PR E]FETO E]FETO IFSFEK IFSFEK MKSKR MKSKR FF OLMTHTS PTG]FR
Edhlo Edhlople ple =B Kgaaltk
>
K. Rlggy Vkgssdg
;0.0=00
Mdmd Gurjumk
;3.0944
Jkofo Jkdruhhkj
;3.;230
TG YDRSF]KS PRLEHKOKSF =4 VLAVKEKR]K 20;=
KBS]RKE Suktu bdgmk mfbdrf akyk ykga skok tdtkpf krkjgyk bdrhkwkgkg mkg tfmke sdakrfs okek bdgmk tdrsdbut bdrkmk mfbkwkj tdakgakg odougtfr (sjdkr strdss). Mkhko bkjksk ifsfsgyk, olmuhus pugtfr kmkhkj akyk ykga mfbdrfekg pdrsktukg huks pdgkopkga mdgakg huks ykga sdnknkr mdgakg vdetlr akyk ykga mftdrkpekg. olmuhus pugtfr odgyktkekg gfhkf edtkjkgkg suktu oktdrfkh tdrjkmkp pugtfrkg. Sdokefg bdskr olmuhus pugtfrgyk, okek sdokefg bkfe nuak oktdrfkh tdrsdbut ugtue tfmke alykj edtfek mfpugtfr. Pkmk prketfeuo fgf mfaugkekg tfak bktkga hlako sfhfgmdr ykga kekg mfprdmfesf ndgfs oktdrfkhgyk. Ed tfak bktkga tdrsdbut oksfga-oksfga odofhfef olmuhus pugtfr, :6.9006: Apk ugtue bktkga ;, :6.92:92 Apk ugtue bktkga bktkga 2, mkg 16.=04:9 ugtue bktkga bktkga 3. Jksfh prdmfesf ekof, bktkga ; mkg 2 odrupkekg bdsf (:2 Apk) mdgakg ckopurkg ofgdrkh hkfggyk mkg bktkga 3 odrupkekg bknk elgstruesf (16,3 Apk).
;
MKI]KR FSF Kbstrke
…………………………………………………………............................... …………………………………………………………............ ................... ;
Mkitkr Fsf
………………………………………………………………....................... 2 ………………………………………………………………....................... ……………………………………………………………………... 3
Mkitkr Akobkr
Mkitkr Mkitkr ]kbdh ]kbdh ……………………………………………………………………………... = BKB ; Pdgmkj Pdgmkjuhuk uhukg g ………………………………………………….………………...... 4 ;.; Hktkr bdhkekga ;.2 ]unukg ]unukg
………………………………………...…………………… 4
……………………………………………………………………... 4
;.3 Okoikk Okoikktt …………………………...………………………………………… 4 BKB 2 Hkgmksk Hkgmkskg g ]dlrf ]dlrf
…………………………………...……………………….... 9
BKB 3 Odtlmlhlaf Odtlmlhlaf Pdrclbkkg Pdrclbkkg
…………………………………………………... ………………………………………………… ...… …6
3.; Khkt mkg Bkjkg Pdrclbkkg
……………………………………………... 6 ……………………………………………...
3.2 Nkhkggyk Pdrclbkkg
……………………………………………………. ;0 ;0
BKB = Jksfh mkg Pdobkjk Pdobkjkskg skg
……………………………………………………. ;; ;;
;; =.; Jksfh Jksfh Pdgakoktk Pdgakoktkg g ……………………………………………………………. ;; =.2 ]uaks ]uaks Kejfr Kejfr BKB 4 Pdgut Pdgutup up
……………………………………………………………………. ;=
4.; Edsfopuhk Edsfopuhkg g 4.2 4.2 Skrk Skrkg g Mkitkr Pustkek Hkopfrkg
2
……………………………………………………………. ;3 ;3
……………………………………………………………. ;= …………………………………………………………….
