de 1.8 N m. Enseguida determine la viscosidad del fluido. 1 El cilindro interior está por completo sumergido en el aceite. 2 Los efectos viscosos en los dos extremos del cilindro interior son despreciables.
Hipótesis
Análisis El perfil de velocidad es lineal sólo
cuando los efectos de la curvatura son despreciables y se puede tener una aproximación de este perfil como lineal, en este caso, supuesto que l/R << 1. Al despejar la viscosidad en la ecuación anterior y sustituyendo los valores dados, se determina que la viscosidad del fluido es:
PROBLEMA: Un eje lubricado rota dentro de una camisa concéntrica concéntrica a 1200 rpm, la luz ""es pequeña con respecto al radio R, de tal manera que se puede suponer una distribución lineal de velocidad en el lubricante ¿Cuál es la potencia necesaria para rotar el eje? R = 2 . cm, L = 6 cm, = 0,1 y = 0,2
EJERCICIOS:
VISCOSIDAD CINEMÁTICA
En mecánica de fluidos y transferencia de calor, con frecuencia aparece la razón de la viscosidad dinámica a la densidad. Por conveniencia, a esta razón se le da el nombre de viscosidad cinemática y se expresa como:
Dos unidades comunes de la viscosidad cinemática son: Stokes = 1cm2/s = 0.0001 m2/s). m2/s y el Stokes (1 Stokes La viscosidad de un fluido es una medida de su “resistencia a la deformación”. La viscosidad se debe a la fuerza de fricción interna que se desarrolla entre las diferentes capas de los fluidos a medida que se obligan a moverse una con relación a las otras.
TENSIÓN SUPERFICIAL Y EFECT EFECTO O DE CAPILARIDAD
A menudo se observa que una gota de sangre forma una joroba sobre un vidrio horizontal; una gota de mercurio forma una esfera casi perfecta y se puede hacer rodar del mismo modo que una bola de acero, sobre una superficie lisa; las gotas de agua de la lluvia o del rocío se cuelgan de las ramas o de las hojas de los árboles; un combustible líquido inyectado en un motor forma una niebla de gotas esféricas; el agua que gotea de un grifo con fuga cae como gotas esféricas; una pompa de jabón que se lanza al aire toma una forma esférica, y el agua forma pequeñas gotas sobre los pétalos de las flores
Las gotas de líquido se comportan como pequeños globos esféricos llenos con ese líquido y su superficie actúa como una membrana elástica estirada sometida a tensión. La fuerza de tracción que causa esta tensión actúa paralela a la superficie y se debe a las fuerzas de atracción entre las moléculas del líquido.
Se puede determinar el exceso de presión dentro de una gota o burbuja, por arriba de la presión atmosférica, cuando se considere el diagrama de cuerpo libre de la mitad de ellas. La tensión superficial actúa a lo largo de la circunferencia mientras que la presión actúa sobre un área, El equilibrio horizontal de fuerzas para la gota y la burbuja dan:
∆ =
2
Otra consecuencia interesante de la tensión superfi cial es el efecto de capilaridad, el cual es el ascenso o descenso de un u n líquido en un tubo tu bo de diámetro pequeño insertado en un líquido. Esos tubos angostos o canales de flujo confinado se llaman capilares
.
La superficie libre curva de un líquido en un tubo capilar se llama ll ama menisco
.
EJERCICIO: La savia de los arboles asciende por capilaridad, por unos conductos llamados xilemas que tiene un radio radio de 20 um, la savia savia es una sustancia sustancia que tiene un un tiene un un ángulo ángulo de de = 0,073 / / y la densidad de la savia es de 1000 Kg/m 3 y tiene mojado de 80 grados. Calcule a que altura asciende.