UNIVERSIDAD NACIONAL DE SAN AGUSTÍN ESCUELA DE POSGRADO MAESTRÍA EN QUÍMICA
TRABAJO ENCARGADO Mención: Ciencias En Seguridad Calidad De Laboratorios Analíticos Y Acreditación.
Arequipa-Perú 2017
CAPITULO I Introducción Ejercicios 1. Una muestra patrón de suero sanguíneo humano contiene 42.0 g de albumina /L. Cinco laboratorios (A – E) E) realizan cada uno 6 determinaciones (en el mismo día) de la concentración de albumina, con los siguientes resultados: A B C D E
42.5 39.8 43.5 35 42.2
41.6 43.6 42.8 43 41.6
42.1 42.1 43.8 37.1 42
41.9 40.1 43.1 40.5 41.8
41.1 43.9 42.7 36.8 42.6
42.2 41.9 43.3 42.2 39.0
Comentar el sesgo, precisión y exactitud de este conjunto de resultados:
Resolución:
LABORATORIOS A
B
C
D
E
42
42
42
42
42
1
42.5
39.8
43.5
35
42.2
2
41.6
43.6
42.8
43
41.6
3
42.1
42.1
43.8
37.1
42
4
41.9
40.1
43.1
40.5
41.8
5
41.1
43.9
42.7
36.8
42.6
6
42.2
41.9
43.3
42.2
39
Promedio
41.9
41.9
43.2
39.1
41.5
sesgo
0.1
0.1
- 1.2
2.9
0.5
valor verdadero s e n o i c i t e p e r
Max
42 42.5
43.9
43.8
43.0
42.6
Min
41.1 41
39.8
42.0
35.0
39.0
Caso 1; laboratorio A Los resultados del laboratorio A son precisos poseen un intervalo de (41.1 – 42.5), in exactos e in sesgados, el promedio de sus resultados obtenidos son 41.9 está muy próximo al valor verdadero, de manera que no hay evidencia de sesgo, sin embargo, medianamente exacto pro sus valore relativamente cercano al valor verdadero.
Caso 2; laboratorio B en el caso del laboratorio B es preciso por su cercanía al valor verdadero en la media de sus datos individuales, es insesgada por que no difiere significativamente del valor real, podría señalarse que es exacto.
Caso 3; En el laboratorio C presenta medianamente sesgada por el intervalo de (42.0 – 23.8), precisión pobre al ser un promedio de 43.2 difiere significativamente del valor verdadero, y presenta una exactitud escasa por que se aleja demasiado del valor verdadero.
Caso 4; El laboratorio D ha obtenido resultados precisos, e inecsactos y presenta sesgado; el promedio 39.1, de los valores obtenidos por el laboratorio D difiere significativamente del valor real por lo que es sesgado, es preciso ya que los valores de respetabilidad encuentran próximos uno de otro, pero su exactitud es deficiente ya que se aleja mucho del valor real.
Caso 5; El laboratorio E presenta mediana precisión por los intervalos de sus resultados (39.0 - 42.6), es medianamente sesgado por el valor promedio de 41.5 obtenido de sus valores individuales, así mismo es inexacta por alejarse demasiado del valor verdadero.
2. Utilizando la misma muestra y el método del ejercicio N°1, el laboratorio A realiza otras 6 determinaciones posteriores de la concentración de albúmina, esta vez en seis días sucesivos. Los valores obtenidos son: 41.5, 40.8, 43.3, 41.9 y 41.7. Comentar los resultados:
Resultados de albumina en 6 días sucesivos Dias Concentración 1 41.5 2 40.8 3 43.3 4 41.9 5 41.7 6
Resultados de albumina en un solo día Día Concentración 1 42.5 1 41.6 1 42.1 1 41.9 1 41.1 1 42.2
Resolución: A valor
42
verdadero
42
1
42.5
41.5
2
41.6
40.8
3
42.1
43.3
4
41.9
41.9
5
41.1
41.7
6
promedio
42.2 41.9
41.84
0.1
0.16
Max
42.5
43.3
Min
41.1
40.8
Sesgo
De acuerdo a los gráficos se puede observar que la precisión en términos de reproducibilidad es más baja (análisis entre días) que la precisión en términos de repetibilidad (análisis en un solo día). Así mismo, se aprecia que existe poco sesgo entre la media de los resultados y el valor convencionalmente verdadero para ambos casos.
