Ellington Composition - Lead SheetFull description
Full description
music
Descripción: music
Sheet Music
aFull description
TOEFL for you who really want to see how good your English is. Now it is time for you as it is good and practical. Keep practicing more and more as often and possible as you can.Full description
Brake system design set up for a single seater vehicle.
LMTD
A water absorption test for concreteFull description
level one of highway engineering study laboratoryFull description
Measurements of Central Tendendy
wosFull description
statistikaDeskripsi lengkap
H YPOTHESIS TESTS
FOR A SINGLE MEAN
11.1 TESTING A HYPOTHESI HYPOTHESIS S CONCERNIN CONCERNING G THE
#es# s#a#is#i* is (rea#er #er #han
z DISTRIBUTION
MEAN BY USE OF THE
+ z α /
H o : μ = μo
!ess
Test Statistic: z – test ((if if
is known, or
√
No#e.
√
μ0=¿
%e&ia#ion
z
¿
is #he *omu#e% #es# s#a#is#i*
MEAN BY USE OF THE The
ou ou!a# !a#ion ion
t
%is#ri+ %is #ri+u#io u#ion n is #he aro aroria# ria#e e +asis +asis for
s#an% s#an%ar ar% %
%is#ri+u#e% +u#
s =¿ sam!e s#an%ar% %e&ia#ion
The #es# re'uires re'uires #ha# #he sam!e si$e
Test Statistic: t – test (if ( if x´ − μ 0 t = s/ n
n ≥ 30
where:
μ0=¿
C!itica Rei&"
h"o#hesi$e% mean
n =¿ sam!e si$e
% – #a)e
H 0
if #he *omu#e% #es# s#a#is#i* is (rea#er #er #han
Re-e*# Ho if #he
p – value = P ( z z > z
¿
Ate!"a ti#e H$% &t'e sis
Re-e*#
− z α .
Re-e*#
H A : μ >
H 0
if #he *omu#e% #es# s#a#is#i* is !ess #han
H 0
if #he *omu#e%
Re-e*# Ho if #he
p – value = P ( z z < z
C!itica Rei&"
Re-e*#
is !ess #han α
+ z α .
H A : μ ≠
x ´ =¿ sam!e mean
s =¿ sam!e s#an%ar% %e&ia#ion
Re-e*#
H A : μ <
is unknown)
√
is ea* ea*#! #!" " norm norma! a!!" !" %is# %is#ri ri+u +u#e #e% % If #he #he sam sam!i !in( n( %is#ri+u#ion is norma!, #he #es# is aroria#e for an" sam!e si$e
H A : μ >
σ is no# known
H o : μ = μo
is unknown, un!ess #he sam!in( ou!a#ion
Ate!"a ti#e H$% &t'e sis
t DISTRIBUTION
%e#ermi %e#erminin nin( ( #he s#an%ar s#an%ar%i$e% %i$e% #es# s#a#is#i s#a#is#i* * when #he sam sam!i !in( n( %is# %is#ri ri+u +u#i #ion on of #he #he mean mean is nor norma!! ma!!" "
n =¿ sam!e si$e
when
#han
11.* TESTING A HYPOTHESI HYPOTHESIS S CONCERNIN CONCERNING G THE
h"o#hesi$e% mean
σ =¿
is !ess #han α
2
x´ =¿ sam!e mean
where:
or
− z α / / .
n ≥ 30 if
is unknown) x ´ − μ0 x´ − μ 0 z = ∨ z = σ / n s/ n
σ
2
¿
if
#he *omu#e% #es# s#a#is#i* s#a#is#i* is (rea#er #han
Re-e*# Ho if #he
¿
p – value = P ( t > t ) is !ess #han α
+ t α .
) H A : μ <
is !ess #han α
Re-e*# Ho if #he
p – value =2 P ( z z >| z
H 0
% – #a)e
¿
Re-e*#
H 0
if
#he *omu#e% #es# s#a#is#i* s#a#is#i* is !ess !ess #han #han
Re-e*# Ho if #he
p – value = P ( t < t ) ¿
is !ess #han α
Pa(e 1 of *
H YPOTHESIS TESTS
FOR A SINGLE MEAN
−t α . Re-e*#
H A : μ ≠
H 0
if
#he *omu#e% #es# s#a#is#i* is (rea#er #han + t α /2 or !ess
Re-e*# Ho if #he
p – value =2 P ( t >|t | ¿
is !ess #han α
#han
−t α / .