……………………………………………………………………. ;= ……………………………………………………………………. ;4
……………………………………………………………………………. ;9
MKI]KR AKOBKR
Akobkr Akobkr 2.;
Khkt Pdrclbkkg …….………………………………………………….. 9
Ako Akobkr bkr 3.;
Khkt hkt Pdrc Pdrclb lbkk kkg g
3
………………………………………………….. 6
MKI]KR ]KBDH
]kbdh =.;
Pdrclbkkg F
………………………………………………………….… ;; ;;
]kbdh =.2
Pdrclbkkg FF
………………………………………………………….… ;2 ;2
]kbdh =.3
Pdrclbkkg FFF …………….………………………………………………. ;2 ;2
=
BKB ; PDGMKJTHTKG
;.; Hktkr Hktkr Bdhkekga Bdhkekga Pdrclbkk Pdrclbkkg g Olmuhus pugtfr pugtfr mkpkt mfkrtfekg sdckrk sdckrk tdlrftfs tdlrftfs , ykftu ykftu kmkhkj kmkhkj jubugakg jubugakg bdskrkg bdskrkg tdakgakg tkrfe mkg rdakgakg tkrfe. Ktku hdbfj ndhksgyk kmkhkj pdrbkgmfgakg kgtkrk tdakga tdakgakg kg adsd adsdrr mkg rdakg rdakgak akg g adsdr adsdr Olmuhu Olmuhuss pugtfr pugtfr skgak skgaktt pdgtfg pdgtfga a mkhko mkhko fhou ifsf ifsfek ek ekrdgk mdgakg odopdhknkrfgyk, mfjkrkpekg edoumfkg eftk bfsk odgaaugkekggyk odgaaugkekggyk ugtue odgdgtuekg gfhkf edhkstfskg mkrf sdbukj bdgmk (lbnde stumf). Prfgsfp-prfgsfp tdrsdbut tdhkj mfruousekg sdckrk sfstdoktfe mkg pdrclbkkg fgf mfhkeuekg ugtue odgdrkpekg edobkhf ruouskg/tdlrf ykga tdhkj kmk mkhko eksus-eksus ykga sdmdrjkgk kakr prketfekg hdbfj cdpkt odokjkof ruouskg ktku tdlrf tkmf. Pkmk eksus dhkstfc, bdmkskrekg pdgakgmkfkg-pdgakgmkfkg mfokgk tdakgakg kmkhkj pdrbkgmfgakg pdrbkgmfgakg hurus mdgakg mdgakg rdakgakg mkg mkg ykga bdhkekgakg bdhkekgakg fgf bdrubkj puhk sdckrk hfgfdr mkrf puskt suobu pugtfrkg, okek tdakgakg kekg bdrubkj puhk sdckrk hfgfdr mkrf suobu
puskt
bktkga
odhfgaekr.
]dakgakg
tdrsdbut
ykga
mfsdbkbekg
lhdj
pdgyfopkgakg-pdgyfopkga ykga mfsdbut mkhko pdgakgmkfkg mfktks kmkhkj tdakgakg adsdr ykga tdrhdtke pkmk bfmkga ykga sdnknkr mdgakg frfskg ykga mfkobfh tdake hurus tdrjkmkp bktkga.
;.2 ]unukg ]unukg Pdrclbkkg Pdrclbkkg Kmkpug tunukg mkrf prlsds plrclbkkg fgf kmkhkj> ;) Odgakok Odgakoktf tf bkjwk pugtfrk pugtfrkg g mftdrusek mftdrusekg g pkmk krkj krkj odokgnkga odokgnkga.. 2) Odgdgtuek Odgdgtuekg g olmuhus olmuhus pugtfr bktkga bktkga hlako. hlako.
;.3 Okoikkt Okoikkt Pdrclbkkg Pdrclbkkg ]unukg mkrf pdrclbkkg O-2 kmkhkj odgdgtuekg Olmuhus Pugtfr (Olmuhus Adsdr) sdckrk stktfs.
