Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
MÓDULO 2
PR ÁCTICAS DE SEGUR IDAD PAR A INSPECTOR ES DE SOLDADUR A Los inspectores de soldadura generalmente trabajan en el mismo medio que los soldadores, por eso pueden estar expuestos a los mismos peligros. Entre estos peligros están los shocks eléctricos, caídas, radiación, riesgos oculares como luz ultravioleta, humos y objetos que caen. Aunque el inspector puede estar expuesto a estas condiciones solo momentáneamente, la seguridad no debe ser tomada a la ligera. El inspector de soldadura debe hacer lo posible por observar todas las precauciones como: uso de anteojos de seguridad, casco, ropa de protección o cualquier otro equipo apropiado para la situación dada. Para una información más detallada, refiérase a “ANSI/ASC Z49.1, SAFETY IN WELDING AND CUTTING, FIGURA 2.1”.
Figura 2.1 – ANSI/ASC Z49.1 “Safety in Welding and Cutting” La seguridad es un ítem importante en todo trabajo de soldadura, corte o tarea relacionada. Ninguna actividad es completada satisfactoriamente si alguna persona resulta lastimada. Los peligros que pueden ser encontrados, y las prácticas que reducen lesiones personales y daños a la propiedad, son discutidos aquí.
2-1
Figura 2.2 – Equipamiento de protección personal Los componentes más importantes de un programa de higiene y seguridad efectivo son el liderazgo y la dirección. La gerencia debe claramente fijar objetivos en materia de salud y seguridad y mostrar su compromiso mediante el apoyo consistente de prácticas seguras. La gerencia debe designar áreas seguras, aprobadas para las operaciones de soldadura soldadura y corte. Cuando estas operaciones sean hechas en áreas diferentes de las designadas, la gerencia debe asegurarse que sean establecidos y seguidos los procedimientos adecuados para proteger al personal y la propiedad. Figura2.3 La gerencia debe tener certeza de que solamente son usados equipos de soldadura, corte y otros elementos relacionados que estén aprobados. Este equipamiento incluye torchas, reguladores, máquinas soldadoras, porta electrodos y los mecanismos de protección del personal. Debe ser provista una supervisión adecuada para asegurarse que los equipos sean usados y mantenidos de manera correcta. Un entrenamiento efectivo y cuidadoso es un aspecto clave de un programa de seguridad. El entrenamiento adecuado está encuadrado en las previsiones del U.S. OCCUPATIONAL SAFETY AND HEALTHY ACT (OSHA),
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
ADVERTENCIA: PROTEJASE a usted y a los demás. Lea y entienda esta etiqueta. LOS GASES Y VAPORES pueden ser peligrosos para su salud. LOS ARCOS pueden lastimar sus ojos y quemar su piel. EL SHOCK ELÉCTRICO puede MATAR.
Antes de usar algún equipo, lea y entienda las instrucciones del fabricante, las MSDS y las instrucciones de seguridad de su empleador. Mantenga su cabeza fuera de los vapores Use ventilación suficiente, evacúe el arco o ambos, para mantener los gases y vapores fuera de la zona de respiración y fuera del área. Use la protección ocular, auditiva y corporal correcta. No toque partes eléctricas conectadas. conectadas. Vera la American Welding National Standard Z49.1, Safety in Welding and Cutting, publicada por el American Welding Society, 550 N.W. LeJeune Rd., Miami, Florida 33135; OSHA Safety and Health Standards, 29CFR 1910, disponible en la oficina de impresión del gobierno, Washington, DC 20402
NO REMUEVA ESTA ETIQUETA Figura 2.3 – Etiqueta de advertencia típica para procesos de soldadura por arco y equipamiento. especialmente aquellos del HAZARD COMUNICATION STANDARD (29 CFR 1910.1200). Los soldadores y otros operadores de máquinas trabajan de manera más segura cuando son apropiadamente instruídos en la materia. Un entrenamiento apropiado incluye instrucción en el uso seguro del equipo y de los procesos, y que las normas de seguridad sean seguidas. El personal debe conocer las normas de seguridad y entender las consecuencias de desobedecerlas. Por ejemplo, los soldadores deben ser entrenados para posicionarse mientras sueldan o cortan, para no recibir en su cabeza los gases o humos que se generan. Una columna de humos es como una nube que contiene diminutas partículas sólidas, que se elevan directamente de la zona de metal fundido. Los humos son metales líquidos que se condensaron. Antes de empezar a trabajar, los operadores deben siempre leer y entender las instrucciones sobre prácticas seguras (escritas por el fabricante del equipo) en el uso del equipo y los materiales; y las hojas del MATERIAL SAFETY DATA SHEETS (MSDS). Algunas especificaciones AWS llaman a utilizar etiquetas de seguridad en el equipo y los materiales. Estas etiquetas brindan información sobre el uso seguro de los equipos y los materiales, deben ser leídas y seguidas. Ver figura 2.3. Los fabricantes de consumibles deben, bajo solicitud, suministrar la MATERIAL SAFETY DATA SHEET que identifica a los
2-2
materiales presentes en sus productos que tengan propiedades peligrosas. La MSDS provee de acuerdo a OSHA los valores permitidos de exposición, conocidos como THERESHOLD LIMIT VALUE (TLV), y cualquier otro límite de exposición usado o recomendado por el fabricante. TLV es una marca registrada del AMERICAN CONFERENCE OF GOVERNMENTAL AND INDUSTRIAL HYGIENISTS. Los empleadores que utilicen consumibles deben tomar toda la información aplicable de las MSDS para sus empleados, y entrenarlos para que lean y entiendan sus contenidos. La MSDS contiene importante información sobre los ingredientes de los electrodos, varillas y fundente. Estas hojas también muestran la composición de los humos generados y otros peligros que puedan surgir durante el uso. También proveen medios a seguir para proteger al soldador y otros que puedan estar involucrados. Bajo la OSHA HAZARD COMUNICATION STANDARD, 29 CFR 1910.1200, los empleadores son responsables por el entrenamiento de los empleados sobre materiales peligrosos en el lugar de trabajo. Varios consumibles son incluidos en la definición de materiales peligrosos de acuerdo con esta norma. Los empleadores de soldadores deben cumplir con esta comunicación y entrenar en los requerimientos de ésta.
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
El uso y mantenimiento apropiado de los equipos también debe ser enseñado. Por ejemplo, una aislación faltante o defectuosa en soldadura por arco o corte, no debería ser empleada. Mangueras faltantes o defectuosas utilizadas en soldadura y corte oxiacetilénica, brazing o soldering, no deben ser usadas. El entrenamiento en el uso de los equipos es fundamental para un trabajo seguro. El personal debe ser entrenado en el reconocimiento de peligros potenciales. Si ellos van a trabajar en un medio o situación no habitual, ellos deben ser brevemente introducidos en los peligros potenciales involucrados. Por ejemplo, considere una persona que debe trabajar en espacios confinados. Si la ventilación es pobre y se requiere un casco con aire auxiliar, la necesidad y las instrucciones para su empleo deben ser explicadas al empleado. Las consecuencias del uso inapropiado de los equipos deben ser también explicadas. Cuando los empleados crean que las precauciones de seguridad para una determinada tarea no sean suficientes o adecuadas o no las entiendan, deben preguntar al supervisor antes de proceder. El orden es esencial para prevenir lesiones. La visión de un soldador está generalmente restringida por el empleo de la protección necesaria en los ojos, y las personas que pasan por el lugar deben también proteger sus ojos de la llama o del arco. Esta limitación de la visión provoca muchas veces tropiezos con los objetos que están sobre el suelo. Por eso, los soldadores y los supervisores deben asegurarse que el área esté limpia de objetos que puedan ser fuentes potenciales de peligro. Un área de producción en un taller debe ser diseñada de manera que las mangueras, cables, dispositivos y otros elementos no interfieran con las tareas de rutina. Cuando el trabajo es en altura o a nivel del piso, arneses de seguridad o barandas deben ser provistos para prevenir caídas por la restricción en la visión que provocan las protecciones visuales. Los arneses y las barandas pueden ser útiles para confinar a los trabajadores a áreas limitadas y para retenerlos en caso de caída. Acontecimientos imprevistos como escapes de vapores, incendios, explosiones, etc; pueden ocurrir en ambientes industriales. Todas las salidas de emergencia deben estar
2-3
Figura 2.4 – Área destinada para soldadura identificadas y despejadas; de manera que en caso necesario la evacuación se haga en forma rápida, segura y ordenada. Los empleados deben ser entrenados en los procedimientos de evacuación. El almacenamiento de sustancias en las rutas de escape debe ser evitado. Si la ruta de evacuación debe ser temporariamente bloqueada, los empleados deben ser entrenados en el uso de una ruta alternativa. Equipos, máquinas, cables, mangueras y otros aparatos deben ubicarse de manera que no presenten un peligro u obstáculo en escaleras, pasillos, u otros lugares de circulación. Deben ponerse carteles para identificar áreas de soldadura y para especificar donde debe utilizarse protección visual. Ocasionalmente, un “vigía de incendios” puede ser asignado para mantener la seguridad en las operaciones de corte y soldadura. El personal en áreas próximas a soldadura y corte debe estar protegido de la energía radiante y de las salpicaduras. Esto se lleva a cabo con pantallas resistentes a la llama, protecciones visuales y faciales adecuadas y ropa de protección. Se permiten materiales semitransparentes que brinden adecuada protección contra la radiación. Cuando los procesos lo permitan, los lugares de trabajo próximos estarán separados por pantallas incombustibles. Mamparas y pantallas deben permitir la circulación de aire a nivel del piso y sobre las pantallas. Cuando se suelda o corta en lugares próximos a una pared pintada, éstas deben estar pintadas con una terminación que no refleje la radiación ultravioleta. Pinturas formuladas con pigmentos como dióxido de titanio u óxido de zinc, tienen baja reflectividad a la radiación
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
Figura 2.5 – Pantallas protectoras entre células de trabajo ultravioleta. Pigmentos de color pueden ser añadidos si no aumentan la reflectividad. Pigmentos de base metalizada no son recomendados debido a que reflejan la radiación ultravioleta. En la mayoría de los procesos de soldadura, corte y otros procesos conexos, está presente una fuente de calor de alta temperatura. Llamas abiertas, arcos eléctricos, metal caliente, chispas y salpicaduras son fuentes de ignición. Muchos incendios son iniciados por chispas, que pueden viajar hasta 12m en dirección horizontal desde su fuente, y caer aún mayores a distancias. Las chispas pueden pasar o alojarse en fisuras, agujeros y otras pequeñas aberturas en pisos y paredes. El riesgo de incendio se incrementa cuando hay combustibles en el área de trabajo, o cuando se suelda o corta demasiado cerca de combustibles que no fueron protegidos o aislados convenientemente. Los materiales que más comúnmente se encienden son pisos, techos, paredes, divisiones y otros elementos como basura, papel, madera, productos textiles, plásticos, químicos, líquidos inflamables y gases. En el exterior, los combustibles más comunes son pasto seco y cepillos. La mejor protección contra el fuego es soldar y cortar en áreas especialmente diseñadas para esos fines o cerradas, construídas con elementos incombustibles y libres de combustibles almacenados. Los combustibles deben ser siempre removidos del área de trabajo o protegidos de las operaciones. Los combustibles más comúnmente encontrados son fuels, utilizados en motores u operaciones de soldadura o corte. Estos
2-4
combustibles deben ser almacenados y usados con cuidado. Las instrucciones de los fabricantes de equipos deben ser seguidas porque los fuels y sus vapores son combustibles y bajo ciertas condiciones pueden explotar. Acetileno, propano y otros gases inflamables usados en soldadura y corte requieren un manejo cuidadoso. Debe prestarse una atención especial a los cilindros de gas combustible, mangueras y aparatos para prevenir pérdidas. Los combustibles que no puedan ser removidos del área de trabajo, deben ser cubiertos con un material antillama y hermético. Esto incluye paredes y techos combustibles. Los pisos del área de trabajo deben estar libres de materiales combustibles por un radio de por lo menos 12 m. Todas las puertas de salida, ventanas y aberturas deben cubrirse con un material resistente a la llama. De ser posible, toda el área de trabajo debe estar encerrada con una pantalla portátil resistente a la llama. Los combustibles que se encuentren del otro lado de paredes metálicas, techos o divisiones; deben ser corridos cuando se suelde o corte del otro lado de la pared. Si esto no puede ser hecho, un vigía debe ser colocado al lado de los combustibles. El calor producido por el proceso de soldadura puede conducirse por la pared metálica y encender los combustibles que se encuentren del otro lado. Una cuidadosa revisión buscando algún indicio de incendio puede realizarse una vez que se terminó de soldar, donde se almacenen los combustibles. La inspección debe realizarse por lo menos hasta 30 minutos después de terminar de soldar. No se debe soldar o cortar un material que posea una cubierta, o una estructura interna, o paredes, o techos combustibles. Piezas calientes de desechos no deben ser arrojadas en depósitos que contengan combustible. Los extintores de fuego adecuados deben estar siempre disponibles en las cercanías, y el que aviste el fuego debe estar entrenado en su uso. No se debe soldar o cortar en suelos, pisos o plataformas combustibles que puedan ser rápidamente encendidas por el calor generado en la operación. Los soldadores e inspectores deben estar alertas por las emanaciones de vapores de líquidos inflamables. Los vapores son generalmente más pesados que el aire. Los vapores de líquidos inflamables que estén
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
Figura 2.6 – “Permiso de trabajo en caliente” del National Safety Council almacenados pueden viajar cientos de metros a lo largo de pisos y depresiones. Los vapores livianos pueden viajar por los techos y llegar a cuartos adyacentes. Cuando se suelde o corte en áreas que no son habitualmente usadas para este fin, debe usarse un “permiso para trabajar en caliente”. El propósito de este permiso es alertar a los supervisores de que existe un peligro extraordinario de fuego en ese momento. El permiso tiene que incluir un check list de las precauciones de seguridad. Un check list generalmente incluye una inspección de los extinguidores, establece la necesidad de colocar un vigía (si es necesario), buscar materiales inflamables, instrucciones de seguridad para el personal del área no involucrado en el trabajo de soldadura. Cuando los permisos son otorgados, el inspector de soldadura debe estar enterado y al tanto de todos sus requerimientos. Los gases, vapores inflamables y ciertos polvos mezclados con aire en determinadas proporciones, presentan peligro de explosión y fuego. Para prevenir el peligro de explosiones, deben evitarse todas las fuentes de ignición. Soldar, cortar, brazing o soldering no deben ser
2-5
realizados en atmósferas que contengan gases y/o vapores inflamables y/o polvos; ya que pueden producir chispas o calor. Dichos inflamables deben ser puestos en recipientes herméticos o estar bien alejados del área de trabajo. El calor y/o las chispas pueden producir vapores inflamables en materiales con bajo punto de volatilización. Los recipientes que contengan huecos deben ser ventilados antes y durante la aplicación de calor. El calor no debe ser aplicado a un recipiente que haya contenido un material desconocido, una sustancia combustible o una sustancia que pueda formar vapores inflamables sin considerar los peligros potenciales. Estos recipientes deben ser primero limpiados o vaciados utilizando un gas inerte. Debe ser utilizada protección visual y ropa de protección si el trabajo tiene riesgos de explosión. Quemaduras en los ojos o en el cuerpo son peligros serios en la industria de la soldadura. Protección del cuerpo, la cara, los ojos y otros se requieren en el área de trabajo para prevenir quemaduras por radiación ultravioleta y roja, chispas y salpicaduras.
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
PROTECCIÓN VISUAL Y DE LA CARA Soldadura y corte por arco Los soldadores y operadores de soldadura, y todo el personal que esté observando un arco debe utilizar cascos para soldadura o escudos de mano. Las normas para cascos de soldadura, escudos de mano, escudos faciales, antiparras y gafas, están dados en ANSI PUBLICATION Z87.1, PRACTICE FOR OCCUPATIONAL AND EDUCATIONAL EYE AND FACE PROTECTION, última edición. Gafas de seguridad, antiparras y otros protecciones visuales adecuadas deben ser utilizadas durante las operaciones de soldadura y corte. Estos dispositivos deben tener escudos laterales, que protejan toda la cara, cuando haya peligro de rayos o partículas que vuelen de las operaciones. Las gafas o antiparras pueden tener lentes transparentes o de color. La protección que brinden va a depender de la intensidad de la radiación que provenga de la soldadura o del corte, cuando la careta de soldadura sea removido o esté levantada. Filtros de placa Nº 2 son recomendados para protección general. (ver tabla 2, pág.21). Soldadura y corte por oxigás y por arco sumergido Deben utilizarse antiparras de seguridad con filtros de placa y escudos laterales de seguridad cuando se realice soldadura o corte por oxigas. Mientras se realice soldadura por arco sumergido, el arco está cubierto por el fundente y no es realmente visible; por ello no es necesario el uso de la careta de soldadura. De todos modos, como el arco ocasionalmente destella a través de la capa de fundente, el operador debe usar gafas de seguridad con los vidrios entintados. (ver tabla 2, pag.21). Soldering y brazing por soplete Gafas de seguridad con escudos laterales y filtros de placa laterales son recomendados para los procesos de brazing por soplete y soldering. Como en soldadura y corte por oxigas, una llama amarilla brillante puede ser visible durante el brazing por soplete. Un filtro similar al que se usa para estos procesos puede ser utilizado para el brazing por soplete. (ver tabla 2, pág. 21).
2-6
Figura 2.7 – Equipamiento de protección ocular, auditiva y facial Brazing Los operarios y ayudantes involucrados en estos procesos deben vestir gafas de seguridad, antiparras y un escudo facial para proteger sus ojos y la superficie de las salpicaduras. Filtros de placa no son necesarios; pero pueden utilizarse por comodidad. (ver tabla 2, pág.21). ROPA DE PROTECCIÓN Botas o zapatos robustos y ropa pesada debe ser vestida para proteger el cuerpo entero de las chispas que vuelan, salpicaduras y las quemaduras por radiación. Es preferible la ropa de lana a la de algodón, ya que ésta tarda más en encenderse. Si se usara ropa de algodón, ésta puede ser tratada químicamente para reducir su combustibilidad. La ropa tratada con retardantes de llama no permanentes deben ser tratadas nuevamente después de cada lavado. Ropa o zapatos de plástico que pueda fundirse no deben ser empleados, ya que pueden causar severas quemaduras. La ropa exterior debe ser mantenida libre de aceites y grasas, especialmente en una atmósfera rica en oxígeno. Pantalones sin botamanga y bolsillos cubiertos son recomendados para prevenir que las chispas o salpicaduras queden atrapadas. Los bolsillos deben ser vaciados de cualquier material inflamable o de rápida ignición antes de soldar, porque pueden ser encendidos por chispas o salpicaduras de soldadura y provocar serias quemaduras. Los pantalones deben ser usadas por fuera de los zapatos. Se recomienda proteger el cabello con una gorra, especialmente si se usa peluquín. Aditivos para el pelo que sean inflamables no deben ser utilizados.
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
Guantes de cuero u otro material adecuado deben ser siempre utilizados. Los guantes no solamente protegen las manos de quemaduras y abrasión, sino que además proveen aislación en caso de shock eléctrico. Una variedad especial de ropa de protección está disponible para los soldadores. Delantales, polainas, trajes, capas, mangas y gorras; todas de material durable, deben ser vestidas cuando se suelda sobre cabeza o en circunstancias especiales como una garantía adicional para la protección del cuerpo. Chispas y salpicaduras calientes pueden penetrar en los oídos, y ser especialmente dolorosas y serias. Por eso, deben usarse tapones para los oídos resistentes a la llama en cualquier operación que posea estos riesgos.
RUIDO Un ruido excesivo, especialmente continuo y de alto nivel, puede provocar severos problemas en la audición. Pueden causar pérdida permanente o temporal de la audición. El US DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION regula y describe los niveles tolerables de exposición. Los requerimientos de estas regulaciones pueden ser encontrados en General Industry Standards, 29 CFR 1910.95. En soldadura, corte y operaciones conexas, el ruido puede ser generado por el proceso o el equipo o ambos. Mecanismos de protección auditiva son requeridos para algunas de estas operaciones. Información adicional es presentada en Arc Welding and Cutting Noise, AWS 1979. El corte por arco aire (CAC-A) y el corte por plasma (PAC) son procesos que tienen alto nivel de ruido. Los generadores movidos por motores diesel algunas veces producen mucho ruido, igual que las máquinas de soldar por inducción y de alta frecuencia. PROTECCIONES EN LAS MÁQUINAS Los soldadores y otros trabajadores deben estar también protegidos de las lesiones que provocan las máquinas y los equipos que están operando o por otras máquinas que estén funcionando en el área. Elementos móviles y poleas deben estar cubiertas con tapas que eviten el contacto físico.
2-7
Figura 2.8 – Protección en las máquinas Debido a que los cascos, gafas y los filtros de placas oscuros restringen la visibilidad de los soldadores, ellos están más expuestos que otros a las lesiones por elementos desprotegidos que están en movimiento. Por eso, se les debe prestar especial atención. Cuando se repara maquinaria por soldadura o brazing, la maquinaria debe estar desconectada, trabada, “probada” y señalada para prevenir su operación inadvertida y lesiones. Los soldadores que trabajen en equipos con mecanismos de seguridad que han sido removidos deben entender completamente los peligros que esta involucra, y los pasos necesarios para evitar lesiones. Cuando el trabajo haya sido terminado, los mecanismos de seguridad deben ser vueltos a colocar. Las máquinas de soldar automáticas y robots de soldadura deben estar provistos con sensores o protecciones adecuadas para prevenir la operación cuando alguien esté en el área de peligro. Salientes puntiagudas o filosas en máquinas de soldar y otros equipos mecánicos pueden provocar serias lesiones. Ejemplos de ello son máquinas para soldar por resistencia, robots, máquinas automáticas por arco, jigs y muebles. Para prevenir lesiones con estos equipos, la máquina debe estar equipada con dispositivos que hagan que el operador tenga ambas manos en posiciones seguras cuando ésta está funcionando. En caso contrario, las salientes deben estar protegidas mecánicamente. Metalworking equipment no debe estar localizado donde un soldador pueda caer accidentalmente en o adentro de él. Durante el mantenimiento del equipo, las salientes deben estar bloqueadas para prevenirlas de que queden cerradas. En situaciones muy
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
peligrosas, un vigía debe encargarse de prevenir a cualquiera de encender la máquina antes de que la reparación sea finalizada.
GASES Y VAPORES Los soldadores, operarios de soldadura y otras personas en el área deben ser protegidas de la sobreexposición a los gases y humos producidos durante la soldadura, brazing, soldering y corte. La sobreexposición es una exposición que resulta perjudicial para la salud, o que excede los límites permisibles fijados por alguna agencia gubernamental. El US DEPARTEMENT OF LABOR, OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA), Regulations 29 CFR 1910.1000, u otra autoridad competente como la AMERICAN CONFERENCE OF GOVERNMENTAL INDUSTRIAL HYGIENISTS (ACGIH) en sus publicaciones, THERESOLD LIMIT VALUES FOR CHEMICAL SUBSTANCES AND PHYSICAL AGENTS IN THE WORKROON ENVIRONMENT. Las personas con problemas de salud pueden tener sensibilidad inusual, y requerir una protección más estricta. Hay un mayor interés por los gases y humos que se generan en soldadura por arco que en soldadura por oxigas, brazing o corte. Un arco puede generar un gran volumen de gases y humos, con una enorme cantidad de sustancias involucrados. La protección contra los excesos de exposición generalmente es llevada a cabo por ventilación. Donde la exposición pueda exceder los límites permitidos con la ventilación disponible, debe emplearse además protección respiratoria. Se debe proveer protección a los soldadores y a todo el personal que se desempeñe en el área. FACTORES DE EXPOSICIÓN Posición de la cabeza El factor más importante que influencia la exposición a los humos es la posición de la
2-8
cabeza del soldador respecto de la columna de humos. Cuando la cabeza está en una posición tal que la columna de humos envuelve la cabeza del soldador o su máscara, los niveles de exposición pueden ser muy altos. Por eso, los soldadores deben ser entrenados en mantener la cabeza a un costado de la columna de humos. Algunas veces, el trabajo puede ser posicionado de tal manera que la columna pueda ascender por un costado.
Tipos de ventilación La ventilación tiene una influencia significativa en la acumulación de humos en el área de trabajo, y en la exposición del soldador a ellos. La ventilación debe ser local, donde los humos son extraídos cerca del punto de soldadura, o en general, donde el aire del lugar es cambiado o filtrado. El tipo adecuado va a depender del proceso de soldadura involucrado, del material soldado y otras condiciones del lugar. Una ventilación adecuada es necesaria para mantener los niveles de exposición del soldador dentro de límites seguros. Área de trabajo El tamaño del cerramiento o cercamiento del lugar donde se realiza la soldadura o se corta es importante. Afecta la dilución de los humos. La exposición adentro de un recipiente a presión, tanque u otro espacio confinado será más alta que en un lugar despejado. Nivel de vapores del ambiente El nivel de vapores del ambiente depende del número y tipo de estaciones o células de soldadura y del ciclo de trabajo de cada una. Diseño de la máscara del soldador La extensión de la máscara que se curva por debajo del mentón hasta el pecho, influye sobre la exposición a los humos. Máscaras con cerramientos adecuados pueden ser efectivas en la reducción de la exposición. Metal base y condición superficial
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
Figura 2.9 – Campana colocada cerca del arco de soldadura El tipo de metal base que está siendo soldado influye sobre los componentes y la cantidad de los humos que se generan. Contaminantes superficiales o recubrimientos pueden contribuir en forma significativa al peligro potencial de los vapores. Pinturas que contengan plomo y laminados que contengan cadmio, generan peligrosos humos durante el corte y la soldadura. Los materiales galvanizados generan humos de zinc que son nocivos.
VENTILACIÓN El grueso de los humos generados en soldadura y corte constan de pequeñas partículas que quedan suspendidas en la atmósfera por una gran cantidad de tiempo. Como resultado de esto, la concentración de humos puede crecer con el tiempo en un área cerrada, así como también la concentración de gases emanados o generados durante el proceso. Las partículas eventualmente se depositan en las paredes y en el piso, pero la relación de las partículas que se depositan respecto de las que se generaron durante la soldadura o el corte es baja. Por eso, la
2-9
concentración de humos debe ser controlada mediante ventilación. Una adecuada ventilación es la clave para el control de gases y humos durante el proceso de soldadura. Debe ser provista una ventilación mecánica, natural o a través del respirador en todos los procesos de soldadura, corte, brazing y en todas las operaciones relacionadas. La ventilación debe asegurar que la concentración de contaminantes suspendidos en el aire se mantenga por debajo de los niveles recomendados. Muchos métodos de ventilación están disponibles. Varían desde circulaciones naturales a dispositivos localizados, como las máscaras de soldadura ventiladas. Ejemplos de ventilación incluyen: 1 Natural 2 Ventilación mecánica natural sobre el área 3 Capuchas extractoras sobre cabeza 4 Mecanismos extractores portátiles 5 Deflectores descendentes 6 Deflectores cruzados
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
7 Extractores construídos adentro del equipo de soldar 8 Máscaras de soldar ventiladas
Soldar en espacios confinados Deben ser tenidas en cuenta algunas consideraciones especiales para cuidar la salud y seguridad de los soldadores y otros trabajadores que trabajen en espacios confinados. Ver ANSI PUBLICATION Z117.1, SAFETY REQUIREMENTS FOR WORKING TANKS AND OTHER CONFINED SPACES, LATEST EDITION; para más precauciones. Los cilindros de gas deben ser localizados fuera de los espacios confinados para prevenir la contaminación del espacio por posibles pérdidas o por sustancias volátiles. Las fuentes de energía para los equipos de soldadura deben estar localizadas afuera para reducir el peligro de shock eléctrico o del escape del motor. La iluminación adentro del área de trabajo debe ser de bajo voltaje, 12V, o 110V si es requerido, el circuito debe ser protegido por un interruptor por corriente de falla a tierra (GROUND FAULT CIRCUIT INTERRUPTER GFCI). Debe ser provisto un medio para poder retirar a los trabajadores rápidamente en caso de emergencia. Cinturones de seguridad y sogas de seguridad, deben utilizarse de tal manera (cuando sean empleadas), que no permitan que el trabajador se enrede en la salida. Un ayudante o vigía puede ser posicionado afuera con un plan de rescate preplaneado en caso de emergencia. Figura 2.10 Además de mantener los contaminantes suspendidos en el aire por debajo de los valores recomendados, en espacios confinados, la ventilación debe (1) asegurar una cantidad adecuada de oxígeno para mantener la vida (al menos 19.5% en volumen) (2), prevenir la formación de una atmósfera con oxígeno enriquecido (no por encima de 23.5%) y (3) prevenir la acumulación de mezclas inflamables. La asfixia puede rápidamente llevar a la pérdida del conocimiento y muerte sin que sea advertido por la persona, si el oxígeno no está presente en una concentración suficiente. El aire contiene aproximadamente un 21% de oxígeno en volumen. Los espacios confinados pueden no estar bien ventilados en el caso que el soldador vista una aparato aprobado de respiración y tenga
2-10
correcto entrenamiento en trabajos en espacios confinados. Una segunda persona igualmente equipada debe estar presente como reserva, en standby.
Figura 2.10 – Soldadura en espacios confinados Antes de ingresar al espacio confinado, la atmósfera del lugar debe ser testeada para determinar la presencia o ausencia de gases tóxicos o inflamables, humos y adecuada cantidad de oxígeno. Las pruebas deben ser realizadas con equipos aprobados por el US BUREAU OF MINES. Gases más pesados que el aire, como el argón, metilacetileno-propadieno, propano y dióxido de carbono; pueden acumularse en pozos, tanques, zonas deprimidas, zonas bajas y cerca del piso. Gases más livianos que el aire, como el helio y el hidrógeno pueden acumularse en el techo de un tanque, cerca de los techos y áreas altas. Las precauciones para áreas confinadas se aplican a estas áreas. Si es posible, se puede utilizar para trabajar en estos espacios una alarma por sonido con monitoreo continuo. Las atmósferas con oxígeno enriquecido son un gran peligro para los ocupantes de un espacio confinado. Son especialmente peligrosas en concentraciones que estén por encima del 25% de oxígeno. Los materiales que pueden ser
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
combustibles en atmósferas normales, en atmósferas enriquecidas, se deflagran violentamente. La ropa puede quemarse con gran rapidez; la ropa que esté engrasada o con aceites puede encenderse espontáneamente; el papel puede encenderse espontáneamente. Pueden resultar quemaduras muy serias y severas. La protección en espacios confinados debe ser provista para soldadores y otros trabajadores del área. Solamente se debe usar aire limpio y respirable para la ventilación. Oxígeno, otros gases o mezclas de gases nunca deben ser usadas para ventilación. Aparatos de respiración contenida con presión positiva deberán ser utilizados cuando se suelde o corte en áreas confinadas donde no se pueda proveer una ventilación adecuada y haya peligro inmediato para la vida y la salud. Debe poseer además una provisión de aire de emergencia de por lo menos cinco minutos en caso de que la fuente principal falle.
Soldadura de recipientes Soldar o cortar adentro o afuera de recipientes que contengan sustancias peligrosas presenta peligros especiales. Vapores tóxicos o inflamables pueden estar presentes, o ser generados por la aplicación de calor. El área próxima (externa e interna) al recipiente debe estar limpia de cualquier obstáculo u objeto peligroso. Si al reparar un recipiente en el lugar, son liberadas sustancias peligrosas desde el suelo o el piso que está debajo, el recipiente debe estar aislado. El personal de incendios debe estar en posición y el equipo de protección debe estar disponible para su uso inmediato. Cuando se suelde o corte adentro de recipientes que contengan materiales peligrosos, las precauciones para espacios confinados deben ser también observadas. Gases generados durante el proceso deben ser descargados de una forma segura y aceptable de acuerdo a las disposiciones gubernamentales vigentes. Se deben tomar precauciones para prevenir la sobrepresión adentro del recipiente. Ensayos de presencia de gases y vapores deben ser realizados periódicamente para asegurarse que éstos se encuentran dentro de los límites admisibles durante la soldadura. Un método alternativo para soldar recipientes en forma segura es llenarlos con agua
2-11
o algún gas inerte o arena. Cuando se usa agua, se lo debe llenar hasta un nivel inferior en un par de pulgadas del punto donde se quiera efectuar la soldadura. El espacio sobre el agua debe ser ventilado de manera de permitir que el aire caliente generado escape. Con gas inerte, el porcentaje de gas inerte que debe haber para evitar una explosión debe ser conocido. Como mantener con seguridad una atmósfera durante la soldadura debe ser también conocido.
Materiales altamente tóxicos El límite de exposición para algunos materiales que están presentes en atmósferas para soldadura o corte, metales base, revestimientos o consumibles es inferior a 1mg/m3. Entre estos materiales están los metales y sus compuestos escritos en la tabla 1. Tabla 1, metales tóxicos 1 Antimonio 2 Arsénico 3 Bario 4 Berilio 5 Cadmio 6 Cromo 7 Cobalto 8 Cobre 9 Plomo 10 Manganeso 11 Mercurio 12 Níquel 13 Selenio 14 Plata 15 Vanadio Manufacturer´s material safety data sheets deben ser consultadas para encontrar si alguno de estos materiales están presentes en los metales de aporte de la soldadura o en los fundentes que se emplean. MSDS deben ser pedidas a los proveedores de equipo y materiales. De todos modos, metales de aporte de soldadura y los fundentes no son los únicas fuentes de estos materiales. También están presentes en metales base, revestimientos y otras fuentes en el área de trabajo. Los materiales radioactivos que estén bajo jurisdicción de NUCLEAR REGULATORY COMMISSION requieren consideraciones especiales, además de las disposiciones provinciales y municipales. Estos materiales
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
incluyen máquinas de rayos X e isótopos radiactivos. Cuando se encuentren materiales tóxicos como constituyentes en operaciones de soldadura, brazing o corte; deben tomarse precauciones especiales de ventilado. Las precauciones deben asegurar que los niveles de contaminantes estén por debajo de los niveles permitidos para exposición humana. Todas las personas en la cercanía del área de trabajo deben estar protegidas de la misma manera.
MANEJO DE GASES COMPRIMIDOS Los gases empleados en soldadura y corte son envasados en recipientes llamados cilindros o garrafas. Solamente los cilindros construídos y mantenidos de acuerdo al US DEPARTMENT OF TRANSPORTATION (DOT) pueden ser utilizados en USA. El uso de otros cilindros puede ser extremadamente peligroso e ilegal. Los cilindros deben ser periódicamente probados bajo condiciones DOT, y no pueden ser recargados si no han superado estas pruebas. Los cilindros pueden ser recargados solamente con permiso del dueño, y solamente deben ser recargados por proveedores de gas reconocidos o por aquellos que tengan el entrenamiento adecuado. Llenar un cilindro desde otro es peligroso y no debe ser intentado por nadie que no esté calificado para hacerlo. Nunca deben ser mezclados en los cilindros combustibles o mezclas incompatibles de gases. No se debe soldar sobre los cilindros de gas. Los cilindros no deben formar parte de un circuito eléctrico porque puede establecerse el arco entre la garrafa y el electrodo. Los cilindros que contengan gases de protección, usados en conjunto con soldadura por arco no deben ser enterrados. No deben enroscarse o guardarse sobre los cilindros portaelectrodos, torchas, cables, mangueras y herramientas para prevenir salte el arco entre la torcha y el cilindro o interferencia con las válvulas. Un cilindro dañado por un arco puede romperse y provocar severas lesiones, incluso la muerte. Los cilindros no deben ser usados como banco de trabajo o rodillos. Deben estar protegidos de golpes, objetos que se puedan caer sobre ellos, inclemencias del tiempo y no deben ser tirados o lanzados. Deben ser almacenados en áreas donde las temperaturas no caigan por
2-12
debajo de los –20ºF ni supere los 130ºF. Cualquiera de estas exposiciones, abusos o malos usos pueden dañarlos al punto de provocar fallas con serias consecuencias.
Figura 2.11 – Cilindros con gas inerte, , conectado a un sistema de cañerías Los cilindros no deben ser levantados utilizando eslingas ordinarias o cadenas. Debe ser utilizada una cuna apropiada o una eslinga que retenga con seguridad al cilindro. No deben ser usados dispositivos electromagnéticos para manipular los cilindros. Siempre el que usa los cilindros debe asegurarse de que éstos estén correctamente asegurados de manera que no se caigan durante su uso o almacenamiento. Los cilindros que contengan acetileno o gases licuados deben almacenarse y usarse siempre en la posición hacia arriba. Otros cilindros es conveniente que se usen y almacenen en la posición hacia arriba, mas no es esencial en todos los casos. Antes de usar gas de un cilindro, el contenido debe estar identificado con una etiqueta encima. No deben identificarse los contenidos de otra manera que no sea esta, como colores, forma
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
de los cilindros, etc; ya que estos pueden variar de un fabricante a otro, en diferentes regiones o líneas de productos y provocar confusiones. La etiqueta identificatoria en el cilindro es la única manera de adecuada de saber el contenido del cilindro. Si faltara la etiqueta en el cilindro, éste debe ser devuelto al proveedor. Muchas veces, es provisto un capuchón para proteger el mecanismo de seguridad y la válvula del cilindro. Este capuchón debe estar siempre en posición, excepto cuando el cilindro está en uso. El cilindro nunca debe ser levantado manualmente o con un aparejo o grúa desde el capuchón. La rosca que asegura a esta válvula está diseñada solamente para ese propósito y no para soportar el peso completo del cilindro. Los capuchones tienen que estar siempre totalmente roscados y apretados manualmente. Los cilindros de gas y otros recipientes deben ser almacenados de acuerdo a las disposiciones provinciales y municipales y los standards fijados por la OSHA y el NATIONAL FIRE PROTECTION ASSOCIATION. En el HANDBOOK OF COMPRESSED GASES, publicado por la COMPRESSED GAS ASSOCIATION, son discutidos procedimientos para manipular y almacenar en forma segura cilindros de gas. Algunos gases en cilindros de alta presión son cargados a presiones de hasta 2000 psi o más. Se debe utilizar un regulador-reductor de presión aprobado (excepto que el cilindro esté diseñado para operar a la presión completa) para evacuar un gas desde un cilindro o una tubería. Nunca deber ser utilizada una simple válvula de aguja. Debe ser empleada una válvula de seguridad o de alivio tarada a una presión inferior a la máxima permitida por el equipo de soldadura. La función de esta válvula es prevenir un daño al equipo a presiones superiores a la presión límite de trabajo, si el regulador fallara en el servicio. Las válvulas en cilindros que contengan gases a alta presión, especialmente oxígeno, deben ser abiertas muy lentamente para evitar la alta temperatura que se genera con la recompresión adiabática. La recompresión adiabática puede ocurrir si las válvulas se abren rápidamente. Con oxígeno, el calor puede encender el asiento de la válvula, a su vez la alta temperatura puede provocar que el asiento se funda o queme. La válvula del cilindro, al
2-13
momento de abrirla, debe apuntarse hacia una dirección que no sea la de ninguna persona; de manera de evitar lesiones en caso de que ocurra un incendio. El operario nunca debe pararse frente a la válvula durante la apertura, para prevenir una lesión provocada por un escape de presión en caso de que el regulador falle. Antes de conectar un cilindro de gas al regulador o tubería, la válvula de salida debe ser limpiada. Esto debe hacerse con un trapo seco, libre de aceite; y tiene por fin remover la suciedad, humedad y cualquier partícula extraña. Luego la válvula debe abrirse momentáneamente y cerrarse rápidamente, esto es conocido como “cracking the cylinder valve”. Con los cilindros con gas combustible esto nunca debe realizarse cerca de fuentes de ignición como chispas, llamas, gente fumando, ni en espacios confinados. El regulador debe ser liberado de la presión del gas antes de conectarlo al cilindro y también después de cerrar la válvula del cilindro al terminar la operación. Las roscas de las válvulas de cilindro están normalizadas para gases específicos, de manera que solamente pueden conectarse a reguladores o tuberías con roscas similares. Es preferible no girar más de una vuelta (en la apertura) la válvula en cilindros con combustible y baja presión. Esto generalmente permite un flujo adecuado del combustible y permite en caso de emergencia un cierre rápido. Contrariamente, las válvulas de los cilindros de alta presión, deben abrirse completamente para que el asiento presione contra la empaquetadura y de esta forma prevenir pérdidas durante el uso. La válvula del cilindro debe cerrarse después de cada uso y cada vez que se devuelva un cilindro vacío a un proveedor. Esto previene las pérdidas de producto por fugas que pueden ocurrir y no detectarse mientras el cilindro está fuera de uso (desantendido), y así evitar los peligros que generan las fugas. Además evita el reflujo de contaminantes al cilindro. Es recomendable que los cilindros sean devueltos al proveedor con por lo menos 25psi de presión remanente. Esto previene la contaminación del cilindro durante el transporte.
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
manguera sugiere que una incorrecta combinación de dispositivos fue empleada. No se recomienda el uso de adaptadores para cambiar la conexión de la rosca del cilindro porque existe el peligro de usar un regulador incorrecto y contaminar el regulador. Por ejemplo, gases que están contaminados con aceite pueden depositar un film de aceite en las partes internas del regulador. Este film puede contaminar al gas que estaba limpio y terminar en fuego o explosión cuando quede expuesto al oxígeno puro. Antes de usarlas, se debe inspeccionar las conexiones roscadas y las conexiones de acople rápido de los reguladores estén libres de suciedad y daños. Si la conexión de un cilindro o manguera tiene fugas, no debe ser forzada con torque excesivo. Los componentes y reguladores dañados deben ser reparados por mecánicos debidamente entrenados o en caso contrario, ser devueltos al fabricante para su reparación. Una válvula adecuada o un medidor de caudal debe ser utilizado para controlar el caudal de gas desde el regulador. La presión interna en el regulador debe ser drenada antes de ser conectado o removida de un cilindro de gas o tubería.
Figura 2.12 – Reguladores de oxígeno y acetileno y caudalímetros Mecanismos aliviadores de presión Solamente el personal entrenado puede ajustar los mecanismos de alivio de presión en los cilindros. Estos mecanismos están diseñados para proveer protección en el caso de que el cilindro esté sujeto a un medio agresivo, como fuego u otras fuentes de calor. Estos medios pueden hacer aumentar la presión de los gases contenidos en los cilindros. Los mecanismos de alivio de presión son diseñados para evitar que la presión exceda los límites de seguridad. Siempre se debe emplear un regulador reductor de presión cuando se esté evacuando gas de los cilindros de gas mientras se suelda o corta. Los reductores reguladores de presión deben ser usados solamente para la presión y el gas indicado en la etiqueta. No deben ser usados con otros gases o a otras presiones aunque la rosca de la válvula de salida del cilindro pueda ser la misma. No deben ser forzadas las conecciones roscadas al regulador. Un ajuste o conexión inapropiada de roscas entre el cilindro de gas y el regulador, o entre el regulador y la
2-14
TUBERÍAS Una tubería es utilizada cuando se necesita gas sin interrupción o a una alta presión de suministro que pueda ser suplida desde un solo cilindro. Una tubería debe estar diseñada para una presión y un gas específico, y debe ser hermética a las fugas. Los componentes de la tubería deben estar aprobados para el propósito, y ser usados solamente para la presión y el gas para la cual fueron aprobados. Las tuberías para oxígeno y gases combustibles deben cumplir requerimientos especiales de seguridad y diseño. Los accesorios para tuberías para acetileno y metilacetileno-propadieno (MPS) no deben ser de cobre o aleaciones que contengan más del 70% de cobre. Bajo ciertas condiciones estos gases combustibles reaccionan con el cobre formando un compuesto inestable cobre acetylide. Este compuesto puede detonar bajo calor o shock. Los sistemas de tuberías deben contener un válvula apropiada de alivio de presión. Cada
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
Figura 2.13 y 2.14 – Sistemas de tuberías de acetileno y oxígeno respectivamente línea proveniente de un cilindro de gas combustible debe incorporar una válvula antirretorno y un arresta llama. La válvula antirretorno debe colocarse en cada línea de salida del cilindro donde sean provistos gas y oxígeno para soldadura, corte o para precalentar la torcha. Estas válvulas deben ser revisadas periódicamente para tener una operación segura. El sistema de tubería debe estar protegido por una válvula de alivio de presión a menos que, se sepa que el sistema de tubería está específicamente diseñado y construído para trabajar con la presión completa del cilindro o tanque. Los dispositivos de protección (alivio de presión) deben ser suficientes de manera de evitar que la presión crezca por encima de la presión del elemento más débil del sistema. Dichos dispositivos de alivio de presión pueden ser válvulas de alivio o discos bursting. Un regulador reductor de presión nunca debe encargarse de evitar la presurización sobre todo el sistema. Un dispositivo de alivio de presión debe
2-15
localizarse en cada sección del sistema que pueda estar expuesta a toda la presión del cilindro y que esté aislada de otro dispositivo de alivio o protección (como una válvula cerrada). Algunos reguladores de presión tienen válvulas integrales de alivio de presión y seguridad. Estas válvulas están diseñadas para protección del regulador únicamente, y no deben ser utilizadas para proteger el sistema aguas abajo. En los sistemas de tuberías criogénicas, los dispositivos de alivio deben estar localizados en cada sección del sistema donde el gas licuado pueda quedar atrapado. Si reciben calor, dichos líquidos pueden vaporizarse en gas, y en un espacio confinado la presión del gas puede incrementarse dramáticamente. Los dispositivos que protejan sistemas de tuberías de gas combustible u otro gas peligroso deben ser venteados hacia un lugar seguro.
GASES
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
Oxígeno El oxígeno no es inflamable, pero posibilita la combustión de los materiales inflamables. Puede iniciar la combustión y acelerarla vigorosamente. Por eso, los cilindros con oxígeno gaseoso y los contenedores con oxígeno líquido no deben ser almacenados cerca de cilindros con gases combustibles. Nunca debe usarse oxígeno como sustituto del aire comprimido. El oxígeno posibilita la combustión de una manera más vigorosa que el aire, debido a que el aire solamente contiene un 21% de oxígeno. Por eso, deben ser diferenciados e identificados el aire y el oxígeno. Aceite, grasa y restos de combustibles pueden encenderse espontáneamente en contacto con el oxígeno. Todos los sistemas y aparatos para servicio con oxígeno deben ser mantenidos libres de combustibles. Componentes de sistema, tuberías y válvulas que no estén expresamente manufacturadas para servicio con oxígeno deben ser limpiadas y aprobadas para este tipo de servicio antes de su uso. Los aparatos que estén expresamente manufacturados para servicio con oxígeno, y así etiquetados, deben ser guardados limpios como fueron recibidos. Las válvulas, reguladores y aparatos para oxígeno, nunca deben ser lubricados con aceite. Si éstas requieren lubricación, el método y la aplicación de lubricantes, debe estar especificada por el fabricante en sus manuales. Si no es así, los dispositivos deberán ser devueltos al fabricante o representante autorizado para su servicio. Nunca debe emplearse oxígeno para accionar herramientas que funcionen con aire comprimido. Éstas son generalmente lubricadas por aceite. De la misma manera, el oxígeno no debe ser usado para soplar la suciedad de la ropa o el área de trabajo porque generalmente están contaminados con aceite o grasa o polvo combustible. Únicamente debe vestirse ropa limpia cuando se trabaje con oxígeno. No debe utilizarse oxígeno para ventilar espacios confinados. Pueden resultar quemaduras muy severas por la ignición de la ropa o el pelo en atmósferas ricas en oxígeno.
2-16
Gases combustibles Los gases más comúnmente usados en soldadura por oxigas (OFC) y corte (OFC) son acetileno, metilacetilen-propadieno (MPS), gas natural, propano y propileno. El hidrógeno es usado en un par de aplicaciones. La gasolina es, algunas veces, usada como combustible para corte por oxígeno. Se vaporiza en la torcha. Estos gases deben ser siempre llamados por sus nombres. El acetileno en cilindros es disuelto en un solvente, de esa manera puede ser almacenado bajo presión. En su estado natural, el acetileno nunca debe ser usado a presiones superiores a los 15psi (100000Pa) porque puede disociarse de manera explosiva a esas presiones y mayores. El acetileno y el MPS nunca deben ser usados en contacto con plata, mercurio o aleaciones que contengan 70% o más de cobre. Estos gases con estos metales forman compuestos inestables que pueden detonar violentamente bajo impacto o calor. Las válvulas de salida en cilindros con gases combustibles nunca deben abrirse para ser limpiadas cerca de fuentes de llama o de ignición o en espacios confinados. Cuando los gases combustibles sean usados para atmósfera de brazing en horno, deben ser venteados a un lugar seguro. Antes de llenar un horno con gas combustible, debe primero purgarse el equipo con un gas no inflamable. Para prevenir la formación de una mezcla aire combustible explosiva pueden ser usados argón o nitrógeno. Se debe prestar una especial atención cuando se utilice hidrógeno. Las llamas de hidrógeno son difícilmente visibles y debido a ello; partes del cuerpo, ropas, o combustibles pueden entrar en contacto con ellas sin que sea advertido. Incendios por gases combustibles El mejor procedimiento para prevenir incendios provocados por gases o líquidos combustibles es almacenarlos adentro del sistema, esto es para prevenir fugas. Todos los sistemas con combustibles deben ser inspeccionados cuidadosamente para detectar fugas en el ensamble y cada intervalos frecuentes de tiempo. Los cilindros de gas combustible deben ser examinados para detectar fugas especialmente en los mecanismos de seguridad,
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
empaquetaduras de válvulas y conexiones fusibles. Una fuente común de incendios en soldadura y corte es la combustión de fugas de combustible por chispas que vuelan o salpicaduras. En caso de fuego combustible, una medida efectiva para controlarlo, es cerrar la válvula de combustible (si esta fuera accesible). Una válvula de gas combustible no debe abrirse más allá del punto necesario para obtener un flujo adecuado. Abierta de esta manera, puede ser cerrada rápidamente en caso de emergencia. Generalmente, esto es menos de 1 vuelta. Si la válvula inmediata de control de combustible en inaccesible, debe colocarse otra aguas arriba para poder cortar el flujo de combustible. La mayoría de los gases combustibles en cilindros están en estado líquido o disueltos en líquidos. Por eso, los cilindros siempre deben estar colocados en posición vertical y hacia arriba, de manera de prevenir que el líquido se introduzca en el sistema. Un cilindro con gas combustible puede tener fugas que algunas veces terminen en fuego. En caso de fuego, la alarma de incendios debe ser accionada y debe ser convocado personal entrenado en incendios. Un pequeño fuego cerca de una válvula de cilindro o dispositivo de seguridad debe ser extinguido. Cuando sea posible, el fuego debe ser extinguido cerrando la válvula, usando agua, ropas mojadas o extintores de fuego. Si la fuga no puede ser parada, el cilindro debe ser removido por personal entrenado en incendios a un lugar seguro en el exterior, y notificar al proveedor. Una señal de advertencia debe ser puesta, y no debe permitirse ninguna fuente de ignición en el área. Con un gran fuego sobre un cilindro de gas combustible, debe ser activada la alarma de incendios y todo el personal debe ser evacuado del área. El cilindro debe mantenerse mojado por los bomberos con una lluvia pesada de agua para mantenerlo fresco. Generalmente es mejor que el fuego continúe, que queme y consuma el gas antes que intentar extinguir la llama. Si el fuego es extinguido, hay peligro de que el gas de escape pueda reencenderse de manera explosiva.
Gases de protección Argón, helio, dióxido de carbón y nitrógeno son los gases más usados para
2-17
protección en algunos de los procesos de soldadura. Todos, excepto el dióxido de carbono son usados como atmósferas para brazing. Son inodoros e incoloros y pueden desplazar al aire necesario para respirar. Los espacios confinados que contengan a estos gases deben estar bien ventilados antes de que el personal entre a ellos. Si queda alguna duda, antes de que el personal ingrese a ellos, deben ser chequeados con un analizador de oxígeno para asegurarse que haya una proporción correcta del mismo. Si no hay disponible un analizador de oxígeno, el personal debe ingresar con un respirador. Los recipientes que contengan a estos gases no deben ser almacenados en espacios confinados, como ya se discutió.
SHOCK ELÉCTRICO El shock eléctrico puede causar la muerte repentinamente. Si no son seguidas las medidas precautorias apropiadas, lesiones y fatalidades pueden ocurrir por shock eléctrico en soldadura o corte. Muchas operaciones de soldadura y corte emplean equipos eléctricos. Por ejemplo, en oxicorte con gas combustible las máquinas usan motores, controles y sistemas eléctricos. Algunos accidentes por causas eléctricas pueden ser inevitables, como aquellos causados por rayos. De todos modos, el resto son evitables, incluso aquellos causados por falta de entrenamiento adecuado. El shock eléctrico ocurre cuando una corriente eléctrica, de suficiente intensidad para crear un efecto adverso, pasa a través del cuerpo. La severidad del shock depende principalmente de la intensidad de la corriente, de la duración del contacto, del camino que deba recorrer la corriente y del estado de salud de la persona. La corriente circula por causa de la diferencia de potencial aplicada. La intensidad de la corriente depende de la diferencia de potencial aplicada y de la resistencia que tenga la zona del cuerpo a través de la cual circule la corriente. En el caso de corriente alterna, también influye la frecuencia. Intensidades de corriente superiores a 6mA son consideradas corrientes primarias de shock porque pueden causar directamente daño fisiológico. Intensidades de corriente de 0.5 a 6mA, fijas, son consideradas corrientes secundarias de shock. Las corrientes secundarias de shock pueden causar reacciones musculares
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
involuntarias, sin provocar normalmente daños fisiológicos directos. A una intensidad de 0.5mA es el llamado umbral de percepción, porque es el punto al cual la mayoría de la gente empieza a sentir el hormigueo provocado por la corriente eléctrica. El nivel de sensaciones que genera la corriente depende del peso de la persona y también del sexo. Muchos equipos eléctricos; si están incorrectamente instalados, usados o mantenidos pueden ser un peligro de shock eléctrico. El shock puede ocurrir de una descarga (fogonazo) inducida por una diferencia de potencial en el sistema de distribución. Aún el suelo puede tener una diferencia de potencial respecto de tierra durante fenómenos severos transitorios. Estas circunstancias son infrecuentes. En corte y soldadura la mayoría de los equipos eléctricos son alimentados por corriente alterna con tensiones que varían entre 115V y 575V, o por generadores movidos a motor. La mayoría de la soldadura se realiza con arcos de menos de 100V. (Han resultado fatalidades con equipos operando con mentos de 80V). Algunos métodos de corte operan con arcos de más de 400V, y las máquinas de soldar por haz de electrones usan arcos de hasta 150KV. La mayoría de los shocks eléctricos que ocurren en soldadura son por contactos accidentales con conductores mal aislados o desnudos. Por eso, los soldadores deben tomar precauciones antes de contactar elementos desnudos en el circuito de soldadura, y también aquellos en el circuito primario. Generalmente la resistencia eléctrica se reduce en presencia de humedad o agua. Los peligros eléctricos son casi siempre más severos bajo estas circunstancias. Cuando se deba soldar o cortar bajo condiciones húmedas o mojadas, incluyendo sudor, el inspector de soldadura debe vestir guantes secos y ropa en buenas condiciones para prevenir el shock eléctrico. El inspector de soldadura debe ser protegido de superficies conductoras de electricidad, incluyendo la tierra. La protección puede brindarse mediante zapatos con suela de goma (como mínimo), y preferiblemente por una capa como una manta de goma o un entramado de madera. Se deben tomar precauciones similares contra contactos accidentales con superficies conductoras desnudas, cuando el inspector de soldadura deba
2-18
trabajar en diferentes posiciones (acostado, sentado o arrodillado). Antes de soldar deben sacarse anillos o joyas, para disminuir la posibilidad de un shock eléctrico. La tecnología de los marcapasos y hasta donde son influenciados por otros equipos eléctricos está constantemente cambiando. Es imposible realizar consideraciones generales sobre como son afectados por los efectos de las operaciones de soldadura. Los que lleven puestos marcapasos u otros equipos electrónicos vitales para la vida, deberán consultar con el fabricante de sus equipos o con sus doctores para encontrar donde pueda haber un peligro. Los shocks eléctricos pueden ser reducidos mediante una instalación y mantenimiento adecuado, buena práctica en su operación, ropa adecuadas y protección corporal y equipamiento diseñado para el trabajo y la situación de uso. El equipo debe cumplir con las normas aplicables NEMA O ANSI como, “ANSI/UL 551, SAFETY STANDARD FOR TRANSFORMER TYPE ARC WELDING MACHINES”. Si se van a realizar grandes cantidades de soldadura y corte bajo condiciones peligrosas, se recomienda utilizar controles automáticos de máquina que reduzcan seguramente los riesgos de circuito abierto. Cuando algún proceso especial de corte o soldadura requiera circuito abierto con tensiones superiores a las especificadas en “ANSI/NEMA PUBLICATION EW-1, ELECTRICAL ARC WELDING APPARATUS”, deben proveerse procedimientos de operación y aislación adecuados para proteger al soldador de los altos voltajes. Un buen programa de entrenamiento en seguridad es esencial. Antes de empezar a operar, los empleados deben haber sido instruídos completamente por una persona competente en seguridad eléctrica. Como mínimo este entrenamiento debe cubrir los puntos incluídos en “ANSI/ASC Z49.1, SAFETY IN WELDING AND CUTTING” (publicados por AWS). No será permitido que personas que no han sido adecuadamente entrenadas realicen operaciones. El equipo debe ser instalado en un área limpia y seca. Cuando esto no sea posible, debe ser adecuadamente resguardado del polvo y la humedad. La instalación debe realizarse de acuerdo a los requerimientos de ANSI/NFPA 70,
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
NATIONAL ELECTRIC CODE, y disposiciones locales. Esto incluye conecciones, fusibles y fuentes de poder. Los terminales de cables de soldadura y cables deben protegerse de contactos accidentales por personas u objetos metálicos como vehículos o grúas. Las conexiones entre cables de soldadura y fuentes de poder deben protegerse usando (1) receptáculos para los enchufes y toma con tapa, (2) localizar los terminales bajo una cubierta no removible o apertura de difícil acceso, (3) cubierta mecánica u (4) otros equivalentes mecánicos. La pieza de trabajo que está siendo soldada y la barra o chasis de todas la máquinas eléctricas deben estar conectadas a una buena puesta a tierra. La puesta a tierra puede estar hecha localizando la pieza o máquina en una plancha de metal sobre el suelo. La plancha también puede estar conectada a una puesta a tierra del edificio u otra puesta a tierra satisfactoria. Cadenas, alambres, sogas, grúas, aparejos y elevadores no deben ser empleados como puesta a tierra ni para llevar corriente. El conductor de masa no es la puesta a tierra. El conductor de masa conecta el terminal (donde está la fuente) a la pieza. Un cable separado es requerido para poner a tierra la pieza o el terminal de poder. Debe tenerse cuidado cuando se conecta la puesta a tierra. De lo contrario, la corriente de soldadura puede circular a través de una conexión hecha para la puesta a tierra, y puede ser de una intensidad superior que la de tierra. Puesta a tierra por radio frecuencia especial puede ser necesaria para máquinas de soldadura por arco con dispositivos de inicio de arco por alta frecuencia. Las conexiones para dispositivos de control portátiles, como botones accionados por el operador, no pueden estar conectados a circuitos con tensiones superiores a 120V. Partes metálicas de dispositivos de control expuestas a tensiones superiores a 50V deben estar a tierra con un conductor en cable de control. Para control, se recomiendan tensiones inferiores a 30V. Las conexiones eléctricas debes ser firmes y chequearse periódicamente para ver que no se aflojen. Los clamps magnéticos deben estar libres de partículas y salpicaduras sobre las
2-19
superficies de contacto. Los cables de soldadura arrollados deben ser extendidos antes de soldar para prevenir sobrecalentamientos y daños a la aislación. Aquellos trabajos que alternativamente requieran cables de soldadura cortos y largos; los equipos deben estar equipados con cables aislados conectados por tramos de manera que los tramos no necesarios puedan desconectarse. Los equipos, cables, fusibles, enchufes y receptáculos deben usarse por debajo de sus capacidades de corriente y ciclo de trabajo. La operación de estos aparatos por encima de los valores recomendados resulta en sobrecalentamiento y rápido deterioro de la aislación y otras partes. La corriente de soldadura puede ser superior a la indicada en la máquina si se emplean cables cortos y/o tensiones inferiores. Son preferibles altas corrientes cuando se utilicen máquinas para soldar de propósitos generales con arcos de bajo voltaje, como soldadura por arco gas tungsteno. Los cables de soldadura deben ser del tipo flexible y diseñados especialmente para los rigores del servicio de soldadura. La aislación empleada en los cables para alta tensión u osciladores de alta frecuencia deben proveer protección adecuada. Las recomendaciones y precauciones del fabricante de cables deben ser siempre seguidas. La aislación de los cables debe ser mantenida en buena condición, y los cables reemplazados o reparados rápidamente cuando sea necesario. Los soldadores no deben dejar que las partes metálicas de electrodos, portaelectrodos o torchas toquen cualquier parte desnuda de su piel o cualquier parte húmeda de su cuerpo. Siempre deben vestirse guantes secos y en buena condición. La aislación en los portaelectrodos debe ser mantenida en buen estado. Los portaelectrodos no deben ser calentados por inmersión en agua caliente. Si se utilizan pistolas de soldar o portaelectrodos calentados por agua, deben estar libres de pérdida de agua o condensación que puedan afectar adversamente la seguridad del soldador. Los soldadores no deben enroscarse el cable de soldar alrededor de su cuerpo. El circuito de soldadura debe ser desenergizado cuando se ajuste el electrodo, torcha o pistola; para prevenir el peligro de shock eléctrico. Una excepción es la de los electrodos
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
recubiertos en soldadura por arco con electrodo revestido. Cuando el circuito está energizado, los electrodos pueden ser cambiados con guantes secos, no con las manos desnudas. La desenergización del circuito es deseable para mayor seguridad. Cuando un soldador haya terminado de trabajar o deje el puesto de trabajo por un cantidad grande de tiempo, debe apagarse la máquina de soldar. De la misma manera, cuando se deba mover la máquina, ésta debe ser desconectada de la fuente. Cuando el equipo no esté siendo usado, los electrodos expuestos deben ser removidos del portaelectrodos para eliminar el peligro de contactos accidentales. Además, las pistolas de soldadura de equipos de soldadura semiautomática deben ser ubicadas de manera que el switch de la pistola no pueda ser encendido accidentalmente. Los incendios provocados por equipos de soldadura eléctricos son generalmente causados por sobrecalentamieto de los componentes eléctricos. Otras causas son chispas que vuelan, salpicaduras, combustibles sueltos en equipos que son accionados por motores. Muchas de las precauciones contra shock eléctrico son aplicables para prevenir fuegos o incendios causados por sobrecalentamiento del equipo. Las precauciones para evitar incendios por chispas o salpicaduras ya fueron tratadas. Los sistemas de combustible de equipos accionados por motores deben estar en buena condición. Las pérdidas deben ser reparadas prontamente. Los equipos accionados por motor deben ser apagados antes de reabastecerlos de combustible, cualquier chorreadura de combustible debe ser secada y debe permitirse que los vapores generados se disipen antes de encender el motor. En caso contrario, el sistema de ignición, los controles eléctricos, los componentes productores de chispas o el calor del motor pueden comenzar un incendio.
2-20
Tecnología de Inspección de Soldadura Prácticas de seguridad para inspectores de soldadura
Palabra clave- Protección ocular y protección gafas
ANSI/AWS F2.2-89
Tabla 2- SELECCIÓN PROTECCIÓN GAFAS Los números de protección están solo como guía, pudiendo variar de acuerdo a necesidades personales Operación
Tamaño del electrodo en mm
Intensidad de corriente (A)
Protección mínima
SMAW
menor a 2.5 2.5-4 4-6.4 mayor a 6.4
menor a 60 60-160 >160-250 >250-500 menor a 60 60-160 >160-250 >250-500 menor a 50 50-100 >150-250 menor a 500 500-1000 menor a 20 20-100 >100-400 >400-800 menor a 300 300-400 >400-800 -
7 8 10 11 7 10 10 10 8 8 10 10 11 6 8 10 11 8 9 10 -
GMAW & FCAW
GTAW
CAC-A liviano CAC-A pesado PAW
PAC liviano PAC medio PAC pesado TB TS CAW
Protección sugerida (comfort) 10 12 14 11 12 14 10 12 14 12 14 6a8 10 12 14 9 12 14 3o4 2 14
Espesor de la chapa GW liviano GW mediano GW pesado OC liviano OC mediano OC pesado
mm inferior a 3.2 3.2 a 13 superior a 13 inferior a 25 25 a 100 superior a 150
pulgadas inferior a 1/8 1/8 a 1/2 superior a 1/2 inferior a 1 1a6 superior a 6
4o5 5o6 6a8 3o4 4o5 5o6
1 Estos números son aproximados. Se recomienda empezar con una protección más oscura para ver la zona de soldadura. Luego puede ir disminuyendo, sin bajar del mínimo recomendado. En soldadura por gas o corte por oxígeno es conveniente usar un filtro que absorba el amarillo o la línea de sodio dentro del espectro de operación2 Estos valores se aplican donde el arco real es claramente visible. La experiencia ha mostrado que los filtros de luz pueden usarse cuando el arco está oculto por la pieza.
2-21