Teoría de Sistemas Industriales
Capítulo 2 Modelado Matemático de Sistemas de control
Cómo analizar y diseñar un sistema de control r Expected value
e -
Controller
Actuator
Error
u
n
Disturbance
Plant
y Controlled variable
Sensor
• Lo primero que tenemos que pensar es en establecer el modelo del sistema
(Modelo matemático)
Cómo analizar y diseñar un sistema de control r Expected value
e -
Controller
Actuator
Error
u
n
Disturbance
Plant
y Controlled variable
Sensor
• Lo primero que tenemos que pensar es en establecer el modelo del sistema
(Modelo matemático)
Modelado del sistema Definición: Expresión matemática de la relación dinámica entre la salida y la entrada en un sistema de control. Modelo matemático es la base para analizar y diseñar sistemas de control automático No hay un modelo matemático de un sistema físico que sea exacto. Generalmente nos esforzamos por desarrollar un modelo que es adecuado para el problema, pero sin hacer el modelo excesivamente complejo. complejo.
Tres Modelos
Ecuación Diferencial función de Transferencia Característica de Frecuencia.
Responde al Estudio del dominio del tiempo Función de Transferencia
Sistema Linear
Responde al estudio Domanio de la frequencia
Ecuación Frequency Diferencial characteristic Transformada Transformada
4
Métodos de Modelado Método Analítico De acuerdo a A. Leyes de movimiento de Newton B. Ley de Kirchhoff C. Los parámetros y estructura del sistema la expresión matemática del sistema de entrada y salida puede ser derivada. Por lo tanto, construimos el modelo matemático (adecuado para sistemas simples).
Métodos de Modelado Métodos de identificación de sistemas onstruyendo el modelo del sistema basados en la señal de entrada - salida del sistema Este método suele aplicarse cuando hay poca información disponible para el sistema.
C
Entrada
Caja Negra
Salida
Redes Neuronales, Sistemas Difusos
Caja Negra: El sistema es totalmente desconocido. Caja Gris: El sistema es parcialmente conocido
¿Por qué centrarse en sistema lineales invariantes en el tiempo (LTI)?
¿Qué es un sistema lineal? - Aun sistema se puede llamar linear si se aplica el principio de superposición.
u1 (t ) u2 (t )
sistema sistema
y1 (t ) y2 (t )
sistema 1u1 (t ) 2u2 (t )
¿Es y(t)=u(t)+2 un sistema lineal?
y
1 1
2 y2
Ventajas de los sistemas lineales
La respuesta global de un sistema lineal puede obtenerse por -- Descomponiendo la entrada en una suma de elementos de señales -- Encontrando cada respuesta en la salida con la señal primaria correspondiente -- Adicionando todas estas respuestas juntas
Por lo tanto, podemos utilizar la señal primaria típica (e.j. Escalón unitario, impulso unitario, rampa unitaria) para analizar el sistema en aras de la simplicidad.
• ¿Qué es un sistema invariante en el tiempo? – Un sistema es llamado invariante en el tiempo si los parámetros son estacionarios con respecto al tiempo durante la operación del sistema – Ejemplos?
2.2 Establecimiento de la ecuación diferencial y linealización
Ecuación Diferencial
Ecuaciones diferenciales ordinarias lineales --- Una amplia gama de sistemas de ingeniería están modeladas matemáticamente por ecuaciones diferenciales.
--- En general, se escribe la ecuación diferencial de un sistema de n-ésimo orden a0 c( n ) (t ) a1c ( n1) (t )
an1c(1) ( t) c(t ) b0 r ( m ) (t ) bm1r (1) (t ) bm r (t )
Como establecer la EDO de un sistema de control --- Enumera las ecuaciones diferenciales de acuerdo a las reglas físicas de cada componente; --- Obtener el conjunto de ecuaciones diferenciales eliminando variables intermedias; --- Obtener la ecuación diferencial general de entrada y salida del sistema de control.
