MODUL MATEMATIKA
KELAS X SEMESTER I
Muhammad Zainal Abidin Personal Blog SMAN 1 Bone-Bone | Luwu Utara | Sulsel http://meetabied.wordpress.com
BENTUK PANGKAT, AKAR, DAN LOGARITMA Standar Kompetensi :
Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma. Kompetensi Dasar :
•
Menggunakan aturan pangkat, akar, dan logaritma
•
Melakukan manipulasi aljabar dalam perhitungan yang melibatkan pangkat, akar, dan logaritma.
BAB I. PENDAHULUAN A. Deskripsi
Dalam modul ini Anda akan mempelajari bilangan pangkat bulat positif, negatif, rasional, bentuk akar, merasionalkan penyebut, menentukan persamaan pangkat, dan menentukan nilai logaritma. B. Prasyarat
Untuk
mempelajari
modul
ini,
para
siswa
diharapkan
telah
menguasai dasar-dasar penjumlahan, pengurangan, perkalian, dan pembagian bilangan real. C. Petunjuk Penggunaan Modul
Untuk mempelajari modul ini, hal-hal yang perlu Anda lakukan adalah sebagai berikut: 1. Untuk mempelajari modul ini haruslah berurutan, karena materi yang mendahului merupakan prasyarat untuk mempelajari materi berikutnya. 2. Pahamilah contoh-contoh soal yang ada, dan kerjakanlah semua soal latihan yang ada. Jika dalam mengerjakan soal Anda menemui kesulitan, kembalilah mempelajari materi yang terkait. 3. Kerjakanlah soal evaluasi dengan cermat. Jika Anda menemui kesulitan
dalam
mengerjakan
soal
evaluasi,
kembalilah
mempelajari materi yang terkait. 4. Jika Anda mempunyai kesulitan yang tidak dapat Anda pecahkan, catatlah, kemudian tanyakan kepada guru pada saat kegiatan tatap muka atau bacalah referensi lain yang berhubungan dengan materi modul ini. Dengan membaca referensi lain, Anda juga akan mendapatkan pengetahuan tambahan. D. Tujuan Akhir
Setelah mempelajari modul ini diharapkan Anda dapat: 1. Menghitung bilangan pangkat bulat posit dan negatif, 2. Menghitung bilangan pangkat rasional
3. Menentukan bentuk akar 4. Merasionalkan penyebut, 5. Menentukan persamaan pangkat, 6. Menentukan nilai logaritma
BAB II PEMBELAJARAN A. PANGKAT BULAT POSITIF
Jika a
R dan n > 1, n
∈
∈
A maka
an = a.a.a.a.a.a.a.....a sebanyak n kali a disebut bilangan pokok n disebut pangkat / eksponen Sifat-sifat eksponen bulat positif Jika a dan b bilangan real, m dan n bilangan bulat positif 1.
am. an = am + n
2.
am: an = am - n
3.
(am) n = amn
4.
(a.b)m = am .bm a
5. ( )
m
b
=
am bm
Contoh : Sederhanakan : 1.
a3.a5 = a3 + 5 = a8
2.
a 7 : a 2 = a7 – 2 = a5
3.
(a3b6c4)2 = a3.2b6.2c4.2 = a6b12c8
4.
(a8 : a6)3 = (a8 – 6)3 = a2.3 = a6 4
a 3b 5 = ( a 3−1 .b 5−2 ) 4 = ( a 2 b 3 ) 4 = a 8 b12 5. 2 ab B. PANGKAT BULAT NEGATIF DAN RASIONAL 1 a
m
=
a0 a
m
=
a
0−m
=
a
−
m
Jadi a
−
m
1
=
a
m
Bilangan rasional yaitu bilangan yang dapat dinyatakan dengan a n
a
a, b ∈ B
dan
b m
dan b ≠ 0 .
merupakan bilangan dengan pangkat tak sebenarnya.
Contoh : 1. Nyatakan dengan eksponen positif : −
a. a b.
5
1
=
a
12 a −2
5
4b 5
=
3b −5
a2
2. Sederhanakan : a.
a 3b 6
=
a 5b 2
−2
a b
4
=
b4 a2
5
5
4 −6 2 −25 2 1 −1 b. b 5 b 5 = b = b = b 9
c.
x
2
3
x
2
x
=
4
x
12
3
2
6−
=
4
x
4 3
x
14
=
x
3
3
3. Sederhanakan : 4
a. b.
