1 SISTEMAS DE REPRESENTACIÓN
GENERALIDADES Todos los sistemas de representación, tienen como objetivo representar sobre una superficie bidimensional, como es una hoja de papel, los objetos que son tridimensionales en el espacio. Con este objetivo, se han ideado a lo largo de la historia diferentes sistemas de representación. Pero Pero todos ellos cumplen una condición fundamental, la reversibilidad, es decir, decir, que si bien a partir de un objeto tridimensional, los diferentes sistemas permiten una representación bidimensional de dicho objeto, de igual forma, dada la representación bidimensional, el sistema debe permitir obtener la posición en el espacio de cada uno de los elementos de dicho objeto. Todos los sistemas, se basan en la proyección de los objetos sobre un plano, que se denomina plano del cuadro o de proyección , mediante los denominados rayos proyectantes. El número de planos de proyección utilizados, la situación relativa de estos respecto al objeto, así como la dirección de los rayos proyectantes, son las características que diferencian a los distintos sistemas de representación.
SISTEMAS DE PROYECCIÓN En todos los sistemas de representación, la proyección de los objetos sobre el plano del cuadro o de d e proyección, se realiza mediante los rayos proyectantes, estos son líneas imaginarias, que pasando por los vértices o puntos del objeto, proporcionan en su intersección con el plano del de l cuadro, la proyección de dicho vértice o punto. Si el origen de los rayos proyectantes proyectantes es un punto del infinito, lo que se denomina punto impropio, todos los rayos serán paralelos entre sí, dando lugar a la que se denomina, proyección cilíndrica . Si dichos rayos resultan perpendiculares al plano de proyección estaremos ante la proyección cilíndrica ortogonal, en el caso de resultar oblicuos respecto a dicho plano, estaremos ante la proyección cilíndrica oblicua. Si el origen de los rayos es un punto propio, estaremos ante la proyección central o cónica. .
Proyección cilíndrica ortogonal Proyección Proyección Proyecc ión cilíndrica oblicua Proyección Proyecció n central o cónica
2
TIPOS Y CARACTERÍSTICAS
Los diferentes sistemas de representación, podemos dividirlos en dos grandes mass de med ediida y los sis sistema temass rep repres resenta entativ tivos os. grup gr upos os:: lo los s sistema
sistema ma de planos Los sistemas de medida, son el sistema diédrico y el siste acotados. Se ca carrac acte teri riza zan n po porr la po posi sibi bili lida dad d de po pode derr re real aliz izar ar me medi dici cion ones es directamente sobre el dibujo, para obtener de forma sencilla y rápida, las dimensiones y posición de los objetos del dibujo. El inconveniente de estos sistemas es, que no se puede apreciar de un solo golpe de vista, la forma y proporciones de los objetos representados. sistemass rep sistema repres resenta entativ tivos os, son el sistema de perspectiva axonométrica, el sistema de perspectiva caballera, el sistema de perspectiva militar y de rana , variantes de la perspectiva caballera, y el sistema de perspectiva cónica o central. Se caracterizan por representar los objetos mediante una única Los
proyec proy ecci ción ón,, pu pudi dién éndo dose se ap apre reci ciar ar en el ella la,, de un so solo lo go golp lpe e de vi vist sta, a, la fo form rma a y proporciones de los mismos. Tienen el inconveniente de ser mas difíciles de realizar que los sistemas de medida, sobre todo si comportan el trazado de gran cantidad de curvas, y que en ocasiones es imposible tomar medidas directas sobre el dibujo. Aunque el objetivo de estos sistemas es representar los objetos como los vería un observador situado en una posición particular respecto al objeto, esto no se consigue totalmente, dado que la visión humana es binocular binocular,, por lo que a lo máximo que se ha llegado, concretamente, mediante la perspectiva cónica, es a representar los objetos como los vería un observador con un solo ojo. En el siguiente cuadro pueden apreciarse la características fundamentales de cada unos de los sistemas de representación.
