BAB I PENDAHULUAN A. Latar Belakang Bagi orang awam, mendengar zat kimia saja, mereka sudah beranggapan bahwa itu adalah zat yang berbahaya, tetapi tanpa di sadarinya, di dalam kehidupan sehari-hari kita bergelut dengan zatzat kimia apakah itu kebutuhan sehari-hari seperti makanan, minuman, pernafasan, pakaian, obatobatan, sabun, pasta gigi bahkan prosess dalam tubuh kita sendiri juga berupa proses kimia, jadi dengan kata lain kita tidak bisa lari dari zat kimia. Kenyataannya memang zat kimia itu ada yang berfaedah buat kehidupan kita manusia tetapi juga berbahaya bagi kehidupan kita manusia pada khususnya dan makhluk hidup pada umumnya. Titrasi biasanya dibedakan berdasarkan jenis reaksi yang terlibat di dalam proses titrasi, sebagai contoh bila melibatkan reaksi asam a sam basa maka disebut sebagai titrasi asam basa, titrasi redoks untuk titrasi yang melibatkan reaksi reduksi oksidasi, titrasi kompleksometri untuk titrasi yang melibatan pembentukan reaksi kompleks dan lain sebagainya. Titrasi Reduksi oksidasi (redoks) adalah suatu penetapan kadar reduktor atau oksidator berdasarkan atas reaksi oksidasi dan reduksi dimana redoktur akan teroksidasi dan oksidator akan tereduksi. B. Rumusan Masalah 1. Jenis-jenis titrasi redoks 2. Indikator redoks 3. Faktor-faktor yang memengaruhi redoks 4. Pemahaman metode permanganometri, serimetri,iodo-iodimetri, bromatobromometri,iodatometri,bikromatometri bromometri,iodatometri,bikromato metri dan nitritometri BAB II PEMBAHASAN A. Jenis-jenis reaksi redoks Reaksi redoks secara luas digunakan dalam analisa titrimetri baik untuk zat anorganik maupun organik.Reaksi redoks dapat diikuti dengan perubahan potensial, sehingga reaksi redoks dapat menggunakan perubahan potensial untuk mengamati titik akhir satu titrasi. Selain itu cara sederhana juga dapat dilakukan dengan menggunakan indikator. Titrasi redoks melibatkan reaksi oksidasi dan reduksi antara titrant dan analit.Titrasi redoks banyak dipergunakan untuk penentuan kadar logam atau senyawa yang bersifat sebagai oksidator atau reduktor. Aplikasi dalam bidang industri misalnya penentuan sulfite dalam minuman anggur dengan menggunakan iodine, atau penentuan kadar alkohol dengan menggunakan kalium dikromat. Beberapa contoh yang lain adalah penentuan asam oksalat dengan menggunakan permanganate, penentuan besi(II) dengan serium(IV), dan sebagainya. Berdasarkan jenis oksidator atau reduktor yang dipergunakan dalam titrasi redoks, maka dikenal beberapa jenis titrimetri redoks seperti iodometri, iod ometri, iodimetri danm permanganometri. 1) Iodimetri dan Iodometri
Teknik ini dikembangkan berdasarkan reaksi redoks dari senyawa iodine dengan natrium tiosulfat. Oksidasi dari senyawa iodine ditunjukkan oleh reaksi dibawah ini : I2 + 2 e à 2 IEo = + 0,535 volt Sifat khas iodine cukup menarik berwarna biru didalam larutan amilosa dan berwarna merah pada larutan amilopektin. Dengan dasar reaksi diatas reaksi redoks dapat diikuti dengan menggunaka indikator amilosa atau amilopektin. Analisa dengan menggunakan iodine secara langsung disebut dengan titrasi iodimetri. Namun titrasi juga dapat dilakukan dengan cara menggunakan larutan iodida, dimana larutan tersebut diubah menjadi iodine, dan selanjutnya dilakukan titrasi dengan natrium tiosulfat, titrasi tidak iodine secara tidak langsung disebut dengan iodometri. Dalam titrasi ini digunakan indikator amilosa, amilopektin, indikator carbon tetraklorida juga digunakan yang berwarna ungu jika mengandung iodine. 