( )
83 = 2
3
2
4 3
( 32) .( 27) 5
3.
=
2
1 3 =
4 3
=
= 16
(2 ) (3 ) 5
1. Sederhanakan : a. (a 3 .b 4 .c 6 ).( a.b 3 .c 2 ) 5
4
2
5
Tugas I
x 5 y 6 3 b. 3 2 x y
2
2
3
1 3 =
2
2 .3 = 12
27 p 5 q −3 c. 9 p 6 q −4 −
3
2 −3 2 d. a b 2 a −3 b −1 1
2. Tentukan nilai dari : a.
1
( 64) ( 25)
1 −
3
1
2
3
3
64 .9 2
b.
2
−
3
64
.9 2
3. Sederhanakan dan nyatakan dalam pangkat positif a. b.
x −
1
+ y
−2
x −2
− y
−1
a a
2
−
−
4
a
+ +
a
1
+
a0
+
a
−
−
3
−
2
3
4. Hitunglah :
16
4
+
8.16
−
2
27 3
−
6.27
1 2
−
−
5
+
3
1 3
C. BENTUK AKAR
Bentuk akar adalah bilangan-bilangan hasilnya merupakan bilangan irasional. Contoh :
3,
5,
8 , dsb
Sifat-sifat bentuk akar : 1.
ab
2.
a b
3.
a( b
4. 5. 6.
a. b
=
a
=
m a
b ±
±n
m a
c)
a
±m
a. a
=a
=
ab
±
= ( m ± n)
b
= m(
a
ac
a ±
b)
dibawah
akar yang
m
7.
n
a
m
an
=
1
8.
a
a2
=
Contoh : Sederhanakanlah : 1.
48
2.
2 162
3.
5 3
4.
108
5.
4 20
6.
4 6( 3
+5
7.
(3 2
6 )(3 2
16 .3
=
=2
=4
81 .2
+2
3
=7
+
48
=
−2
+
3
45
= 2.9
2
=18
2
3 36 .3
=4
2)
4.5
=4
−2
18
6)
−
16 .3
+
=6
9.5
+ 20
= (3
3
+4
= 4.2
12
2)2
5
=4 +3
3
− 2.3
9.2
12
=10
+20
−3
12
3 5
=8
5
−6
4.3
=12
−(
6)2
= 18 − 6 = 12 Sederhanakan dan tulis dalam bentuk akar : 2
2 4 7 1 1 2 3 2 3 3 1. a .a = a .a = a = a .a 3 = a 2 .3
34 54 2. x . y
a
2
3 5 1 1 2 2 2 2 2 = = = x. y 2 x y x x y y . . . .
xy
Nyatakan ke bentuk pangkat rasional : 1
1.
3
a
2
a
3
a
=
3
1
=
2
a .a 2
3
5
a2
5 52 3 a = a 6 =
1
2.
a
a
=
a
3
a.a
1 2
Tugas II
1. Sederhanakan : a.
200
b.
288
c.
216
d.
75
e.
2 18
+
50
+3
−
12
32
−
98
=
a
3
a
3 2
=
a.a
1 2
=
a
3 2
3 2 32 = a = a 4
2
5
+ 40
3
2. Sederhanakan : a.
5 6 (3 10
b.
( 7
+3
+
2 )(
3. Diketahui
a
Tentukan
15 ) 7
=
−3
5
2)
+
3
−
dan
2
b
=
2
+
5
−
3
a.b
4. Sederhanakan dan tulis dalam bentuk akar : a.
a
−
1 2
.b 2 3
−1
a .b 2
b. x
2
1
3
. y 2
−
x −2 . y 3
5. Diketahui segitiga ABC sama kaki dengan AB = AC =
8
2
BC = 8. Tentukan : a. tinggi segitiga dari titik sudut A b. Luas segitiga tersebut D. MERASIONALKAN PENYEBUT
Contoh : Rasionalkan penyebutnya 1. 2.
6 2
6
=
2
6 5
+
2
.
=
2 2
=
6 2 2
6 5
+
2
.
=3
− 5− 5
2
2 2
= 6.(
5 − 2) 5 −2
= 6.(
5 − 2) 3
= 2.(
E. PERSAMAAN EKSPONEN
1. Jika a f ( x ) = a p maka berlaku f(x) = p ; a ≠ 0 2. Jika a f ( x )
= a g ( x ) maka berlaku f(x) = g(x) ;
a
≠0
Contoh : Tentukan himpunan penyelesaian persamaan berikut : a.