Ejemplo-1
Circuito RLC R
u(t)
L i(t)
Entrada u(t)
C
uc(t)
Salida sistema
uc(t)
Definir la entrada y salida según qué relación causa
R
C
De acuerdo con la ley de Kirchhoff en electricidad u(t ) Ri( t ) L uC (t )
di (t ) dt
uc(t)
uc ( t) (1)
i (t )dt (2) C
u (t ) RC
i(t)
u(t)
1
duC (t )
L
i (t ) C
2
LC
d uC (t ) 2
uC (t )
duC (t ) dt
Se reescribe en la forma estándar
LCuC (t ) RCuC (t ) uC (t ) u(t ) En General •La salida en lado izquierdo de la ecuación •La entrada en el lado derecho •La entrada se coloca del orden mas alto al más bajo
Ejemplo-2
Sistema masa-resorte-fricción
No se toma en cuenta La Gravedad F1
kx (t )
resorte
k
F(t)
Estamos interesados en la relación entre la fuerza externa f (t) y x (t) desplazamiento de la masa Define: Entrada—F(t); Salida---x(t)
F ma
m F2
ma F F1 F2
fv(t )
fricción f
v
dx (t )
, a
d 2 x (t )
Mediante la eliminación de variables intermedias, obtenemos la ecuación diferencial general de entrada y salida del sistema masa-resorte-fricción.
mx(t ) f x(t ) kx(t ) F (t ) Recordemos el sistema de circuito RLC
LCuc (t ) RCuc (t ) uc (t ) u (t ) Estas fórmulas son similares, es decir, podemos usar el mismo modelo matemático para describir una clases de sistemas que son físicamente diferentes pero comparten la misma ley de
Ejemplo-3 Sistema no lineal
En realidad, la mayoría de los sistemas en efecto no lineales, e.j. El sistema de péndulo, que es descrito por ecuaciones diferenciales no lineales. d 2 ML 2 Mg sin (t ) 0 dt
• Es difícil de analizar los sistemas no lineales, sin embargo podemos linealisar el sistema no lineal cerca de su punto de equilibrio bajo ciertas condiciones ML
d 2 2
Mg (t ) 0 (when is small)
L
Mg
Linealización de ecuaciones diferenciales no lineales Varias características no lineales en el sistema de control. output
output
0
input
Saturation (Amplifier)
0
input
Dead-zone (Motor)
Métodos de linealización (1)No linealidad débil, despreciable Si la no linealidad del componente no está dentro de su región de trabajo lineal, su efecto sobre el sistema es débil y puede ser despreciable.
(2)Pequeña perturbación/error de método Asumiendo: En el proceso del sistema de control, hay pequeños cambios sobre el punto de equilibrio en la entrada y salida de cada componente. Esta suposición es razonable para muchos sistemas de control práctico: en sistema de lazo cerrado, una vez que se produce la desviación, el mecanismo de control reduce o la elimina. En consecuencia, todos los
Example
y
y=f(x)
y0
A(x0,y0) 0
x0
x
dy
A(x0,y0) es el punto de equilibrio. Expandiendo la función no lineal y=f(x) en una serie de Taylor sobre A(x0,y0) tenemos
1 d 2 y
y f ( x) y 0 ( x x 0 ) 2 dx x0 2! dx Saturation (Amplifier) 饱和(放大器)
( x x 0 )
2
x0
La entrada y salida sólo tengan variación n x ( x x ), ( x ) 0 pequeña alrededor del punto de equilibrio. 0
y
y0
dy dx x0
( x x0 ) Este es el modelo lineal del
Nota Este método solamente es aplicable para sistemas con una no linealidad débil.
0
继电特性 Relay
0
饱和特性 Saturation
Para sistemas con una no linealidad fuerte, no podemos usar este método de linealización.
Ejemplo-4 El modelado de un sistema no lineal • Inodoro Q1: inflow por unidad de tiempo Q2: outflow por unidad de tiempo
Water flow
piston
float
Q10=Q20=0
Nivel inicial de agua: H0 Defina: Entrada—Q1,Salida—H Problema: Derive la ecuación diferencial del tanque de agua (el área de sección transversal del tanque de agua es C).
valve
Solución: El flujo de salida o el flujo entrante en función del tiempo dt debe ser igual a la cantidad total de agua ( Q1-Q2 ) en un cambio de tiempo dt , es decir:
CdH (Q1 Q2 )dt Según el ‘Teorema de Torricelli’, la producción de agua es directamente proporcional a la raíz cuadrada de la altura del nivel del nivel del agua, así: R ' is a scale H Q2 coefficent. R Es obvio que esta formula no es lineal, Sobre la base de la Expansión de la Serie de Taylor de funciones alrededor de puntos de operación (Q10,H0 ), tenemos.