Capitulo II Estadística de medidas repetidas 1. Para investigar la reproducibilidad de un método para la determinación de selenio en alimentos, se realizaron 9 medidas sobre un lote de arroz tostado, con los siguientes resultados: 1 2 3 4 5 6 7 8 9 0.07 0.07 0.08 0.07 0.07 0.08 0.08 0.09 0.08 Calcular la media, desviación estándar y desviación estándar relativa de estos resultados.
Resolución:
Numero de datos (n)
1
Concentración µg Se / g
2 3 4 5 6 7 8 9
0.07 0.07 0.08 0.07 0.07 0.08 0.08 0.09 0.08
Media
0.077
Deviación STD Des. STD Relativa (DER)
0.007 9
En la investigación se determina un promedio de 0.077 µg Se / g de muestra con una desviación estándar de 0.007 µg Se / g de muestra con un coeficiente de variación de 9 %.
2. Siete medidas de pH de una solución reguladora proporcionaron los siguientes resultados: 1 2 3 4 5 6 7 5.12 5.20 5.15 5.17 5.16 5.19 5.15 Calcular los límites de confianza para el verdadero pH al nivel de confianza del 95% y 99%(suponer que no existen errores sistemáticos).
ug/ml Media
5.16285714
Error típico
0.01016865
Mediana
5.16
Moda
5.15
Desviación estándar
0.02690371
Varianza de la muestra
0.00072381
Curtosis
-0.16506233
Coeficiente de asimetría
-0.13645155
Rango
0.08
Mínimo
5.12
Máximo
5.2
Suma Cuenta
36.14 7
Nivel de confianza(95.0%) 0.02488178 Nivel de confianza(99.0%) 0.03769952
Al 95%: 5.163±0.025
Al 99%: 5.163±0.038
3. Diez análisis repetidos de la concentración de mercurio en una muestra de condensado de gas comercial proporcionaron los siguientes resultados:
23.3 22.5 21.9 21.5 19.9 21.3 21.7 23.8 22.6 24.7 ng.ml-1
Calcular la media, desviación estándar, desviación estándar relativa de estos resultados y límites de confianza de la media al 99%.
ng Hg .ml-1 Media
22.32
Error típico
0.43532874
Mediana
22.2
Moda
#N/A
Desviación estándar
1.37663035
Varianza de la muestra
1.89511111
Curtosis
0.14701723
Coeficiente de asimetría
0.08488996
Rango
4.8
Mínimo
19.9
Máximo
24.7
Suma
223.2
Cuenta
10
Nivel de confianza(99.0%) 1.41474681 DER
6.16769869
Calcular la media, desviación estándar, desviación estándar relativa de estos resultados y límites de confianza de la media al 99%. 13.8 14.0 13.2 11.9 12.0 12.1 ng.ml-1
Columna1
Media
12.8333333
Error típico
0.38873013
Mediana Moda
12.65 #N/A
Desviación estándar
0.95219046
Varianza de la muestra
0.90666667
Curtosis Coeficiente de asimetría Rango
-2.61038603 0.26216641 2.1
Mínimo
11.9
Máximo
14
Suma
77
Cuenta
6
Nivel de confianza(99.0%) 1.56741545 DER
7.4196659
Capitulo III Contraste de significación
Medida 8.71 8.82 8.9 8.92 9.17 9.53 9.83 9.84 10.04 10.3 10.31 10.32 10.4 10.65 10.91 11.12 11.68 11.69 11.88
Frecuencia acumulada X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
% de frecuencia de acumulada Y 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Representación de probalidad normal 100 a d 90 a l u 80 m 70 u c 60 a a i 50 c n 40 e u 30 c e r 20 f e 10 d 0 %
y = 5x R² = 1
Series1 Linear (Series1)
0
5
10
Medida
15
20
Muestra
Valor certificado
Media
Desviación estandar
t
1
0.496
0.482
0.0257
-1.54
2
0.995
1.009
0.0248
1.60
3
1.493
1.505
0.0287
1.18
4
1.990
2.002
0.0212
1.60
3.-PARA LOS DATOS DEL EJEMPLO 3.3.3 RELATIVOS A LA CONCENTRACION DE UN TIOL EN EL LISADO SANGUINEO. a).-VERIFICAR QUE 2.07 NO ES UN DATO ANOMALO PARA EL GRUPO NORMAL:
CONCENTRACION DE TIOL ( Mm ) NORMAL 1.84 1.92 1.94 1.92 1.85 1.91
REUMATOIDE 2.81 4.06 3.62 3.27 3.27 3.76
2.07
CONTRASTE DE DIXON Q( calculado)
1.3
Valor sospechoso
2.07
valor mas cercano valor mas grande valor mas pequeño DATO DE TABLA
1.94 1.94 1.84
0.57
Se verifica que el dato 2.07 no es anomalo por comparacion el dato de tablas es menor a 1. b).-DEMOSTRAR QUE LAS VARIANZAS DE LOS DOS GRUPOS DIFIEREN SIGNIFICATIVAMNTE.