4
BKB 2 HKGMKSKG ]DLRF
Skhkj sktu unuga bktkga mf ndpft edrks – edrks mf ], sdmkgaekg unuga hkfggyk mfbfkrekg bdbks bdbks bdrputkr mkg mfpkskgaf mfpkskgaf drkt rlmk P. Nfek rlmk mdgakg mdgakg pdrtlhlgakg ektrlh ektrlh mfbdrf bdbkg okek rlmk ftu kekg odajksfhekg olodg O tdrjkmkp bktkga. Mdgakg nkruo pdgugnue ykga odhdekt pkmk bktkga mkg pdobkafkg sekhk S mkpkt mfbkck sumut pugtfrkg bktkga. Okek Olmuhus Pugtfrkg mkpkt mfjftuga mkrf>
(Akobkr (Akobkr 2.; Khkt pdrclbkkg pdrclbkkg)) Ruous
A
2 OH πκ R
=
............................................ ......................................................……………………………..... ..........……………………………..... (;)
Ktku
A
9
390 a r H o π
2
=
R λ
………………...............................................…………. (2)
mfokgk> A
? Olmuhus pugtfr (olmuhus adsdr)
O
? Olodg ykga bdedrnk pkmk bktkga
H
? Pkgnkga bktkga ykga mfpugtfr
R
? Nkrf – nkrf nkrf bktkga ykga mfputfr (bdbkg)
L
? Sumut pugtfrkg mkhko rkmfkh
a
? Pdrcdpktkg arkiftksf
r
? Nkrf – nkrf nkrf rlmk P
o
? okssk bdbkg
λ
? Sumut pugtfrkg mkhko mdrknkt
gfhkf λ mfjftuga mkhko mdrknkt. Sdjfgaak tfmke pdrhu mf elgvdrsfekg ed mkhko sktukg rkm. Mkhko pdobkjkskg pdobkjkskg sdbdhuogyk, sdbdhuogyk, bdgmk ykga odgmkpktekg odgmkpktekg akyk mffmdkhekg mffmdkhekg sdbkakf bdgmk tdakr, tfmke odgakhkof pdrubkjkg bdgtue bfhk odgmkpkt akyk. Sdsugaaujgyk bdgmk odgakhkof pdrubkjkg bdgtue skkt odgmkpktekg akyk. Pkmk bkafkg fgf kekg mfbkjks tdgtkga jubugakg pdrubkjkg pdrubkjkg bdgtue tdrsdbut mdgakg akyk ykga odgydbkbekggy odgydbkbekggyk. k. Akobkr mf ktks odhuefsekg suktu bktkga ykga odopugykf pdgkopkga sdrbkskok mftkrfe mdgakg akyk I pkmk edmuk sfsfgyk. Bktkga mkhko edkmkkg tdrtkrfe. Bfhk mfbukt frfskg mf bktkga (akobkr b) ykga tfmke mdekt unuga bktkga, okek pkmk frfskg tkmf tdrmkpkt tkrfekg mdgakg akyk I ykga odrktk mf pdgkopkga bktkga (sfstdo mkhko edkmkkg sdfobkga). Mkrf sfgf mkpkt mfmdifgfsfekg tdakgakg mf frfrskg tdrsdbut sdbkakf pdrbkgmfgakg kgtkrk akyk I mdgakg huks pdgkopkga K.
]dakgakg > S ? I/K ( G/o2 G/o2 ? Pksckh) Pksckh)
]dakgakg tdrsdbut mfsdbut tdakgakg tkrfe.
1
Bfhk frfskg tkmf mfbukt sdobkrkga (odobdgtue sumut), okek hukskggyk odgnkmf K‖ mkg mkg akyk I tkmf bfsk mfurkekg odgnkmf muk eloplgdg, ykftu IW (tdake hurus/glrokh tdrjkmkp K‖ t dakgakg mkpkt mfurkekg odgnkmf > mkg I¤ ¤ (sdnknkr/tkgadgsfkh ¤ (sdnknkr/tkgadgsfkh tdrjkmkp K‖). Okek tdakgakg ]dakgakg glrokh ? IW / K‖ ]dakgakg tkgadgsfkh (adsdr) ? I¤ ¤ /K‖ Mdofefkg nuak sdbkhfegyk, bfhk akyk pkmk bkhle odgakrkj ed bkhle. ]dakgakggyk mfsdbut tdakgakg tdekg.
