Força e Potência de Corte Força de Usinagem As forças de usinagem são consideradas como uma ação da peça sobre a ferramenta (vide figura). A força total resultante que atua sobre a cunha cortante é chamada de força de usinagem. Força de usinagem = f {condições {condições de corte (f, Vc, ap), geometria da ferramenta (χ, γ, λ), desgaste da ferramenta, uso de lubri-refrigerantes, outros}
•Força de corte(Fc): projeção da F na F na direção de corte. •Força de avanço(Ff): projeção de F na F na direção de avanço •Força passiva (Fp – ou – ou força de profundidade): força que age perpendicular ao plano de trabalho, não gerando potência de usinagem.
Cálculo da Força de Corte: A força de corte é o principal fator no cálculo da potência necessária a usinagem. Depende principalmente: •material a ser usinado •das condições efetivas de usinagem •seção de usinagem •do processo A equação fundamental da força de corte (também denominada de equação de Kienzle) permite relacionar as constantes do processo de usinagem com o material a ser usinado. Conceitualmente é independente do processo de usinagem. A forma prática de expressar a Força de Corte é:
Comprimento de corte b [mm] É o comprimento de cavaco a ser retirado, medido na superfície de corte.
Espessura de corte – h [mm] É a espessura calculada do cavaco
Área da seção de corte – A [mm2] É a área calculada da seção de cavaco
Cálculo da Força de Corte – Exemplo
Primeiramente calcula-se a Área da seção de corte “A”. Em seguida calcula -se a força de corte Fc utilizando sua fórmula básica: b
p sen
1,5 sen 90º
1,5mm
h a. sen 0,4. sen 90º 0,4mm A b.h 0,6mm 2 Fc Ks. A 2300 .0,6 1380kgf
Pressão Específica de Corte – Ks É a força de corte por unidade de área de seção de corte. A pressão específica de corte Ks é obtida experimentalmente e baseado nos resultados, foram propostas diversas fórmulas relacionando a pressão específica de corte com as diversas grandezas que a influenciam. Fatores que influenciam no Ks:
1) Material da peça •Em geral, quando a dureza do material cresce, Ks também cresce •Aumento da porcentagem de carbono provoca aumento de Ks
2) Material da ferramenta •O material da ferramenta provoca pequena variação no valor de Ks, porém não chega a ser significante. •Porém, cobertura de Nitreto de Titânio (TiN) tendem a reduzir o atrito entre cavaco e ferramenta e assim provocam redução do Ks
3) Geometria da ferramenta •Ângulo de saída positivo provoca uma redução do Ks •Ângulo de inclinação positivo provoca uma redução do Ks •Ângulo de folga menor que 5º resultam em grande atrito entre a ferramenta e a peça resultando no aumento de Ks.
4) Seção de corte •O Ks diminui com o aumento da área de corte (f x ap) e com o aumento da velocidade
5) Velocidade de corte •O Ks diminui com o aumento da velocidade de corte (m/min)
Relação de Ks com a espessura de corte h
Pressão específica de corte segundo Kienzle Kronenberg propôs a seguinte relação entre Ks e h:
Onde Ks1 é uma constante específica do material obtidos em ensaios experimentais onde foram usados os seguintes ângulos de saída: -
6º para torneamento de peças de aço
-
2º para torneamento de peças de ferro fundido
Substituindo a relação acima na equação geral de Kienzle, tem-se:
Onde Ks1 e 1-z são constantes do material, definidos experimentalmente e registrados na forma de tabelas.
Tabela de valores para Ks1 e 1-z para diversos materiais: Material Aço ABNT 1035 1040 1050 1045 1060 8620 4320 4140 4137 6150 Ferro Fundido – HRc=46
1-z 0,74 0,83 0,70 0,86 0,72 0,74 0,70 0,74 0,79 0,74 0,81
Ks1 199 211 226 222 213 210 226 250 224 222 206
Para usinagem em que o ângulo de saída usado não coincida com o ângulo adotado por Kienzle, deve ser feita a seguinte correção no valor da Força de Corte:
Fc' Fc1 k .0,015 Potência de corte A partir do cálculo da força de corte e da velocidade de corte, a potência de corte pode ser definida pela equação abaixo: Se obtiver Fc em Kgf
Se obtiver Fc em N/mm 2 (Mpa)
Exemplo de Aplicação: Deseja-se tornear um eixo de aço ABNT 1035 com 100mm de diâmetro reduzindo-o para 92mm. São usados: avanço de 0,56 mm/volta e rotação de 320 rpm. Para uma ferramenta de Metal Duro P20, com os ângulos: (posição) =60º; ângulo de folga saída =15º. Calcule a potência de corte segundo Kienzle. Pela tabela de Kienzle, temos Ks1=199; (1-z)=0,74 a) A espessura e largura de corte valem respectivamente: p profundidade de corte
100 92
2 h a. sen 0,56. sen 60º 0,486 mm
b
p sen
4
sen 60º
4mm
4,62mm
b) A força de corte segundo Kienzle, resulta: Fc Ks1.h 1 z .b
Fc 199.0,486 0,74.4,62 539 Kgf
c) Correção devido ao ângulo de saída:
Fc '
Fc1 k .0,015
Fc '
5391 15 6 .0,015
Fc '
466 Kgf
d) Calcular a velocidade de corte no diâmetro externo:
Vc
.d .n 1000
.100.320 1000
100 m / min
e) A potência de corte será: Fc em Kgf Pc
Fc.Vc 60.75
466.100 60.75
10,35cv
=6º
e ângulo de
Potência fornecida pelo motor A potência de corte difere da potência fornecida pelo motor devido às perdas por atrito que ocorrem nos mancais, engrenagens, sistemas de refrigeração e lubrificação, sistemas de avanço etc. O rendimento da máquina é:
Onde,
Pm
é a potência do motor e
Pc Pm
varia de 60 a 80% em máquinas convencionais e
90% em máquinas à CNC. No exercício proposto, se quisermos saber a potência mínima necessária que o torno teria que ter para executar a operação, sabendo-se que o mesmo tem um rendimento de 80%:
Pm
Pc
10,35 0,8
12,9cv
multiplicando por 0,7355, temos : 9,5 Kw Lembrando : A
“
”
unidade cavalo vapor corresponde à potência necessária para se elevar 75kg a uma altura
de 1m em 1segundo. Portanto, 1CV = 75kgm/s Então, 75kgm/s = 75 x 9,81Nxm/s = 735 Joules/s= 735 Watts= 0,735 Kw