2) Permanganometri Permanganometri merupakan titrasi redoks menggunakan larutan standar Kalium permanganat. Reaksi redoks ini dapat berlangsung dalam suasana asam maupun dalam suasana basa. Dalam suasana asam, kalium permanganat akan tereduksi menjadi Mn2+ dengan persamaan reaksi : MnO4- + 8 H+ + 5 e à Mn2+ + 4 H2O Berdasarkan jumlah ellektron yang ditangkap perubahan bilangan oksidasinya, maka berat ekivalen Dengan demikian berat ekivalennya seperlima dari berat molekulnya atau 31,606. Dalam reaksi redoks ini, suasana terjadi karena penambahan asam sulfat, dan asam sulfat cukup baik karena tidak bereaksi dengan permanganat. Larutan permanganat berwarna ungu, jika titrasi dilakukan untuk larutan yang tidak berwarna, indikator tidak diperlukan. Namun jika larutan permangant yang kita pergunakan encer, maka penambahanindikator dapat dilakukan. Beberapa indikator yang dapat dipergunakan seperti feroin, asam N-fenil antranilat. Analisa dengan cara titrasi redoks telah banyak dimanfaatkan, seperti dalam analisis vitamin C (asam askorbat). Dalam analisis ini teknik iodimetri dipergunakan. Pertama-tama, sampel ditimbang seberat 400 mg kemudian dilarutkan kedalam air yang sudah terbebas dari gas carbondioksida (CO2), selanjutnya larutan ini diasamkan dengan penambahan asam sulfat encer sebanyak 10 mL. Titrasi dengan iodine, untuk mengetahui titik akhir titrasi gunakan larutan kanji atau amilosa. 3) Bromometri Asam Barbiturat adalah zat induk barbital-barbital yang sendirinya tidak bersisat hipnotik. Sifat ini baru nampak jika atom-atom hydrogen pada atom C 5 dari inti pirimidinnya digantikan oleh gugusan alkil atau aril. Barbital-barbital semuanya bersifat lipofil, sukar larut dalam air tetapi mudah dalam pelarut-pelarut non polar seperti minyak, kloroform dan sebagainya. Sifat lipofil ini dimiliki oleh kebanyakan obat yang mampu menekan ssp. Dengan meningkatnya sifat lipofil ini, misaInya dengan mengganti atom oksigen pada atom C 2 menjadi atom belerang, maka efeknya dan lama kerjanya dipercepat, dan seringkali daya hipnotiknya diperkuat pula. Secara kimia, barbiturat merupakan derivat asam barbiturat. Asam barbiturat merupakan hasil reaksi kondensasi antara urea dengan asam malonat. 4) Sarimetri serimetri adalah penetapan kadar reduktor dengan menggunakan larutan serium (IV) sulfat sebagai
titran titrasi dapat dilakukan dalam suasana asam, karena dalam suasan netral terdapat endapan serium (IV) hidroksida atau garamnya. adapun keunggulan dari serimetri yaitu: larutan dalam asam sulfat tahan panas dan cahaya dapat dipakai untuk penetapan sample yang mengandung klorida penggunaannya luas redoks yang terjadi sederhana 5) Nitrimetri (Diazotasi) Senyawa Diazotasi merupakan analisa titrimetri untuk menetapkan kadar bergugus amino aromatis baik bebas maupun dari hasil reaksi hidrolisis dan reduksi. Prinsipnya : berdasarkan pembentukan garam diazonium dari gugus amino aromatis bebas yang bereaksi dengan asam nitrit (mereaksi natrium nitrat dalam suasana asam). B.