Q2
1
H
H
,
Por lo tanto, las ecuaciones diferenciales lineal del depósito de agua es:
RC
dH dt
H RQ1
Ejercicio
E1. Por favor, construir las ecuaciones diferenciales de los dos sistemas siguientes.
x i Input C
K 1
Input
ur (t )
R 1
R 2
Output
A
uc (t )
f
x B
K 2
x o
Output
Soluciones. (1) RC circuit
R i 1 i dt 1 1 C 2 i i1 i2 uc R2i ur R1i1 uc
R1 R2C
duc dt
( R1 R2 )uc R1 R2 C
dur dt
R2 ur
(2) Mass-spring system
K1 ( xi x ) f ( x xo ) K2 xo f ( x xo )
f ( K1 K2 )
dxo dt
K1 K2 xo K1 f
dxi dt
2-3 Función de Transferencia
Resolviendo las Ecuaciones Diferenciales Ejemplo
Resolución de ecuaciones diferenciales lineales con coeficientes constantes: • Para encontrar la solución general (que implica resolver la ecuación característica) • Para encontrar una solución particular de la ecuación completa (involucrando la construcción de múltiples valores de la función)
¿Porqué necesitamos la Transformada de LAPLACE? Dominio del Tiempo Transformada Problemas de algebra Dominio de “s” Problemas EDO Laplace (TL) Difícil
Solución de Problemas en el dominio del tiempo
Fácil
Inversa (ITL)
Solución de Problemas de algebra
Transformada de Laplace La Transformada de Laplace de una función f (t ) está definida como
F ( s ) L f (t )
0 f (t )e dt Laplace, Pierre-Simon
st
donde s j es una variable
Ejemplos
Señal Escalón: f(t)=A
F ( s)
0
st
f (t )e dt
0
st
Ae dt
• Exponential signal f(t)= e at F ( s )
at st
0
e
e dt
1 s a
e
A s
( a s ) t
0
e
st 0
1 s a
A s
Tabla de transformadas de Laplace f(t)
f(t)
F(s)
δ(t)
1
1(t)
1 s
cos wt
1
at
t
e
s
at
sin wt
2
1 s a
e sin wt at
e cos wt
F(s) w s 2 w2
s
s
2
w
2
w ( s a ) 2 w 2 s a ( s a ) 2 w 2
Propiedades de la Transformada de Laplace (1) Linealidad L[af1 (t )
bf 2 (t )] aL[ f1(t )] bL[ f2 (t)]
(2) Diferenciación
Usando el método de Integración por Partes para probar
df (t ) sF (s ) f (0) L dt Donde f(0) es el valor inicial de f(t).
d n f (t ) n n 1 n 2 (n 1) ( ) (0) (0) (0) s F s s f s f f L n dt (1)
(3) Integración t F (s ) L 0 f ( )d s
t L o
1
t2
o
t n
o
f ( )d dt1dt2
Usando el método de Integración por Partes para probar
F (s ) dtn 1 n s
(4) Teorema de Valor Final
lim f ( t ) lim sF ( s ) t s 0 (5) Teorema de Valor Inicial
lim f (t ) lim sF ( s) t 0
s
The final-value theorem relates the steady-state behavior of f(t) to the behavior of sF(s) in the neighborhood of s=0
(6)Teorema de Cambio: a. Cambio en el tiempo (Dominio real) s F (s) L[ f (t )] e b. Cambio en el dominio complejo L [e
at
f (t )] F ( s a )
(7) Teorema Convolución Real (Multiplicación Compleja) t
L[
f (t ) f ( )d ] F (s) F (s) 1
0
2
1
2
Transformada Transformada Inversa de Laplace Definición:la transformada Inversa de Laplace se escribe L 1[ F ( s)] está dada por
f (t ) L1[ F ( s )]
1
C j
2 j C j
F ( s )e st ds (t 0) 0)
donde C es una constante real。 Nota: La operación de la Transformada inversa de Laplace involucra funciones racionales que pueden ser llevadas para para utilizar las tablas de Transformadas Transformadas de Laplace y la expansión de fracciones parciales
El método de Expansión de Fracciones Parciales para encontrar la transformada Inversa de Laplace F ( s)
N ( s) D( s)
b0 s m b1s m1
bm1s bm ( m n) an1s an
s n a1s n 1
Si F(s) es descompuesto en sus componentes F ( s ) F1 ( s ) F2 (s )
Fn (s )
Si la transformada inversa de Laplace de los componentes se puede realizar, entonces 1 L
F (s) L F (s ) L F (s ) 1
1
1
2
L1 Fn (s )
Polos y zeros
Polos
Un número complejo s0 es llamado pole de una función de Variable compleja F(s) si F( s0 ) =∞ .