Rdakgakg Bfhk akyk mfbdrfekg pkmk bkhle tdrsdbut odobdrfekg tdakgakg tkrfe, okek bkhle tdrsdbut nuak odgakhkof pdrubkjkg bdgtue ykga mfsdbut rdakgakg. Bkafkg Bkafkg pdrtkok pdrtkok (L - k) tdakgak tdakgakg g sdbkgmfg sdbkgmfga a mdgakg mdgakg rdakgak rdakgakg, g, k kmkhkj kmkhkj bktks bktks prlplrsflgkh tdrsdbut. Mkrf k skopkf b tfmke sdbkgmfga hkaf, tdtkpf bfhk bdbkg mfkobfh, eurvk kekg edobkhf ed tftfe k hkaf. hkaf. ]ftfe k skopkf b oksfj bdrsfikt bdrsfikt dhkstfe mkg b kmkhkj bktks dhkstfe. dhkstfe. Bfhk bdbkg bdbkg mf kobfh kobfh sdtdhkj odhdwktf b, ofskh mf c, c, eurvk tfmke edobkhf edobkhf ed b tdtdpf edobkhf odhdhhuf akrfs tfpfs. Sdjfgaak pkgnkga tkgpk tdakgakg odgnkmf hdbfj bdskr mkrf sdouhk. Bfhk bdbkg mftkobkj tdrus skopkf pktkj mf m, m mfsdbut tftfe pktkj. Bfhk b skopkf m cueup bdskr, bkjkg tdrsdbut bdrsfikt uhdt, tdtkpf ekhku skgakt pdgmde mfsdbut rkpuj.
:
BKB 3 OD]LMLHLAF PDRCLBKKG
3.; Bkjkg Bkjkg mkg Khkt Pdrclbkkg Pdrclbkkg
(Akobkr 3.; Khkt pdrclbkkg) ;. ofst ofstkr kr mkg mkg nkg nkgae aekk slrl slrlga ga 2. bktkg bktkga-b a-bktk ktkga ga [ ykga ykga tdhkj tdhkj mfsd mfsdhmf hmfef ef 3. pdgn pdgndp dpft ft bktk bktkga ga ] =. ektrlh 4. bdbkg 9. nkruo pdgugnue pdgugnue mdgakg mdgakg pdobka pdobkafkg fkg sekhk sekhk sumut sumut
Odtlmd Pdrclbkkg Odtlmd ykga mfaugkekg kmkhkj kmkhkj odhkeuekg pdgakoktkg sdckrk sdckrk hkgasuga mdgakg ckrk odhkeuekg pdgakoktkg tdrjkmkp suktu bktkga ykga mfpugtfr, bdrmkskrekg prlsdmur pdrclbkkg sdrtk pdtugnue mkg bfobfgakg mkrf pkrk kssfstdg. Odhkeuekg pdgakoktkg tdrjkmkp khkt-khkt ykga mfaugkekg, odgauopuhekg mktk, edoumfkg odhkeuekg pdgalhkjkg mktk.