Indikator redoks
Indikator Redoks adalah indikator yang berubah warnanya karena terjadi reaksi reduksi-oksidasi (redoks). Disini indikator memperlihatkan warna teroksidasi dan warna tereduksi. Dalam titrasi redoks ada 3 jenis indikator : a. Indikator Redoks Reversibel Indikator oksidasi - reduksi yang sebenarnya yang tidak tergantung dari salah satu zat, tetapi hanya pada perubahan potensial larutan selama titrasi. Indikator ini dapat dioksidasi dan direduksi secara reversibel (bolak-balik). b. Indikator Redoks Irreversibel Indikator yang berubah warnanya karena oksidasi dari oksidator dan sifatnya tidak dapat berubah kembali seperti semula. c. Indikator Redoks Khusus Indikator khusus yang bereaksi dengan salah satu komponen yang bereaksi, Contoh indikator yang paling kita kenal ialah Amilum, yang membentuk kompleks biru tua dengan ion triIodida. Indikator yang sebenarnya jauh lebih luas penerapannya karena hanya tergantung dari perubahan potensial larutan . Sudah dikemukakan bahwa indikator tersebut sebenarnya juga dapat dioksidasi – reduksi dan mempunyai warna yang berbeda dalam bentuk tereduksi. Reaksii paruhnya dapat dilihat secara umum sebagai berikut : Oks in + n e Red.in Jika reaksi indikator itu dapat bolak balik, dapat kita tulis : 0,0591 [ Oks in ] E = E o + log n [ Red in ] Jadi trayek perubahan warna terletak antara nilai – nilai : 0,0591 E = Eo ± n Potensial saat terjadinya perubahan warna tergantung dari potensial standar indikator yang
bersangkutan. Dalam daftar indikator, indikator dicirikan oleh potensial peralihan ( transistion potensial ), yaitu potensialnya apabila konsentrasi Oksin dan Redin sama, masing – masing 50 %. a. Indikator Redoks Reversibel Tidak semua indikator redoks dapat dipakai untuk sembarang titrasi redoks. Pemilihan indikator yang cocok ditentukan oleh kekuatan oksidasi titrat dan titrant, dengan perkataan lain, potensial titik ekivalen titrasi tersebut. Bila potensial peralihan indikator tergantung dari pH, maka juga harus diusahakan agar pH tidak berubah selama titrasi berlangsung. Untuk titrasi dengan Ce4+ dapat dipakai Ferroin; sedangkan untuk titrasi dengan Cr2O7 = Ferroin tidak cocok karena potensial perubahan ferroin terlalu tinggi dibandingkan dengan potensial TE. Maka dipakai difenilamin atau difenilamin sulfonat. Sebenarnya kedua indikator ini kebalikan dari ferroin dalam arti potensial peralihannya terlalu rendah. Namun dengan asam fosfat 3 M kesulitan ini teratasi karena potensial TE diturunkan sehingga sesuai untuk penggunaan difenilamin atau garam sulfonatnya. Penurunan potensial terjadi karena asam fosfat (H3PO4) mengkompleks Fe3+ tetapi tidak mengkompleks Fe2+, sehingga konsentrasi Fe3+ bebas selalu rendah. Berikut Beberapa Contoh – contoh Indikator Redoks yang sering digunakan : 1. Kompleks Fe ( II ) – ortofenentrolin Suatu golongan senyawa organik yang dikenal dengan nama 1,10 fenantrolin ( Ortofenantrolin ) yang membentuk kompleks yang stabil dengan Fe ( II ) dan ion-ion lain melalui kedua atom N pada struktur induknya. Sebuah ion Fe2+ berikatan dengan tiga buah molekul fenantrolin dan membentuk kelat dengan struktur. Kompleks ini terkadang disebut FERROIN dan ditulis (Ph)3Fe2+ agar sederhana. Besi yang terikat dalam ferroin itu mengalami oksidasi reduksi secara reversible. Walaupun kompleks (Ph)3 Fe2+ berwarna biru muda, dalam kenyataannya, warna dalam titrasi berubah dari hampir tak berwarna menjadi merah. Karena kedua warna berbeda intensitas, maka titik akhir dianggap tercapai pada saat baru 10 % dari indikator berbentuk (Ph)3Fe2+. Oleh sebab itu maka potensial peralihannya kira – kira 1,11 Volt dalam larutan H2SO4 1 M. Diantara semua indikator redoks, Ferroin paling mendekati bahan yang ideal. Perubahan warnanya sangat tajam, larutannya mudah dibuat dan sangat stabil. Bentuk teroksidasinya amat tahan terhadap oksidator kuat. Reaksinya cepat dan reversibel. Diatas 60 oC, Ferroin terurai. 