• Zeros – Un número complejo s0 es llamado zero de una función de Variable compleja F(s) si F( s0 ) = 0. Ejemplos: (s 1)(s 2) (s 3)(s 4)
s 1
polos: -3, -4;
zeros: 1, -2
Caso 1: F(s) Tiene polos reales F ( s)
N ( s) D( s)
b0 s m b1s m1 s n a1s n 1
bm1s bm an 1s an
Partial-Fraction Expansion
c1 s p1
where pi (i 1, 2,
c2 s p2
cn s pn
, n) are eigenvalues of D( s) 0, and
N (s) ci ( s pi ) D(s ) s p
Inverse LT
i
f (t )
c1e
p1t
c2e
p2t
... cn e
pnt
Partial-Fraction Expansion Ejemplo 1 1 c3 c1 c2 F ( s ) ( s 1)( s 2)( s 3) s 1 s 2 s 3 1 1 ( s 1) c1 6 ( s 1)( s 2)( s 3) s 1
1 1 c2 ( s 2) ( s 1)( s 2)( s 3) s 2 15
1 1 ( s 3) c3 ( s 1)( s 2)( s 3) s 3 10 1 1 1 1 1 1 F ( s ) 6 s 1 15 s 2 10 s 3 1
1
1
Caso 2: F(s) tiene polos complejos conjugados Ejemplo 2 Transformada de Laplace
Aplicando condiciones iniciales
Y ( s )
s 5 s
2
4s 5
Expación de Fracciones Parciales
Transformada Inversa de Laplace
s 5 ( s 2)
2
s 2 ( s 2)
2
1
s 2 3 ( s 2)
2
1
3
1 ( s 2)2 1 43
Caso 3: F(s) tiene polos de múltiple-orden N ( s) N ( s) F ( s) D( s) ( s p1 )( s p2 ) ( s pn r )( s pi )l
c1 s p1
cnl s pn l
bl (s pi )
l
Polos Simples
bl 1 (s pi )
l 1
b1 s pi
Polos de Múltiple-orden
Los coeficientes 1 , … , −1 de polos simples pueden ser calculados como en el en el Caso 1; Los coeficientes correspondientes a polos de múltiples orden son determinados
b
F (s) ( s pi ) s p l
l
1
1
d m N ( s)
d , , , bl 1 F ( s ) ( s pi )l d s s pi
1
d l 1 N ( s)
Ejemplo 3
Resuelva la siguiente ecuación diferencial
Transformada de Laplace:
s 3Y ( s ) s 2 y (0) s y (0) y (0) 3 s 2Y ( s) 3sy (0) 3 y (0)
3 sY (s ) 3 y (0) Y (s )
1 s s= -1 es un polo de orden 3
Aplicando condiciones iniciales:
Y ( s)
1 s ( s 1)3
Expanción de Fraciones Parciales
Y( )
c1
b3
b2
b1
Determinando coeficientes:
b3
[
1
s ( s 1)
3
c1
( s 1) 3 ]s 1
1
b1
1 s ( s 1)
3
1
s s 0
1 (2 s 3 ) 2! s 1
1
d 1 d 1 2 3 b2 [ ( s 1) ] [ ( )] ( s ) 1 s 1 3 s 1 ds s ( s 1) s 1 ds s 1
1
s
( s 1)
Y ( s )
3
1 ( s 1)
2
1 s 1
Transformada Inversa de Laplace:
1
y (t ) 1 t e 2 2
t
t
te e
t
Con la ayuda de MATLAB 1. Transformada de Laplace L=laplace(f)
2. Transformada Inversa de Laplace F=ilaplace(L)
>> syms t >> L=laplace(t) L= 1/s^2 >> L=laplace(sin(t)) L= 1/(s^2+1) >> F=ilaplace(L) F= sin(t)
Función de Transferencia LTI system
Entrada u(t)
Salida y(t)
Considere un sistema linear descrito por la ecuación diferencial y ( n ) (t ) an 1 y ( n 1) (t )
a0 y (t ) bmu ( m) (t ) bm1u ( m1) (t ) bu (1) (t ) b0u(t )
Asuma todas las condiciones iniciales son zero, obtenemos la función de transferencia (FT) de el sistema
output y(t ) TF G ( s ) L input u(t ) zero initial conditio n L
Y (s)
bm s m bm 1s m 1 ... b1s b0
Ejemplo 1. Encuentre la función de transferencia RLC R Entradau(t)
L i(t)
C
uc(t) Salida
Solución: 1) Escriba la ecuación diferencial del sistema de acuerdo con las leyes físicas:
LCuC (t ) RCuC (t ) uC (t ) u(t )
2) Asumiendo todas las condiciones iniciales son zero y aplicando la transformada de Laplace
LCs2U c (s ) RCsU c (s ) U c (s ) U (s ) 3) Calculando la función de transferencia G( s)
Ejercicio
Encuentre la función de transferencia del siguiente sistema: d 2 y (t ) dt
2
5
dy (t ) dt