6
3.2 Nkhkggyk Nkhkggyk Pdrclbkkg Pdrclbkkg ;. Pkskgahkj Pkskgahkj sktu sktu bktkga ykga ykga mfbdrf mfbdrf lhdj ksfstdg. ksfstdg. Edrksekg Edrksekg sdouk sdouk sderup sderup eukt-eukt. eukt-eukt. 2. Pdrfeskhk Pdrfeskhkj j edbdbkskg edbdbkskg adrke adrke pugtfrkg pugtfrkg unuga unuga bktkga bktkga ykga bdrlmk. bdrlmk. Mkg kpkekj kpkekj olodg sumkj kekg mftdrusekg mftdrusekg edsdhuruj bktkga. bktkga. 3. Teurhkj Teurhkj H, R, r bdbdrkp bdbdrkpkk ekhf mkg mkg tfobkgahkj tfobkgahkj o (pdrjktfe (pdrjktfekg kg pdgaueurk pdgaueurkg g R, r jkrus odrktk) =. Kobfhhkj suktu λ jkrak H tdrtdgtu mkg koktfhkj edmumuekg nkruo pdgugnue (kwks pkrkhkes mkg pdrjktfekg edmumuekg / edkmkkg bdbkg) 4. Bdrfhkj Bdrfhkj bdbkg bdbkg mkg bdrturut-turu bdrturut-turutt tkobkjekg tkobkjekg bdbkg bdbkg sktu pdrsktu pdrsktu.. ]fkp ekhf koktfhkj koktfhkj edmumuekg nkruo pdgugnue (nuohkj bdbkg mftdgtuekg lhdj ksfstdg) 9. Eurkgaf Eurkgaf bdbkg bdbkg sktu pdrsktu pdrsktu mkg mkg koktfhkj koktfhkj edmumu edmumuekg ekg nkruo nkruo pdgugnue pdgugnue 1. Thkgaf Thkgaf pdrclbkk pdrclbkkg g =, 4, 4, 9 ugtue ugtue bdbdrk bdbdrkpk pk jkrak jkrak H (pkhfga (pkhfga sdmfeft sdmfeft 3 ekhf) ekhf) :. Thkgaf Thkgaf pdrclbkk pdrclbkkg g ; s/m s/m 9 (tkgpk (tkgpk 1) ugtue bktkga bktkga – bktkga ykga hkfg. ]kgykekg pkmk ksfstdg bktkga – bktkga – bktkga bktkga ykga okgk sknk.
;0
BKB = JKSFH MKG PDOBKJKSKG =.; Jksfh Pdgak Pdgakoktkg oktkg Pkgn Pkgnkkga Bktkga tkga
> 62.2 62.2 co
Mfko Mfkodt dtdr dr Bktk Bktkga ga > = oo Mfkodtdr Pfrfgakg Pfrfgakg > ;3.= co ]dbkh Pfrfgakg
> 40 co
]kbdh H;(40 (40 co) co)
bdbkg (ea)
Pdobkckkg sumut Pdgkobkjkg
Rktk-rktk
Pdgaurkgakg
nkruo
sekhk
nkruo
sekhk
nkruo
;
4
0
4
3
4
;.4
;.4
;0
0.4
;0
2.4
;0
;.4
2
;4
;
;4
2
;4
;.4
2.4
20
;.4
20
2
20
3.4
3
24
2
24
;.4
24
;.14
3.4
30
2.4
;0
;
20
;.14
=
34
3
4
;
20
2
=.4
=0
3.4
-
-
20
;.14
(]kbdh =.; Pdrclbkkg F)
;;
sekhk
]kbdh H2 (24 (24 co) co)
Bdbkg (ea)
Pdobkckkg sumut Pdgkobkjkg
Rktk-rktk
Pdgaurkgakg
nkruo
sekhk
nkruo
sekhk
nkruo
sekhk
;
4
0.4
4
2.4
4
;.4
;.4
:
;
1
2
1.4
;.4
2
;;
;
;0
2
;0.4
;.4
2.4
;3
;.4
;3
;.4
;3
;.4
3
;9
2
;4
;
;4.4
;.4
3.4
2;
2
;6
0.4
20
;.24
=
22
2.4
22
0.4
22
;.4
=.4
24
3
-
-
24
;.4
(]kbdh =.2 Pdrclbkkg FF) ]kbdh H3(20co)
Bdbkg (ea)
Pdobkckkg sumut Pdgkobkjkg
Rktk-rktk
Pdgaurkgakg
nkruo
sekhk
nkruo
sekhk
nkruo
;
3
0
3
3
3
;.4
;.4
9
0.4
4
2.4
4.4
;.4
2
6
;
1
2
:
;.4
2.4
;;
;
;0
;.4
4.4
;.24
3
;3
;.4
;2
;
;2.4
;.24
3.4
;4
2
;4
;
;4
;.4
=
;1
2.4
;:
0.4
;1.4
;.4
=.4
20
3
-
-
;0
;.4
(]kbdh =.3 Pdrclbkkg FFF)
;2
sekhk
.∛
?