2. Difenilamin dan turunannya Ditemukan pertama kali dan penggunaannya dianjurkan oleh Knop pada tahun 1924 untuk titrasi Fe2+ dengan kalium bikhromat. Reaksi pertama membentuk difenilbenzidine yang tak berwarna; reaksi ini tidak reversibel. Yang kedua membentuk violet difenilbenzidine, reversibel dan merupakan reaksi indikator yang sebenarnya. Potensial reduksi reaksi kedua kira – kira 0.76 volt. Walaupun ion H+ tampak terlibat, ternyata perubahan keasaman hanya berpengaruh kecil atas potensial ini, mungkin karena asosiasi ion tersebut denga hasil yang berwarna itu. Kekurangan difenilamain antara lain ialah indikator ini harus dilarutkan dalam asam sulfat pekat karena sulit larut dalam air. Hasil oksidasi ini membentuk endapan dengan ion Wolfram sehingga
dalam Analisa , ion tersebut tidak dapat dipakai. Akhirnya ion merkuri memperlambat reaksi indikator ini. Derivat difenilamin yaitu Asam Difenilamin Sulfonat, tidak mempunyai kelemahan – kelemahan diatas : Garam Barium atau Natrium dari asam ini dapat digunakan untuk membuat larutan indikator dalam air dan sifatnya serupa dengan induknya. Perubahan warna sedikit lebih tajam, dari tak berwarna , melalui hijau menjadi violet. Potensial peralihannya 0.8 volt dan juga tak tergantung dari konsentrasi asam. Asam sulfonat derivat ini sekarang banyak digunakan dalam titrasi redoks. b. Indikator Redoks Irreversibel Indikator ini digunakan pada titrasi Bromatometri. Contoh yang sering digunakan adalah Methyl Red (MR) dan Methyl Orange (MO). Reaksi yang terjadi berupa oksidasi dari indikator MR atau MO menjadi senyawa yang tidak berwarna oleh Brom bebas (Br2). Brom ini berasal dari : KBrO3 + HCl ----> KCl + HBr + 3 O 2 HBr + O ----> H2O + Br2 Br2 + MO / MR ----> Teroksidasi (Tidak berwarna) c. Indikator Redoks Khusus (Tidak terpengaruh Potensial redoks) Indikator ini dipakai pada Iodometri dan Iodimetri, indikator yang biasa digunakan adanya Amylum dan Chloroform. Pemakaian indikator ini tidak terpengaruh oleh naik turunnya bilangan oksidasi atau potensial larutan, melainkan berdasarkan pembentukan kompleks dengan iodium. 1. Amylum Penggunaan Indikator ini berdasarkan pembentukan kompleks Iod-Amylum yang larut dengan Iodium (I2) yang berwarna biru cerah. Mekanisme pewarnaan biru ini karena terbentuknya suatu senyawa dala dari amilum dan atom iod. Fraksi Amilosa-amilum mempunyai bentuk helikal dan dengan itu membentuk celah berbentuk saluran. Dalam saluran itu terdapat suatu rantai iod linear, Warna biru disebabkan oleh ketujuh elektron luar atom Iod yang mudah bergerak. I2 + Amylum -----> Iod-Amylum (biru) Iod-Amylum + S2O32- -----> Warna Hilang Setelah penambahan titrant Tiosulfat maka kompleks ini dipecah dan bila konsentrasi Iod habis maka warna biru tadi akan hilang. Penambahan indikator amylum sebaiknya menjelang titik akhir titrasi karena kompleks iod-amilum yang terbentuk sukar dipecah pada titik akhir titrasi sehingga penggunaan Tiosulfat kelebihan berakibat terjadi kesalahan titrasi. Bila Iod masih banyak sekali bahkan dapat menguraikan amilum dan hasil penguraian ini mengganggu perubahan warna pada titik akhir titrasi. 2. Chloroform Penggunaan indikator ini untuk titrasi Iodometri, berdasarkan fungsi Chloroform sebagai pelarut organik yang melarutkan iodium dalam fase organik (fase nonpolar). Melarutnya Iodium dalam Chloroform memberi warna violet. Hal ini patut dipahami karena Iodium sukar larut dalam air, larut hanya sekitar 0,0013 mol perliter pada suhu 25O C. Tetapi sangat mudah larut dalam larutan KI karena membentuk Ion TriIodida (I3-)dan dalam Chloroform.
