TRASNPORTE DE SOLIDOS Y FLUIDOS FASE DOS 216002
Presentado a: Ibeth Rodriguez Tutora
Entregado por: Laura Carrillo
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD ESCUELA DE CIENCIAS BASICAS, INGENIERIAS Y TECNOLOGIAS CURSO DE ECUACIONES DIFERENCIALES BOGOTÁ D.C. 2018
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
1. Convertir las siguientes temperaturas: Solución.
A. 32°C a Fahrenheit y grados Kelvin. De Celsius a Fahrenheit
De Celsius a Kelvin
°° == 32° ° −∗ 1.32 328 ++3232 ° = 57.6° + 32 89.6° ° = ° + 273. 1 5 ° =305. 32°7+5°273.15
B. 270°F a °C y grados Rankine De Fahrenheit a Celsius
De Fahrenheit a Rankine
° = °1.−832 ° = 270°1.−8 32 ° = 21.388 132.22° ° = ° + 459. 6 7 ° = 729. 270°6+7°459.67
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
2. Un cilindro hidráulico tiene un émbolo con un diámetro de 3.2 pulg. Por su diseño, se espera que el émbolo sea capaz de aplicar una fuerza de 13125 lb. Determine la presión que se requiere. Solución.
= = ∗ = ∗∗ = 13125 ∗1.6 = 13125 ∗1.6 = 1631.95 3. La densidad del cloro (Cl2) a condiciones normales (25°C y 101.325 kPa) es 2.994 kg/m3. Determinar el peso específico en lb/ft3 Solución.
2. 2 05 = 2.994 = ( 1 ) = 35.3147 = 0.187 = ∗ = ∗ = 0.187 ∗ 32. 32.16 = 6.014 4. Un envase metálico contiene en su interior 230 ml de aceite. Si el aceite tiene una masa de 0.32 kg, determinar:
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Solución.
a. La densidad Pasamos los ml a lt
230 = (1000 ) = 0.23 Ahora si podemos hallar la densidad:
b. El peso específico
= = 00..322 = 1. 3 9 3 =∗ = 1.39 ∗9.81 = 13.636
c. La gravedad específica
= 0.997 = 1. 3 9 = 0.997 = 1.394
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
5. Una medición de viscosidad dinámica ha arrojado un valor de 0.523 cP, convertir este valor en Pa·s y
∙
Solución.
1 = 0,001 ∗ 0,000523 ∗ 1 = 0,0000209 ∗ 0,0000109307 ∗ 6. La viscosidad dinámica y la densidad del ácido oleico a 65°C son = 8.39 , = 0.8628 628 /, respectivamente. Determinar: a. El valor de la
viscosidad dinámica en Unidades inglesas (slug/ft·s), b. La viscosidad cinemática en unidades inglesas (ft2 /s)
Solución.
a. El valor de de la viscosidad dinámica en Unidades inglesas (slug/ft·s)
1 = 0,0000209 000209 ∗ 0,000175351 ∗ b. La viscosidad cinemática en unidades inglesas (ft2 /s) Primero pasa la viscosidad de cp a Pa*s
1 = 0,001 ∗ 0,00839 ∗ Ahora pasamos la densidad de g/cm3 a kg/m3
1 100 0,8628 = (1000) = ( 1 ) = 862,8
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
∗ 0, 0 0839 = 862,8 ∗ ∗ ∗ ∗ = 0,00000972 ∗∗ ∗ = 0,00000972
Finalmente, pasamos la viscosidad cinemática de
a
3.28084 = 0,00000972 = ( 1 ) = 0,000104625 7. Si el ácido oleico se somete a un esfuerzo cortante, como se muestra en la figura. Determine el esfuerzo cortante que se ejerce por el movimiento de la placa. Nota: utilizar el valor de la viscosidad dado en el punto 6.
Santiago, A.Z., González-López, J., Granados-Manzo, A., Mota-Lugo, A. (2017). Mecánica de fluidos. Teoría con aplicaciones y modelado. México: Grupo Editorial Patria. Pp. 12 – 25, 36 – 70, 74 – 96. Recuperado de https://bibliotecavirtual.unad.edu.co: https://bibliotecav irtual.unad.edu.co:2538/lib/unadsp/rea 2538/lib/unadsp/reader.action?docID=52135 der.action?docID=5213536 36 &query=propiedades+de+los+fluidos
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Solución.
Viscosidad dinámica del punto 6. 8,39 cp Pasamos de cp a
∗
1 = 0,001 ∗ = 0,00839 ∗ = 0,00839 0839 ∗
Ahora determinamos el esfuerzo cortante:
= 2 = 0,00839 ∗ ∗ 0,01 = 1,678
8. Se utiliza un sistema hidráulico para levantar un automóvil que pesa 1850 kg, determine la fuerza que se debe aplicar en el émbolo de sección A1 = 22 cm2 para elevarlo con el émbolo de sección A 2 = 720 cm2
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Solución.