;
− ∛ .∛
. ∛
?
Arkm Arkmfd fdg g o (b) (b) >
− ∛
]ftfe pltlga eurvk k
(
−
)
=.2 ]uaks ]uaks Kejfr ;. Bukthkj arkife kgtkrk λ mkg o ugtue tfkp-tfkp tfkp -tfkp jkrak H. 2. Bdrfhkj Bdrfhkj pdobkj pdobkjkskg kskg tdgtkga tdgtkga jksfh-jk jksfh-jksfh sfh ykga ykga mfmkpkt. mfmkpkt. 3. Jftugahkj jkrak o mkg λ ugtue tfkp H mkrf arkife. =. Jftugahkj Jftugahkj A ugtue ugtue tfkp jkrak jkrak H mkg jftuga jftuga A rktk-rktk. rktk-rktk. 4. Bdrf pdgndhkskg pdgndhkskg tdgtkga jksfh A. Kpkekj Kpkekj ykga jkrus mfueur mdgakg tdhftf< 9. Kpkekj Kpkekj bkjkg bkjkg bktkga ykga ykga skumkrk skumkrk ueur< ndhksek ndhksekg. g. 1. Blhdjekj sekhk sekhk S nkuj mkf M< M< odgakpk sderup sderup jkrus eukt< eukt< blhdjekj bktkga bktkga odhdgaeuga edtfek prketde< ndhksekg. :. Jftuga A ugtue bktkga-bktkga bktkga-bktkga ykga ykga hkfg mkg tdgtuekg tdgtuekg bkjkg. bkjkg.
NKQKB 5 ;. Arkife kgtkrk λ mkg o ugtue jkrak H (kobfh jkrak λ ? 0 bfhk o ? 0)
;3
BKB 4 EDSFOPTHK EDSFOPTHKG G MKG SKRKG SKRKG
4.; Edsfop Edsfopuhk uhkg g Kmkpug edsfopuhkg ykga mfrkfj mkrf prktfeuo fgf kgtkrk hkfg > ;) Olmuhus Olmuhus pugtdr pugtdr odgyktkekg odgyktkekg gfhkf gfhkf edtkjkgkg edtkjkgkg suktu suktu oktdrfkh oktdrfkh tdrjkmkp tdrjkmkp pugtfrkg pugtfrkg 2) Gfhkf olmuhus olmuhus pugtdr pugtdr mfpdgak mfpdgakrujf rujf lhdj lhdj pkgnkga pkgnkga mkg rkmfus rkmfus oktdrfkh oktdrfkh
4.2 4.2 Skrk Skrkg g Pkmk Pkmk pdrclbk pdrclbkkg kg fgf skgak skgaktt mf pdrhuekg pdrhuekg edtdhf edtdhftfk tfkg g mkhko mkhko odobk odobkck ck sekhk sekhk mkg nkruo nkruo ykga skgakg bkfe mkrf prketfekg. Mfekrdgkekg jkgyk sdmfeft sknk gfhkf ykga bdrtkobkj mf sekhk pkmk skkt pdgkobkjkg bdbkg.
;=
MKI]KR PTS]KEK
jttp>//www.shfmdsjkrd.gdt/rfmnkmf/hkplrkg-olmuhus-pugtfr-o=# jttp>//www.scrfbm.clo/mlc/64:4;;61/2-Olmuhus-Pugtfr-O-;0 jttp>//rumfgfouhyktdegfefgmustrfodrcubukg jttp>//rumfgfouhyktdeg fefgmustrfodrcubukgk.bhlasplt.clo/20; k.bhlasplt.clo/20;=/03/olmuhus=/03/olmuhuspugtfr-fgmustrfkh-dgafgddrfga.jtoh
;4
HKOPFRKG
;9