Setelah penambahan titrant Tiosulfat maka Iodium akan diubah menjadi Iodida dan bila konsentrasi iod habis maka warna violet tadi akan hilang.
C.
Faktor-faktor yang mempengaruhi reaksi redoks
Faktor –faktor yang mempengaruhi pembentukan lapisan oksidasi reduksi yaitu sebagai berikut: (1) adanya faktor pencucian dari lapisan di dalam tanah yang menyebabkan tanah membentuk lapisan oksidasi dan lapisan reduksi. (2) adanya zat-zat protein yang berhubungan langsung oleh mikroorganisme yang sangat berperan penting dalam proses oksidasi reduksi dalam tanah. Beberapa faktor yang mempengaruhi kecepatan reaksi antara lain konsentrasi, sifat zat yang bereaksi, suhu dan katalisator. a. Konsentrasi Dari berbagai percobaan menunjukkan bahwa makin besar konsentrasi zat-zat yang bereaksi makin cepat reaksinya berlangsung. Makin besar konsentrasi makin banyak zat-zat yang bereaksi sehingga makinbesar kemungkinan terjadinya tumbukan dengan demikian makin besar pula kemungkinan terjadinya reaksi. b. Sifat Zat Yang Bereaksi Sifat mudah sukarnya suatu zat bereaksi akan menentukan kecepatan berlangsungnya reaksi. Secara umum dinyatakan bahwa: Reaksi antara senyawa ion umumnya berlangsung cepat. • Hal ini disebabkan oleh adanya gaya tarik menarik antara ion-ion yang muatannya berlawanan. Contoh: Ca2+(aq) + CO32+(aq) → CaCO3(s) Reaksi ini berlangsung dengan cepat. Reaksi antara senyawa kovalen umumnya berlangsung lambat. • Hal ini disebabkan karena untuk berlangsungnya reaksi tersebut dibutuhkan energi untuk memutuskan ikatan-ikatan kovalen yang terdapat dalam molekul zat yang bereaksi. Contoh: CH4(g) + Cl2(g) → CH3Cl(g) + HCl(g) Reaksi ini berjalan lambat reaksinya dapat dipercepat apabila diberi energi misalnya cahaya matahari. c. Pada umumnya reaksi akan berlangsung lebih cepat bila suhu dinaikkan. Dengan menaikkan suhu maka energi kinetik molekul-molekul zat yang bereaksi akan bertambah sehingga akan lebih banyak molekul yang memiliki energi sama atau lebih besar dari Ea. Dengan demikian lebih banyak molekul yang dapat mencapai keadaan transisi atau dengan kata lain kecepatan reaksi menjadi lebih besar. Secara matematis hubungan antara nilai tetapan laju reaksi (k) terhadap suhu dinyatakan oleh formulasi Arrhenius:
k = A . e-E/RT dimana: k : tetapan laju reaksi A : tetapan Arrhenius yang harganya khas untuk setiap reaksi E : energi pengaktifan R : tetapan gas universal = 0.0821.atm/moloK = 8.314 joule/moloK T : suhu reaksi (oK) d. Katalisator Katalisator adalah zat yang ditambahkan ke dalam suatu reaksi dengan maksud memperbesar kecepatan reaksi. Katalis terkadang ikut terlibat dalam reaksi tetapi tidak mengalami perubahan kimiawi yang permanen, dengan kata lain pada akhir reaksi katalis akan dijumpai kembali dalam bentuk dan jumlah yang sama seperti sebelum reaksi. Fungsi katalis adalah memperbesar kecepatan reaksinya (mempercepat reaksi) dengan jalanmemperkecil energi pe ngaktifan suatu reaksi dan dibentuknya tahap-tahap reaksi yang baru. Dengan menurunnya energi pengaktifan maka pada suhu yang sama reaksi dapat berlangsung lebih cepat