Sistema
Tipo
Planos de Sistema de proyección proyección Dos
Proyección cilíndrica ortogonal
Uno
Proyección cilíndrica ortogonal
Perspectiva Rep epre rese sent ntat ativ ivo o Un Uno o axonométrica
Proyección cilíndrica ortogonal
Perspectiva caballera
Rep epre rese sent ntat ativ ivo o Un Uno o
Proyección cilíndrica oblicua
Perspectiva militar
Rep epre rese sent ntat ativ ivo o Un Uno o
Proyección cilíndrica oblicua
Perspectiva de rana
Rep epre rese sent ntat ativ ivo o Un Uno o
Proyección cilíndrica oblicua
Perspectiva cónica
Rep epre rese sent ntat ativ ivo o Un Uno o
Proyección central o cónica
Diédrico Planos acotados
De medida
De medida
3 OBTENCIÓN DE LAS VISTAS DE UN OBJETO
GENERALIDADES Se denominan vistas principales de un objeto, a las proyecciones ortogonales del mismo sobre 6 planos, dispuestos d ispuestos en forma de cubo. También También se podría definir las vistas como, las proyecciones ortogonales de un objeto, según las distintas direcciones desde donde se mire. Las reglas a seguir para la representación de las vistas de un objeto, se recogen en la norma UNE 1-032-82, "Dibujos técnicos: Principios generales de representación", equivalente a la norma ISO 128-82.
DENOMINACIÓN DE LAS VISTAS Si situamos un observador según las seis direcciones indicadas por las flechas, obtendríamos las seis vistas posibles de un objeto. .
Estas vistas reciben las siguientes denominaciones: Vista A: Vista de frente o alzado Vista B: Vista superior o planta Vista C: Vista derecha o lateral derecha Vista D: Vista izquierda o lateral
izquierda
Vista E: Vista inferior Vista F: Vista posterior
POSICIONES RELATIVAS DE LAS VISTAS
Para la disposición de las diferentes vistas sobre el papel, se pueden utilizar dos variantes de proyección ortogonal de la misma importancia: - El método de proyecció proyección n del primer diedro, diedro, también denominado Europeo (antiguamente, método E) - El método de proyecció proyección n del tercer diedro, diedro, también denominado Americano (antiguamente, método A) En ambos métodos, el objeto se supone dispuesto dentro de un cubo, sobre cuyas seis caras, se realizarán las correspondientes proyecciones proyecciones ortogonales del mismo. La diferencia estriba en que, mientras en el sistema Europeo Europeo,, el objeto se encuentra entre el observador y el plano de proyección, en el sistema Americano Americano,, es el plano de proyección el que se encuentra entre el observador y el objeto.
4
SISTEMA EUROPEO
SISTEMA AMERICANO
Una vez realizadas las seis proyeccion proyecciones es ortogonales sobre las caras del cubo, y manteniendo fija, la cara de la proyección del alzado (A), se procede a obtener el desarroyo del cubo, que como puede apreciarse en las figuras, es diferente según el sitema utilizado. SISTEMA EUROPEO
SISTEMA AMERICANO
5 El desarrollo del cubo de proyección, nos proporciona sobre un único plano de dibujo, las seis vistas principales de un objeto, en sus posiciones relativas. Con el objeto de identificar, identificar, en que sistema se ha representado el objeto, se debe añadir el símbolo que se puede apreciar en las figuras, y que representa el alzado y vista lateral izquierda, de un cono truncado, en cada uno de los sistemas.