Análisis de varianza de un factor RESUMEN Grupos
Cuenta
Suma
Columna 1 Columna 2
7 6
13.45 20.79
Promedio Varianza
1.9214 3.4650
0.0057 0.1940
ANÁLISIS DE VARIANZA Grados de libertad
Promedio de los cuadrados
F
Probabilidad
Valor crítico para F
7.6977
1
7.6977
84.3005
0.0000017
4.8443
1.0044
11
0.0913
Origen de las Suma de variaciones cuadrados
Entre grupos Dentro de los grupos
Total
8.7021
12
DATOS: n1 n2 F( TABLAS) F( CALCULADO)
6 4 6.1163 84.3005
Se concluye que el F(calculado ) es mayor que el F ( critico) se concluye que hay diferencias significativas de los grupos.
4.-LOS SIGUIENTES DATOS PROPORCIONAN LA RECUPERCION DE BROMURO ADICIONADO A MUESTRAS CON CONTENIDO VEGETAL MEDIDO MEDIANTE UN METODO CROMATOGRAFICO GAS – LIQUIDO. LA CANTIDAD DE BROMURO POTASICO AÑADIDO A CADA TIPO DE VEGETAL FUE LA MISMA.
RECUPERACION TOMATE PEPINO(µg/g) (µg/g) 777 782 790 773 759 778 790 765 770 789 758 797 764 782 -CONTRASTAR SI LA RECUPERACION EN LOS DOS VEGETALES TIENEN VARIANZAS QUE DIFIERAN SIGNIFICATIVAMNTE.
Análisis de varianza de un factor RESUMEN Grupos
Cuenta
Suma
Promedio
Varianza
Columna 1 Columna 2
7 7
5408 5466
772.571429 183.952381 780.857143 108.47619
Suma de cuadrados
Grados de libertad
Promedio de los cuadrados
F
Probabilidad
Valor crítico para F
1
240.2857
1.6434
0.2241
4.7472
12
146.2143
AN LISIS DE VARIANZA Origen de las variaciones
Entre grupos 240.285714 Dentro de los 1754.57143 grupos 1994.85714 Total
13
DATOS: n1 n2 F( TABLAS)
6 5 4.9500
F( CALCULADO)
1.6433
Como F calculado es menor que el de tablas no hay diferencia significativa en la recuperacion.
b).-Contrastar si las tasas de recuperación medias difieren sigificativamente. RESUMEN Grupos
Cuenta
Suma
Columna 1 Columna 2
7 7
5408 5466
Promedio Varianza
772.5714 780.8571
183.9524 108.4762
DATOS: n1 n2 s1 s2 s2 s t(calculado) t(tablas)
7 7 183.9524 108.4762 208914.413
457.071562 0.00968973 2.18
Como el t(calculado) es menor que el t(tablas) entonces las tasas de recuperación de medias no hay diferencia significativa en la recuperacion.
CAPITULO IV La calidad de medidas analíticas 1. Los datos de la tabla adjuntan dan la concentración de albumina medida en el suero sanguíneo de un adulto. Se tomó una muestra de sangre durante cuatro días consecutivos y se determinó la concentración de albumina en el suero por triplicado.
Dia
1 2 3 4
CONCENTRACION DE ALBUMINA 63 57 50 57 61 56 46 54 62 56 46 59 Demostrar que la concentración media para los diferentes días difiere significativamente. Estimar la varianza de la variación día a dia (es decir, “la variación muestral”).