D. Pemahaman metode permanganometri, serimetri, iodo-iodimetri, bromatobromometri,iodatometri dan nitritometri Permanganometri • Permanganometri merupakan titrasi yang dilakukan berdasarkan reaksi oleh kalium permanganat (KMnO4). Reaksi ini difokuskan pada reaksi oksidasi dan reduksi yang terjadi antara KMnO4 dengan bahan baku tertentu. Titrasi dengan KMnO4 sudah dikenal lebih dari seratus tahun. Kebanyakan titrasi dilakukan dengan cara langsung atas alat yang dapat dioksidasi seperti Fe+, asam atau garam oksalat yang dapat larut dan sebagainya. Beberapa ion logam yang tidak dioksidasi dapat dititrasi secara tidak langsung dengan permanganometri seperti: (1) ion-ion Ca, Ba, Sr, Pb, Zn, dan Hg (I) yang dapat diendapkan sebagai oksalat. Setelah endapan disaring dan dicuci, dilarutkan dalam H2SO4 berlebih sehingga terbentuk asam oksalat secara kuantitatif. Asam oksalat inilah yang akhirnya dititrasi dan hasil titrasi dapat dihitung banyaknya ion logam yang bersangkutan. (2) ion-ion Ba dan Pb dapat pula diendapkan sebagai garam khromat. Setelah disaring, dicuci, dan dilarutkan dengan asam, ditambahkan pula larutan baku FeSO4 berlebih. Sebagian Fe2+ dioksidasi oleh khromat tersebut dan sisanya dapat ditentukan banyaknya dengan menitrasinya dengan KMnO4. Sumber-sumber kesalahan pada titrasi permanganometri, antara lain terletak pada : Larutan pentiter KMnO4¬ pada buret Apabila percobaan dilakukan dalam waktu yang lama, larutan KMnO4 pada buret yang terkena sinar akan terurai menjadi MnO2 sehingga pada titik akhir titrasi akan diperoleh pembentukan presipitat coklat yang seharusnya adalah larutan berwarna merah rosa. Penambahan KMnO4 yang terlalu cepat pada larutan seperti H2C2O4 Pemberian KMnO4 yang terlalu cepat pada larutan H2C2O4 yang telah ditambahkan H2SO4 dan telah dipanaskan cenderung menyebabkan reaksi antara MnO4- dengan Mn2+¬. MnO4- + 3Mn2+ + 2H2O ↔ 5MnO2 + 4H+ Penambahan KMnO4 yang terlalu lambat pada larutan seperti H2C2O4 Pemberian KMnO4 yang terlalu lambat pada larutan H2C2O4 yang telah ditambahkan H2SO4 dan telah dipanaskan mungkin akan terjadi
kehilangan oksalat karena membentuk peroksida yang kemudian terurai menjadi air. H2C2O4 + O2 ↔ H2O2 + 2CO2↑. Serimetri • serimetri adalah penetapan kadar reduktor dengan menggunakan larutan serium (IV) sulfat sebagai titran titrasi dapat dilakukan dalam suasana asam, karena dalam suasan netral terdapat endapan serium (IV) hidroksida atau garamnya. adapun keunggulan dari serimetri yaitu: larutan dalam asam sulfat tahan panas dan cahaya dapat dipakai untuk penetapan sample yang mengandung klorida penggunaannya luas redoks yang terjadi sederhana. Ioda-iodimetri • Reaksi-reaksi kimia yang melibatkan oksidasi reduksi dipergunakan secara luas oleh analisis titrimetrik. Ion-ion dari berbagai unsur dapat hadir dalam kondisi oksidasi yang berbeda-beda, menghasilkan kemungkinan banyak reaksi redoks. Banyak dari reaksi -reaksi ini memenuhi syarat untuk dipergunakan dalam analisi titrimetrik dan penerapan-penerapannya cukup banyak. Iodometri adalah analisa titrimetrik yang secara tidak langsung untuk zat yang bersifat oksidator seperti besi III, tembaga II, dimana zat ini akan mengoksidasi iodida yang ditambahkan membentuk iodin. Iodin yang terbentuk akan ditentukn dengan menggunakan larutan baku tiosulfat . Oksidator + KI → I2 + 2e I2 + Na2 S2O3 → NaI + Na2S4O6 Sedangkan iodimetri adalah merupakan analisis titrimetri yang secara