SISTEMA EUROPEO
SISTEMA AMERICANO
CORRESPONDENCIA ENTRE LAS VISTAS Como se puede observar en las figuras anteriores, existe una correspondenc correspondencia ia obligada entre las diferentes vistas. Así estarán relacionadas: a) El alzado, la planta, la vista inferior y la vista posterior, posterior, coincidiendo en anchuras. b) El alzado, la vista lateral derecha, la vista lateral izquierda y la vista posterior, posterior, coincidiendo en alturas. c) La planta, la vista lateral izquierda, la vista lateral derecha y la vista inferior, inferior, coincidiendo en profundidad. Habitualmente con tan solo tres vistas, el alzado, la planta y una vista lateral, queda perfectamente definida una pieza. Teniendo en cuenta las correspondenci correspondencias as anteriores, implicarían que dadas dos cualquiera de las vistas, se podría obtener la tercera, como puede apreciarse en la figura:
6
También, de todo lo anterior, se deduce que las diferentes vistas no pueden situarse de forma arbitraria. Aunque las vistas aisladamente sean correctas, si no están correctamente situadas, no definirán la pieza.
PROYECCIÓN ISOMÉTRICA Una proyección isométrica es una forma de proyección gráfica, más específicamente una axonométrica1 cilíndrica2 ortogonal ortogonal..3 Constituye una representación visual de un objeto tridimensional en dos dimensiones, en la que los tres ejes espaciales definen ángulos de 120º, y las dimensiones de la realidad se miden en una misma escala sobre cada uno de ellos. La isometría es una de las formas de proyección utilizadas en dibujo técnico que tiene la ventaja de permitir la representación a escala, y la desventaja de no reflejar la disminución aparente de tamaño -proporcional a la distancia- que percibe el ojo humano.
AXONOMETRÍA La axonometría, o sistema axonométrico , es un sistema de representación gráfica paralela, en el que el los tres ejes principales del objeto en cuestión están situados en cualquier posición con respecto al plano al plano de cuadro. cuadro . Un sistema de proyección se basa en proyectar cada punto del espacio sobre un plano (plano proyectivo) al lo largo de una trayectoria recta. En los sistemas de proyección paralela estos rayos son paralelos unos a otros. Dado que los tres ejes perpendiculares forman for man ángulos diferentes con el plano proyectivo, las dimensiones medidas sobre esos ejes quedan alteradas para cada uno de ellos. En el caso particular en el que l os ángulos son iguales, se denomina isometría,, dado que las dimensiones quedan reducidas en la misma medida en los tres. isometría
PROYECCIÓN ORTOGONAL
7 La proyección ortogonal del segmento AB sobre la recta L es el segmento PQ. Proyección ortogonal es aquella cuyas rectas proyectantes auxiliares son perpendiculares al plano de proyección, estableciéndose una relación entre todos los puntos del elemento ele mento proyectante con los proyectados.
En el plano, la proyección ortogonal es aquella cuyas líneas proyectantes auxiliares son perpendiculares a la recta de proyección L. Así, dado un segmento AB, bastará proyectar los puntos "extremos" del segmento –mediante líneas proyectantes auxiliares perpendiculares a L –, para determinar la proyección sobre la recta L. Una aplicación de proyecciones ortogonales son los teoremas de las Relaciones métricas en el triángulo mediante las cuales se puede calcular la dimensión de los lados de un triangulo
Clasificación general
Cónic ónicaa
Vario arioss tip tipos os de pers perspe pect ctiv ivaa con con pun puntos tos de de fu fuga
Isométrica (Tres angulos iguales (120º), coef. de reducción iguales)
Ortogonal
Dimétrica (Dos ángulos iguales, dos coeficientes distintos)
Cilíndrica Trimétrica (Tres ángulos y coeficientes distintos)
Oblicua
Perspectiva caballera
PERSPECTIVA CABALLERA La perspectiva caballera es un sistema de proyección de proyección paralela oblicua, siendo el plano el plano proyectante frontal, y las dimensiones de los volúmenes proyectadas en él están en verdadera magnitud. Perspectiva caballera. En perspectiva caballera, dos dimensiones del volumen a representar se proyecta en verdadera magnitud y la tercera con un coeficiente de reducción. Las dos dimensiones sin distorsión angular, con sus longitudes a escala escala,, son la anchura y altura (x y); la dimensión que refleja la profundidad se reduce (z) en 1/2. Los ejes X e Y forman un ángulo de 90º, y el eje Z suele tener 45º (o 135º) respecto X e Y. Se puede dibujar fácilmente un volumen a partir de una vista lateral o alzado alzado,, trazando a partir de cada vértice líneas paralelas a Z, sobre las que se refleja la profundidad del volumen. Este tipo de proyección es frecuentemente utilizada por su facilidad de ejecución, aunque el resultado final no da una imagen tan real como la que se obtendría con una proyección cónica. cónica.