Hallamos el valor de la fuerza 2
2 = ∗∗ 2 = 1850 ∗ 9,81 2 = 18148,5 Teniendo la fuerza2 podemos hallar la presión en el sistema la cual será igual en ambos extremos. Pasamos el área a m2
0, 0 1 = 22 = ( 1 ) = 0,0022 0, 0 1 = 720 = ( 1 ) = 0,072 Presión del sistema
= 5 = 18148, 0,072 = 252062,5 Teniendo la presión del sistema podemos hallar la fuerza 1
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Solución.
Primero
debemos
1,0110 14,7
definir
la
presión
atmosférica
la
cual
es
de
La presión manométrica es la presión que tiene el neumático, en este caso la presión manométrica es de 28 psig La presión absoluta, se determina por la siguiente expresión:
= + = 14,7 + 28 = 42,7
10. Un buzo se sumerge en el mar hasta alcanzar una profundidad de 83 m. Determine la presión a la que está sometido si la densidad relativa del agua de mar es de 1.025 (Realice el diagrama). Solución.
= ℎ = 1025 ∗ 9,81 ∗ 83 = 834585,75 Presión Absoluta.
= + = 101000 + 834585,75
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Santiago, A.Z., González-López, J., Granados-Manzo, A., Mota-Lugo, A. (2017). Mecánica de fluidos. Teoría con aplicaciones y modelado. México: Grupo Editorial Patria. Pp. 12 – 25, 36 – 70, 74 – 96. Recuperado de https://bibliotecavirtual.unad.edu.co:2 https://bibliotecavirtua l.unad.edu.co:2538/lib/unadsp/rea 538/lib/unadsp/reader.action?docID=5213536 der.action?docID=5213536 &query=propiedades+de+los+fluidos
Solución.
Hallamos los pesos específicos de las dos sustancias
γ = 0.03611 γ = ∗ γ γ = 0.9 ∗ 0.03611
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
12. ¿Qué es lo que permite calcular la fuerza resultante de un tanque de gas? Solución.
Para calcular las fuerzas resultantes de un tanque de gas se hace necesario que este se encuentre confinado y/o sellado para impedir que el gas in teractúe con el ambiente, dentro del tanque el gas ejercerá la misma presión en diferentes direcciones, en ángulo recto.
13. ¿En qué parte de la superficie curva se encuentra la fuerza resultante? Nota: realice una representación y con base en ésta identifique cómo se calcula la fuerza resultante sobre una superficie curva. Solución.
Para hallar la fuerza resultante de un área curva es necesario descomponer la fuerza ejercida de manera perpendicular
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
= 31.1 Ahora sabiendo el peso de la esfera y la densidad de la esfera la cual es de 2.7 kg/m3 por ser de aluminio podemos hallar el volumen, así:
= = = = = 72..372 = 2.711
Ahora teniendo el empuje y el volumen, podemos plantear una segunda ecuación en donde se involucra la densidad del líquido.
= ∗ ∗∗ 31.1 = ∗ 2.71 ∗ 9.81 = 31.1
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Solución.
Hallamos el peso del objeto:
= = = ∗ = 0.15 ∗ 0.15 ∗ 0.15 ∗(0. ∗ (0.8254 254 ∗ 1000 ) = 2.78 = ∗ = 2.78 ∗ 9.81 = 27,27
Ahora podemos hallar el empuje.
= ∗ ∗∗ = (0.(0.9836 836 ∗ 1000 1000 ) ∗0. ∗ 0.15 15 ∗ 0.0.15 5 ∗ 0.15 5∗∗ 9.81
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
BIBLIOGRAFIA https://bibliotecavirtual.unad.edu.co:2538/lib/unadsp/rea https://bibliotecavirtual.unad.edu.co: 2538/lib/unadsp/reader.action?docID=52135 der.action?docID=5213536 36 &query=propiedades+de+los+fluidos https://bibliotecavirtual.unad.edu.co:2538/lib/unadsp/reader.a https://bibliotecavirtual.unad.edu.co:2538/ lib/unadsp/reader.action?docID=5213536 ction?docID=5213536 &query=propiedades+de+los+fluidos https://bibliotecavirtual.unad.edu.co:2538/lib/unadsp/rea https://bibliotecavirtual.unad.edu.co:2 538/lib/unadsp/reader.action?docID=5213536 der.action?docID=5213536 &query=propiedades+de+los+fluidos