langsung digunakan untuk zat reduktor atau natrium tiosulfat dengan menggunakan larutan iodin atau dengan penambahan larutan baku berlebihan. Kelebihan iodine dititrasi kembali dengan larutan tiosulfat. Reduktor + I2 → 2I Na2S2 O3 + I2 → NaI +Na2S4 O6 Untuk senyawa yang mempunyai potensial reduksi yang rendah dapat direksikan secara sempurna dalam suasana asam. Adapun indikator yang digunakan dalam metode ini adalah indikator kanji. Teknik ini dikembangkan berdasarkan reaksi redoks dari senyawa iodine dengan natrium tiosulfat. Oksidasi dari senyawa iodine ditunjukkan oleh reaksi dibawah ini : I2 + 2 e à 2 IEo = + 0,535 volt Sifat khas iodine cukup menarik berwarna biru didalam larutan amilosa dan berwarna merah pada larutan amilopektin. Dengan dasar reaksi diatas reaksi redoks dapat diikuti dengan menggunaka indikator amilosa atau amilopektin. Analisa dengan menggunakan iodine secara langsung disebut dengan titrasi iodimetri. Namun titrasi juga dapat dilakukan dengan cara menggunakan larutan iodida, dimana larutan tersebut diubah menjadi iodine, dan selanjutnya dilakukan titrasi dengan natrium tiosulfat, titrasi tidak iodine secara tidak langsung disebut dengan iodometri. Dalam titrasi ini digunakan indikator amilosa, amilopektin, indikator carbon tetraklorida juga digunakan yang berwarna ungu jika mengandung iodine. Bromometri-bromatometri • Bromometri merupakan analisa titrimetri untuk zat-zat reduktor yang meggunakan larutan baku bromin sebagai titran (titrasi langsung). Bromatometri merupakan merupakan analisa titrimetri secara tidak langsung untuk zat-zat
oksidator yang akan direduksi terlebih dahulu dengan bromin lalu bereaksi dengan KI dan iodin yang dihasilkan akan dititrasi menggunakan larutan baku natrium tiosulfat sebagai titran. Nitritometri • Penetapan kadar zat dengan jalan titrasi mengunakan natrium nitrit sebagai titran dinamakan nitrimetri. Titrasi ini digunakan untuk penetapan kadar amina primer aromatik berdasarkan reaksi pembentukan garam diazonium dengan asam nitrit pada suhu di bawah 15oC. Dalam kondisi terkontrol, reaksi tersebut berlangsung secara kuantitatif. Oleh karena reaksi tersebut tidak begitu cepat maka titrasi dilakukan perlahan-lahan. Untuk menjaga suhu di bawah 15oC dapat digunakan pecahan es atau sirkulator. Di atas 15oC, garam diazonium yang terbentuk akan terhidrolisa menjadi fenol. Akhir titrasi atau Titik akhir tercapai ditandai dengan terjadinya warna biru seketika dan hal itu dapat ditunjukkan kembali setelah dibiarkan selama 1 menit. Karena mempunyai bobot ekivalen yang sama karena jenis reaksi yang terjadi sama, larutan titer natrium nitrit konsentrasinya dinyatakan dalam molar yaitu setiap satu mol senyawa yang mengandung gugus amin primer aromatik setara dengan satu mol NaNO2 membentuk garam diazonium. BAB III PENUTUP 1. Jenis-jenis titrasi redoks: Titrasi Iodometri • Titrasi Iodimetri • Titrasi Permanganometri • Titrasi Bromometri • Titrasi Serimetri • Titrasi Nitrimetri • 2. Indikator titrasi redoks adalah indikator yang berubah warnanya karena terjadi reaksi reduksioksidasi (redoks). 3. Faktor-faktor yang memengaruhi titrasi redoks yakni konsentrasi, zat yang bereaksi, suhu dan katalisator.
tidak ada plus satu tidak ada komentar belum pernah dibagikan