LA LEY DEL MÍNIMO DE LIEBIG La Ley del Mínimo de Liebig, a menudo llamada simplemente Ley de Liebig o Ley del Mínimo, es un principio desarrollado en la ciencia agrícola por agrícola por Carl prengel !"#$#% & m's tarde populari(ado por )ustus *on Lie+ig Lie+ig A-irma .ue el crecimiento no crecimiento no es controlado por el monto total de los recursos disponi+les, recursos disponi+les, sino por el recurso m's escaso Enunciado/ 0el 0el crec crecim imie ient nto o de los los *ege *egeta tale less est' est' limi limita tado do por por el elem elemen ento to cu& cu&a concentraci1n es in-erior a un *alor mínimo por de+a2o del cual no tiene lugar el crecimiento3 !Da2o(, "454%, mas no por los elementos .ue se encuentran en grandes concentraciones concentraciones 0un organismo dado estar' ausente de todos los lugares en .ue cual.uier -actor -actor est6 est6 por de+a2o de+a2o del del um+ral um+ral mínimo mínimo necesa necesario rio para para ese organi organismo smo33 !7e8es, O% 0el rendimiento de los culti*os est' regulado por el -actor mas limitante & se puede puede increm increment entar ar 9nica 9nicamen mente te con la correc correcci1 ci1n n de ese -actor -actor limita limitante nte Cuando esa limitaci1n se :a corregido, los rendimientos pasan a ser regulados por el siguie siguiente nte -actor -actor limitan limitante te Increm Increment entos os poster posteriore ioress en rendim rendimien iento, to, ocurrir'n solamente si este -actor es corregido Este proceso se repite con incr increm emen ento toss de rend rendimi imien ento to esca escalo lona nado doss :ast :asta a .ue .ue no e;is e;ista tan n -act -actor ores es limitantes3 !
ara reproducirse & prosperar en una situaci1n determinada, el organismo :a de tene tenerr mate materia riale less esen esenci cial ales es para para la repr reprod oduc ucci ci1n 1n & el desa desarro rrollo llo En cond condic icio ione ness de 0est 0estad ado o cons consta tant nte3 e3,, el mate materi rial al esen esenci cial al disp dispon oni+ i+le le en cantidades .ue m's se apro;imen al mínimo crítico necesario tender' a ser el material limitati*o ?a& .ue aclaras dos aspectos@= aspectos @=// "
La le& le& de Lie+ Lie+ig es s1lo s1lo apli aplicca+le a+le estri strict cta ament mente e en cond ondicio icion nes de estado esta+le, es decir, cuando las entradas de energía & materiales compensan las salidas $ La e;is e;isten tencia cia de -act -actore oress de de inter interacc acci1n i1n implic implica a .ue .ue una una misma misma cantid cantidad ad de material .uímico resulte limitante en unos casos & en otros no La le& del mínimo de Lie+ig indica .ue el rendimiento de los culti*os est' regulado por el -actor m's limitante & .ue el rendimiento se puede incrementar
9nicamente con la correcci1n de ese -actor limitante Cuando esta limitaci1n se :a corregido, los rendimientos pasan a ser regulados por el siguiente -actor limitante Incrementos posteriores en rendimiento ocurrir'n solamente si este -actor es corregido Este proceso se repite con incrementos de rendimiento escalonados :asta .ue no e;istan -actores limitantes INEACCIONE Y LA LEY DEL MIMO En las condiciones actuales de producci1n en lugar de le&es del m ínimo, se de+e :a+lar de una Le& de M';imo La le& de m';imo no puede operar si e;isten -actores limitantes del tipo Lie+ig Esta le& tiene dos características principales/ "% El e-ecto de una medida correcti*a se incrementa progresi*amente a medida .ue otros -actores limitantes son corregidos El resultado -inal es mas grande .ue la suma de los e-ectos indi*iduales de+ido a la -orma en la cual ellos interaccionan La interaccion multiplica los e-ectos de cada uno $% Los rendimientos pueden ser los m's altos o m';imos solamente si no e;isten o permanecen -actores limitantes Mientras menos -actores limitantes e;istan ma&or ser' el rendimiento del culti*o Fue tan cerca de este punto se puede llegar depende, por supuesto, de -actores econ1micos A-ortunadamente cuando se est'n mane2ando -actores del tipo Mitsc:erlic: se pueden escoger primero a.uello m's econ1micos >ara mantener un sistema de producci1n de mane2o intensi*o es necesario identi-icar todos los -actores limitantes & el grado de limitaci1n de cada uno de ellos Esto es posi+le con una com+inaci1n de diagn1stico de la+oratorio, in*estigaci1n de campo, integraci1n de datos de in*estigaci1n disponi+les & la e;periencia en el mane2o del culti*o
Ilustración 1 Representación de la "Ley del Mínimo" propuesta por el científico Alemán Ju stuv von Liebgi en 1!#
A>LICACIONE Este concepto se aplic1 originalmente al crecimiento de plantas & culti*os, donde se encontr1 .ue el aumento de la cantidad de nutriente m's a+undante no :acía aumentar el crecimiento de las plantas 1lo mediante el aumento de la cantidad del nutriente limitante !el m's escaso% se podía me2orar el crecimiento de una planta o culti*o Este principio puede ser resumido en el a-orismo/ la disponi+ilidad del nutriente m's a+undante en el suelo es como la disponi+ilidad del nutriente menos a+undante en el suelo E)EM>LO Lie+ig us1 la imagen de un +arril, .ue a:ora se llama el barril de Liebig para e;plicar su le& Así como la capacidad de un +arril con duelas de distinta longitud est' limitada por la m's corta, el crecimiento de una planta se *e limitado por el nutriente m's escaso A>LICACIONE CIENÍHICA La Le& de Lie+ig se :a e;tendido a po+laciones +iol1gicas !& se utili(a com9nmente en modelos de ecosistema% El crecimiento de un organismo !como una planta% puede depender de una serie de -actores di-erentes/ la lu( del sol o nutrientes minerales !nitrato o -os-ato% La disponi+ilidad de estos puede *ariar, de tal manera .ue en un momento dado es unos son m's
limitantes .ue otros La Le& de Lie+ig dice .ue el crecimiento s1lo se produce en la tasa permitida por el m's limitante En la siguiente ecuaci1n, el crecimiento de la po+laci1n es una -unci1n del mínimo de tres t6rminos de Mic:aelisMenten .ue representan la limitaci1n de los -actores , &
El uso de la ecuaci1n se limita a una situaci1n en la .ue e;isten condiciones de estado esta+les, & las interacciones de los -actores est'n estrictamente controladas Wa l l a ce ,a .1 99 3.Thel a wo ft h ema xi mu m.Be t t e rCr op s.7 7( 2 ) : 20 2 2