Análisis de varianza de un factor RESUMEN Grupos
Cuenta
Columna 1 Columna 2 Columna 3 Columna 4
Suma
Promedio
Varianza
3
186
62
1
3
169
56.333
0.333
3
142
47.333
5.333
3
170
56.667
6.333
APLICANDO ANÁLISIS DE VARIANZA Origen de las Suma de variacione cuadrados s
Entre grupos
332.91666 7
Grados de libertad
Promedio de los cuadrados
F
110.972222 34.145299 3 2 1
Probabilida d
Valor crítico para F
4.0661805 6.5773E-05 6
Dentro de los grupos Total
26
8
358.91666 7
11
3.25
En la tabla de ANOVA demuestran que el cuadrado medio de la varianzas entre días y dentro días son 110.97=111 y 3.25 son diferentes significativamente. Según la tabla nos da un valor F= 34.15 y el valor critico para F= 4.07 de manera que las concentraciones difieren significativamente La varianza muestral:
= 25 = 110.973. 3 =35.9
2. Para estimar las varianzas de medidas y muestreos se determino la concentración de halofuginosos en hígado de pollo, se tomaron cuatro incrementos de muestra de diferentes partes del hígado y se tomaron medidas por triplicado sobre cada una de ellas. Se obtuvieron los siguientes resultados (mg.Kg-1)
MUESTRA MEDIDAS REPETIDAS A 0.25 0.22 0.23 B 0.22 0.20 0.19 C 0.19 0.21 0.20 D 0.24 0.22 0.22 Verificar que la varianza muestral es significativamente mas grande que la varianza de la varianza de las medidas y estimar ambas varianzas . Se proponen dos posibles esquemas de muestreo: Esquema 1. Tomar seis incrementos de muestra, mezclarlos y realizar un análisis por cuadriplicado. Esquema 2. Tomar tres incrementos de muestra, y sobre cada uno hacer las medidas por duplicado. APLICANDO ANOVA.
RESUMEN Grupos
Cuenta
Suma
A
3
0.7
Promedio
Varianza
0.23333333 0.00023333
B C D Origen de las Suma de variacione cuadrados s
Entre grupos Dentro de los grupos Total
3 3 3
0.61 0.6 0.68
Grados de libertad
0.0024916 7
3
0.0014
8
0.0038916 7
11
Promedio de los cuadrados
0.20333333 0.00023333 0.2 1E-04 0.22666667 0.00013333
F
Probabilida d
Valor crítico para F
0.0008305 4.7460317 4.0661805 0.034754961 6 5 6 0.000175
De la tabla podemos inferir: Cuadrados medios de las variaciones , entre muestras es 0.000831 y dentro de muestras es 0.000175, El valor de F es 4.746 El valor critico para F es 4.066, Calculando la varianza muestral
= 000175 = 0.0008310. 3 =2.1910− La varianza de la medida: =0. 0 00175 Calculando la varianza de la media:
= ℎ + ℎ = 0.0001754 + 0.0002196 =0.00008025 *Para el esquema 2: = ℎ + ℎ *Para el esquema 1:
= 0.00017523 + 0.0002193 =0.0001022
CAPÍTULO V Métodos de calibración en análisis instrumental: regresión y correlación Ejercicio Nro. 5 Se obtuvieron los siguientes resultados al analizar un conjunto de soluciones patrón de plata por espectrofotometría de absorción atómica.
ng/mL
Absorbancia
0
0.003
5
0.127
10
0.251
15
0.39
20
0.498
25
0.625
30
0.763
Estimar el límite de detección.
Absorbancia 1
y = 0.0252x + 0.0021 R² = 0.9994
0.5
0 0
5
10
15
20
25
30
b= 0.02516429 a= 0.00210714 n= 7
∑ ȳ ⁄ = { 2 } = + 3( ⁄ )
Sy/x=
0.00702597
ABS=
0.02318506
35
=
0.83761236 ng/mL
LOD=
Ejercicio Nro. 6 Se determinó el contenido de oro de una muestra concentrada de agua de mar por espectrofotometría de absorción atómica con el método de las adiciones estándar. Los resultados obtenidos fueron los siguientes:
Añadido ng/mL
Absorbancia
0
0.257
10
0.314
20
0.364
30
0.413
40
0.468
50
0.528
60
0.574
70
0.635
Estimar la concentración de oro en el agua de mar concentrada y determinar los límites de confianza para esta concentración.
Absorbancia 0.7
y = 0.0053x + 0.2569 R² = 0.9993
0.6 0.5 0.4 0.3 0.2 0.1 0 0
10
20
30
40
50
60
70
80
b= 0.0053488 a= 0.2569167 n= 8
=
Conc Au mp= 48.032495 ng/mL
∑ ȳ
⁄ = { 2 }
Sy/x= 0.0036939 SXE= 0.9178817 t= 2.45
Intervalo confianza
48.032495
±
45.783685 ng/mL -
2.248810
ng/mL
50.281305 ng/mL