8
PROYECCIONES AXONOMÉTRICAS Proyecciones Cilíndricas: •
Proyecc Proyeccion iones es Cilí Cilíndr ndrica icass Oblic Oblicuas: uas: “Aquel “Aquellas las en las las que que el el angul angulo o de incidencia de las líneas proyectantes (rayo) es diferente diferente a 90° (angulo recto)
•
Proyecc Proyeccion iones es Cilín Cilíndri dricas cas Orto Ortogon gonale ales: s: “Aquel “Aquellas las en en las que que el ángul ángulo o de incidencia de las líneas proyectantes es igual a 90°
Proy. Cil. Oblicua
Proy. Cil. Ortogonal
A D
A'
B
A'
A C'
C'
C
D
B' D'
B'
B C
D'
PROYECCIÓN ISOMETRICA Proyecciones o Perspectiva Isométrica: “Es un tipo de Proyecciòn Cilíndrica que Utiliza un solo Plano de Proyección (la hoja de dibujo), pero sobre este aparecen las tres dimensiones del cuerpo (largo, ancho y alto)
PROYECCIONES AXONOMÉTRICAS SISTEMA DIÉDRICO “Consiste en una PROYECCIÖN ORTOGONAL en la que se utilizan dos planos de proyección perpendiculares entre sí”
9
PROYECCIONES AXONOMÉTRICAS SISTEMA DIÉDRICO
Línea de Tierra: La intersección de dos planos que se cortan recibe el nombre de arista, cuando estos planos son el horizontal (P.H.) y el vertical (P.V.) esta arista recibe el nombre de LINEA DE TIERRA (L. T.)
P. V.
T
L P. H
.
PROYECCIONES AXONOMÉTRICA AXONOMÉTRICAS S SISTEMA DIÉDRICO
“Las Proyecciones toman el nombre según el plano en que se encuentran, en este caso serán Proyección Horizontal (P.H.) y Proyección Vertical (P.V.)”
Perspectiva Is Isométrica
Proyección Or Ortogonal
P.V.
P.V.
L.
T.
P.H.
P.H.
PROYECCIONES AXONOMÉTRICAS SISTEMA DIÉDRICO “Cuando los dos Planos del Diedro se extienden al infinito, dividen al espacio en cuatro ángulos diedros que se denominan cuadrantes y se enumeran a partir del superior derecho como se muestra en la gráfica”. (2)
V V. P.
(1) T . L .
H H. P.
(3) (4)
10
PROYECCIONES AXONOMÉTRICA TRIEDRO “Cuando dos vistas de una pieza son insuficientes para definir con claridad la forma real de la misma, se recurre al uso de un tercer plano lateral ( P.L.) formandose el denominado triedro”
(2)
V. P.
P . L .
(1) T T . L .
H P.
(3)
.
(4)
PROYECCIONES AXONOMÉTRICAS SISTEMAS DE REPRESENTACIÓN “Existen dos sistemas para la representación de las Proyecciones Ortogonales, relacionados con la ubicación de la pieza en el Primer o Tercer Cuadrante.”
PRIMER CUADRANTE Normas D.I.N. (3 Vistas)
V . P .
P . L .
P.V.
H H . P .
P.L.
P.H.
PROYECCIONES AXONOMÉTRICAS SISTEMAS DE REPRESENTACIÓN PRIMER CUADRANTE Normas D.I.N. (6 Vistas)
V V . P .
P . L L.
P.V.
H . P .
P.H.
P.L.