4 y (t ) u (t )
Función de Transferencia de componentes típicos Componentes
v( t )
i ( t )
C
G( s)
V ( s)
G( s)
V ( s)
i ( )d G ( s )
V ( s)
v(t ) Ri(t )
i (t )
L
v (t )
FT
i ( t )
R
v (t )
EDO
v(t ) L
v (t )
1
t
di(t ) dt
I ( s )
I ( s )
I ( )
R
sL
1 sC
Propiedades de la función de transferencia
La función de transferencia está definida solamente para un sistema lineal invariante en el tiempo, no para sistemas noliniales. Todas las condiciones iniciales del sistema se ajustan a zero. La función de transferencia es independiente de la entrada del sistema. La función de transferencia G(s) es la transformada de Laplace del respuesta de impulso unitario g(t).
¿Como los polos y los ceros se refieren a la respuesta del sistema? • ¿Por qué nos esforzamos por obtener modelos de FT? • ¿Por qué los ingenieros en control prefieren usar modelos de FT? • ¿Cómo se usa los modelos de FT para analizar y diseñar los sistemas de control? • Partimos de la relación entre las localidades de ceros y polos de FT y las respuestas de la salida de un sistema.
Función de Transferencia X ( s)
A
x (t ) Ae at
s a
Posición de Polos y Ceros j
-a
0
Control System Engineering-2008 Respuesta impulso en el dominio del Tiempo
i
Función de Transferencia X ( s)
A1 s B1 ( s a )2
Control System Engineering-2008 Respuesta impulso en el dominio del Tiempo x(t ) Ae at sin(bt )
b2
Posición de Polos y Ceros j
b
-a
0
i
0
Función de Transferencia X ( s)
A1 s B1 s
2
b
Control System Engineering-2008 Respuesta impulso en el dominio del Tiempo x(t ) A sin(bt )
2
Posición de Polos y Ceros j
b 0 0
i
Función de Transferencia X ( s)
A
x(t ) Aeat
s a
Posición de Polos y Ceros j
0
-a
Control System Engineering-2008 Respuesta impulso en el dominio del Tiempo
i
Función de Transferencia X ( s)
A1 s B1 ( s a )2
Control System Engineering-2008 Respuesta impulso en el dominio del Tiempo x(t ) Aeat sin(bt )
b2
Posición de Polos y Ceros j
b
-a
0 0
i
Resumen de la posición de los polos y la dinámica del sistema
Ecuación Característica -Se obtienen mediante el establecimiento del denominador del polinomio de la función de transferencia a cero
s
n
an1s
n 1
a1s a0 0
Nota: la estabilidad de sistemas lineales de entrada única, una sola salida completamente se rige por las raíces de la ecuación característica.
Transfer function(TF) models in MATLAB Suppose a linear SISO system with input u(t), output y(t), the transfer function of the system is G ( s )
Y ( S ) U ( s )
den 1, a
bm s m s n
num bm , bm1 ,..., b0 n 1
,..., a0
bm 1 s m 1
an 1 s n 1
TF in polynomial form >> Sys = tf (num,den) >> [num, den] = tfdata (sys)
...
...
b1 s b0
a1 s a0
TF in zero-pole form >> sys = zpk (z, p, k ) >> [z, p,k] = tfdata (sys)
Transform TS from zero-pole form into polynomial form >> [z, p, k] = tf2zp(num, den)
Preguntas de Repaso
What is the definition of “transfer function”? When defining the transfer function, what happens to initial conditions of the system? Does a nonlinear system have a transfer function? How does a transfer function of a LTI system relate to its impulse response? Define the characteristic equation of a linear system in terms of the transfer function.