E+a,%e -: A manufa*#urer *on#em!a#in( #he ur*hase of new #oo! makin( e'uimen# has se*i9e% #ha#, on a&era(e, #he e'uimen# shou!% no# re'uire more #han /7min of se#u #ime er hour of oera#ion The ur*hasin( a(en# &isi#s a *oman" where #he e'uimen# +ein( *onsi%ere% is ins#a!!e%@ from re*or%s #here #he a(en# no#es #ha# 06 ran%om!" se!e*#e% hours of oera#ion in*!u%e% a #o#a! of
2
¿
No#e. /)
t is #he *omu#e% #es# s#a#is#i* 0)
(n – 1 )
t α /2
an% #he
p1&a!ues
%e(rees of free%om If
#he sam!e si$e is !ar(e 2 use% in !a*e of #he
are +ase% on
σ is unknown +u#
n ≥ 30 ¿ , #he
z 1#es# is
t 1#es#
E+a,%e -1: 34N5IN %onu#s *!aim #ha# #he wai#in( #ime of *us#omers for ser&i*e is norma!!" %is#ri+u#e% wi#h a mean of #hree minu#es an% a s#an%ar% %e&ia#ion of one minu#e The 'ua!i#" assuran*e %ear#men# foun% in a sam!e of 67 *us#omers #ha# #he mean wai#in( #ime is 086 minu#es A# a 776 !e&e! of si(ni9*an*e, *an we *on*!u%e #ha# #he mean wai#in( #ime is !ess #han #hree minu#es: E+a,%e -*: Home ;i%eos In* sur&e"s <67 househo!%s an% 9n%s #ha# #he mean amoun# sen# for ren#in( or +u"in( &i%eos is P/=6 a mon#h an% #he s#an%ar% %e&ia#ion of #he sam!e is P>606 Is #his e&i%en*e su?*ien# #o *on*!u%e #ha# #he mean amoun# sen# is (rea#er #han P/0>67 er mon#h a# a 7706 !e&e! of si(ni9*an*e:
E+a,%e -/: A #ea*hersB union wou!% !ike #o es#a+!ish #ha# #he a&era(e sa!ar" for hi(h s*hoo! #ea*hers in a ar#i*u!ar s#a#e is !ess #han C=0,677 A ran%om sam!e of /77 u+!i* hi(h s*hoo! #ea*hers in #he ar#i*u!ar s#a#e has a mean sa!ar" of C=/,6>8 I# is known from as# his#or" #ha# #he s#an%ar% %e&ia#ion of #he sa!aries for #he #ea*hers in #he s#a#e is C<,6 Tes# #he unionBs *!aim a# #he 6 er*en# !e&e! of si(ni9*an*e E+a,%e -0: Danon, In*, in#ro%u*e% a *o"in( ma*hine #ha# fea#ures #wo1*o!or *o"in( *aa+i!i#" in a *oma*# s"s#em *oier The a&era(e see% of #he s#an%ar% *oma*# s"s#em *oier is 0> *oies er minu#e 2as a%&er#ise% in na#iona! +usiness ma(a$ines an% e!sewhere) Suose #ha# #he *oman" wan#s #o #es# whe#her #he new #wo1*o!or *oier has #he same a&era(e see% as i#s s#an%ar% *oma*# *oier an% i# *on%u*#s a #es# of 0< runs of #he new ma*hines, (i&in( x ´ 0< an% sam!e s#an%ar% a sam!e mean of %e&ia#ion
s =7.4
si(ni9*an*e !e&e!
2*oies er minu#e) 4sin( #he
α =0.05 , is #here e&i%en*e #o
*on*!u%e #ha# #he a&era(e see% of #he new ma*hine is %ieren# from #he s#an%ar% ma*hine: