Se usa un codo reductor para desviar hacia arriba en un ángulo θ=45°, respecto de su dirección original, un flujo de agua que viene por un tubo horizontal a razón de 30 kg/s, que acelera al mismo tiempo. El codo descarga el agua hacia la atmósfera. El área de la sección transversal del codo es de 150 cm2 a la entrada y de 25 cm2 a la salida. La diferencia de elevación entre los centros de la salida y de la entrada es de 40 cm. La masa del codo y del agua en él es de 50 kg. Determine la fuerza de anclaje necesaria para sostener el codo en su lugar. Tome el factor de corrección del flujo de la cantidad de movimiento como 1.03.
Un chorro de agua horizontal choca contra una placa plana vertical a 30 ft/s y se dispersa hacia los lados en el plano vertical. Si se necesita una fuerza de 350 lbf para mantener la placa contra el chorro de agua, determine el flujo volumétrico de esta última.
Un chorro de agua horizontal con velocidad constante V choca normalmente contra una placa plana vertical y se dispersa hacia los lados en el plano vertical. La placa se mueve hacia el chorro de agua incidente con la velocidad Si se necesita una fuerza F para mantener la placa en reposo, ¿cuánta fuerza se necesita para moverla hacia el chorro de agua?
Considere el flujo laminar a través de una sección recta muy larga de un tubo circular. En el capítulo 8 se demuestra que el perfil de velocidad a través de un área de sección transversal del tubo es parabólico (Fig. 6-15), con la componente axial de la velocidad dada por:
Se acelera agua mediante una boquilla hasta alcanzar una magnitud promedio de velocidad de 20 m/s y choca contra una placa vertical en reposo a razón de 10 kg/s, con una velocidad normal de 20 m/s (Fig. 6-22). Después del choque, el chorro de agua se dispersa en todas direcciones en el plano de la placa. Determine la fuerza necesaria para impedir que la placa se mueva horizontalmente debido al chorro de agua.
Se usa un codo de 90° para dirigir hacia arriba un f lujo de agua que viene por un tubo horizontal a razón de 25 kg/s. El diámetro del codo en toda su longitud es de 10 cm. Dicho codo descarga el agua hacia la atmósfera y, por lo tanto, la presión a la salida es la presión atmosférica local. La diferencia de elevación entre los centros de la salida y de la entrada del codo es de 35 c m. Se considera que el peso de este codo y del agua que está en él es despreciable. Determine a) la presión manométrica en el centro de la entrada del codo y b) l a fuerza de anclaje necesaria para sostener a dicho codo en su lugar. Tome el factor de corrección del flujo de la cantidad de movimiento como 1.03.
Un chorro horizontal de agua de 3 in de diámetro que tiene una velocidad de 140 ft/s choca contra una placa curva, la cual desvía el agua 180° a la misma magnitud de la velocidad. Ignore los efectos de la fricción, y determine la f uerza necesaria para sostener la placa contra el chorro de agua.
Se desea evaluar la viabilidad de creación de helicópteros personales, con fines lúdicos. Para ello, se pretende estudiar la potencia necesaria para mantener inmóvil en el aire dicho equipo
en función del diámetro “D” del rotor. Se estima que el peso máximo de equipo y pasajero podría ser de unos “P” Kg. Enla figura 21.1, se esquematiza el rotor con el volumen de control alrededor del mismo y se supone que en la parte inferior del rotor todo el chorro del fluido se desplaza en sentido vertical. Determine: 1. La potencia necesaria en función del diámetro del rotor y del peso de equipo y pasajero. 2. Para una velocidad de giro de 400 rpm, un diámetro de rotor de 2 m y un peso del conjunto de 200 kgf, determine la potencia y el par necesarios del motor.
Sea el turborreactor de un avión de pasajeros, el cual se desplaza a una velocidad V, (el aire atmosférico se considera sin movimiento), el flujo másico entrante al reactor es ṁ E , siendo el caudal másico del combustible que entra lateralmente mFUEL . Se conoce, además, que los gases de combustión salen de la tobera a una velocidad relativa al motor Vr. Calcule la fuerza realizada por el soporte del motor. (Se puede considerar despreciable la cantidad de movimiento asociada al caudal másico de combustible, ṁ FUEL .)
Fluye agua en un tubo horizontal de 30 cm de diámetro a 5 m/s y 300 kPa de presión manométrica y entra a la sección de un codo reductor de 90°, el cual lo conecta a un tubo v ertical de 15 cm de diámetro. La entrada del codo está 50 cm arriba de la salida. Desprecie cualesquiera efectos de fricción y gravitacionales y determine la fuerza neta resultante ejercida sobre el reductor por el agua. Tome el factor de corrección del flujo de la cantidad de movimiento como 1.04.
Momento Angular Se bombea agua subterránea hasta una altura suficiente por un tubo de 10 cm de diámetro que consta de una sección vertical de 2 m de largo y una horizontal de 1 m de largo, como se muestra en la figura 6-37. El agua se descarga al aire atmosférico a una velocidad promedio de 3 m/s y la masa de la sección horizontal del tubo, cuando está llena con agua, es de 12 kg por metro de longitud. El tubo está anclado en el suelo mediante una base de concreto. Determine el momento de flexión que actúa en la base del tubo (punto A) y la longitud necesaria de la sección horizontal que haría que el momento en el punto A sea cero.
La cantidad de movimiento angular, también llamado momento de cantidad de movimiento o simplemente momento angular ( Ḣ)se forma con el producto cruz de un brazo de palanca (r ) y la cantidad de movimiento lineal, también llamado momento lineal, (mV ) de una partícula de fluido, como se muestra en la figura P7-13. ¿Cuáles son las dimensiones primarias de la c antidad de movimiento angular? Haga una lista con las unidades de la cantidad de movimiento angular en unidades SI primarias y en unidades inglesas primarias.
Considere la forma general del teorema del transporte de Reynolds (RTT) , dada en el problema 4-78. Sea Bsist el momento angular H = r mV de un sistema de partículas de fluido, en donde r es el brazo de palanca que produce el momento. Se sabe que, para un sistema, la conservación del momento angular se puede expresar como donde =M es el momento neto aplicado al sistema. Use la ecuación del problema 4-78 y esta ecuación para deducir la ecuación de conservación del momento angular para un volumen de control.
Se va a convertir un rociador grande para césped que tiene cuatro brazos idénticos en una turbina para generar potencia eléctrica cuando se una un generador a su eje rotatorio, como se muestra en la figura 6-38. El agua entra al rociador desde la base, a lo largo del eje de rotación, a razón de 20 L/s y sale por las boquillas en la dirección tangencial. El rociador gira a razón de 300 rpm en un plano horizontal. El diámetro de cada chorro es de 1 cm y la distancia normal entre el eje de rotación y el centro de cada boquilla es de 0.6 m. Estime la potencia eléctrica producida.
Fluye agua por un tubo de 12 cm de diámetro que consta de una sección vertical de 3 m de largo y una horizontal de 2 m de largo, con un codo de 90° a la salida para forzar al agua a que se descargue hacia abajo, como se muestra en la figura P6-47, en dirección vertical. El agua se descarga al aire atmosférico a una velocidad de 4 m/s y la masa de la sección del tubo, cuando está llena con agua, es de 15 kg por metro de longitud. Determine el momento que actúa en la intersección de las secciones vertical y horizontal del tubo (punto A). ¿Cuál sería su respuesta si el flujo se descargara hacia arriba, en vez de hacia abajo?