2-4 Diagrama de Bloque y grafica de Flujo de Señal (SFG)
Diagrama de Bloque Relación de la función de transferencia
Y ( s) G( s)U ( s) Puede ser graficada en un diagrama bloque. U(s)
G(s)
Y(s)
Transformada Equivalente de un diagrama de bloque 1 Conección en series U(s)
G1(s)
U(s)
X(s)
G(s)
G2 (s)
Y(s)
Y(s)
G ( s) ?
G ( s)
Y ( s)
G ( s) G ( s)
2.Conección en paralelo U(s)
G1(s) G2 (s)
Y 1(s) Y(S)
Y 2 (s)
G ( s) ?
G( s)
Y ( s) U ( s)
G1 (s) G2 (s)
U(s)
G(s)
Y(s)
3. Retroalimentación Negativa R(s) _
U(s)
G(s)
Y(s) R(s)
M(s)
Y(s)
H(s)
Y (s) U (s)G (s) U (s) R(s) Y (s)H (s)
Y (s) R(s) Y (s) H (s) G(s)
Función de transferencia de un sistema con retroalimentación negativa
( )
G( s)
gain of the for ward path
Grafica de Flujo de Señal (SFG) SFG fue introducida por S.J. Mason para la representación causa y efecto de sistemas lineales 1. 2.
Cada señal esta representada por un nodo. Cada funcion de transferencia esta representada por una rama. U(s)
G(s)
G(s)
Y(s) U(s)
R(s)
_
U(s)
G(s)
Y(s)
R(s)
1
U(s)
Y(s)
G(s) Y(s)
Diagrama de bloques y su gráfico de flujo de señal equivalente U r ( s )
1 R1
-
I1 ( s) -
U1 ( s )
1 sC 1
1 R2
-
I 2 ( s )
1 sC 2
-1 1
U r ( s )
1
1 R1
1
I1 ( s ) -1
sC 1
1
U1 ( s )
1
1
R2
sC 2
I 2 ( s ) -1
U c ( s)
Uc ( s)
Nota
Un gráfico de flujo de señal y un diagrama de bloques contienen exactamente la misma información (no hay ninguna ventaja de uno sobre el otro, hay sólo preferencias personales)
Regla de Mason M ( s)
Y ( s) U ( s)
1
N
M k
k
k 1
número total de trayectorias delanteras entre Y(s) de salida y N entrada de U(s)
M k ganancia del sendero del camino adelante kth.
1 (
all individual loop gains)
( gain products of all possible two loops that do not touch)
( gain products of all possible three loops that do not touch) k
valor de ∆ para esa parte del diagrama de bloque que no toque el camino adelante kth.
Ejemplo 1 Encontrar la función de transferencia para el siguiente
diagrama de bloques
b1
+ + ⑥ Y(s)
b2
① + U(s) _
② _ _
1/ s
③
1236 12346
④
1/s
⑤
b3
a1 a2
Solution. Forward path
1/s
+
a3 Path gain 1 M 1 1 (b1 )(1) s M 2
1 1 (b2 )(1) 1 s s
and the determinates are
a a a 1 1 22 33 0 s s s 1 1 0 1 0
Ejemplo 1 Encontrar la función de transferencia para el siguiente
diagrama de bloques
b1
+ + ⑥ Y(s)
b2
① + U(s) _
② _ _
1/ s
③
1/s
④
1/s
⑤
+ b3
a1 a2 a3
Solution. Applying Mason’s rule, we find the transfer function to be
M ( s )
Y ( s) U ( s)
N
k 1
M k k
b s2 b s b
Ejemplo 2 Encontrar la función de transferencia para el siguiente SFG H 4
①
1
②
H 1
③
H 6
④
H 3
H 2
U ( s) H 5
Solution. Forward path
Path gain
123456
M1
1256
M 2
H1H 2 H 3
H 4
Loop path
Path gain
232
l1 H1 H 5
343
l2
H 2 H 6
⑤
1
⑥ Y ( s)
H 7
and the determinates are
1 l1 l2 l3 l4 (l1l3 ) 1 1 0 2 1 H 2 H 6