5
−
2)
dan
9 2 x −1
=27 3 2.( 2 x −1) =3 3 3 4 x −2 =3 3 4 x −2 =3 4 x =5 x
=
5 4
Jadi HP = {
5 } 4
b. x −4
2
3 x −1
2 3 x −1 2 3 x −1 2 2
3 x −1
3 x −1
1 = 32
x −4
= (2 −5 ) = 2 20−5 x 1
= 22 =2
( 20 −5 x )
5 10 − x 2
3 x −1 = 10
− 5 x
2 6 x − 2 = 20 − 5 x
11 x x
= 22
=2
Tugas III
1. Rasionalkan penyebutnya : a. b. c.
12 2 3
−
5
3 2
−
3
+3
2
3
1 2 2
+
1 3 2
2. Tentukan himpunan penyelesaian persamaan berikut : a. 5 x +3 = 25 x −2 b.
4 2 x
+1
= 64
c.
16
2 x +4
= (0,25 ) −3 x−3
x −1
1 d. = 3 4
2 3 x +1
F. LOGARITMA
Logaritma adalah kebalikan dari perpangkatan. Jadi apabila diketahui ax=b maka x dapat ditentukan dengan logaritma yang berbentuk x = a log b a : bilangan pokok logaritma dengan a > 0, a
≠
1
b : Numerus , b > 0 Contoh : * 25 = 32 * 3-4 =
2
1
log 32 = 5 3
81
1 =-4 81
log
Sifat-sifat logaritma Bila a, b, c dan p bilangan real yang memiliki sifat a > 0, b > 0, p > 0 dan p
1 ,maka berlaku :
≠
1.
p
log b = x ,maka p x = b
2.
p
log ab =
3.
p
log
4.
p
log an = n.
5.
p
log a.a log b.b log c =
6.
a
7.
p
10.
a
log a +
p
log a -
=
b
p
log b =
log b
p
log a
log x =
x
a
m
log x
1 log p
=
n m
.a log b
p
log 1 = 0
11.
p
12.
p
; x
=x
log b n
log p = 1 log pn = n
p
p
log b
log b
log a
p
8. a 9.
a
p
≠
p
1
log c ;
a ≠ 1, b ≠ 1
Contoh : 1. Sederhanakan : a.
2
log 4 – 2log 6 + 2log 12 = 2log
b.
3
4.12 6
= 2log 8 = 3
log 4. 2log 125. 5log 81 = 3log 22. 2log 53. 5log 34 = 2. 3log 2. 3. 2log 5. 4. 5log 3 = 2.3.4. 3log 2. 2log 5. 5log 3 = 24. 3log 3 = 24
c. 36
6
log 3
d. log 5 +
=
36
36
1 4
log 10
log 9
+
=9 1 25
log 100
= log 5+10 log 4+100 log 25 = log 5 + log 4 + log 5 = log 100 = 10
2.
Diketahui 2log 3 = a dan
3
log 5 = b
Nyatakan dengan a dan b bentuk-bentuk berikut : a.
16
b.
9
log 3 =
log 32 =
24
log 3 =
32
log 2
Tugas IV
1. Tentukan nilai dari : a. 3log1/27 b. 9 log
1 3
2. Sederhanakan : a. 6 log 84 −6 log 7 +6 log
1 2
5
1 4
=
.2 log 3 = 5 2
3
. log 2
1 4
=
a
5 2
.
1 2
log 3
=
5 2a
b. 2 log 8 +16 log c.
3
1 4
+4 log 64
log 25 .36 log 27 .5 log 6
3. Sederhanakan : a.
log 2 2
+ log
3
+ log
18
log 6 2 ) +log( 2 3
−
4. Diketahui 2log 3 = x dan
5
b.
log( 2 3
+
3)
log 2= y
Nyatakan dengan xdan y bentuk-bentuk berikut : a.
5
b.
2
c.
18
log 15 log 45 log 20
BAB III PENUTUP
Setelah menyelesaikan modul ini, anda berhak untuk mengikuti tes untuk menguji kompetensi yang telah anda pelajari. Apabila anda dinyatakan memenuhi syarat ketuntasan dari hasil evaluasi dalam modul ini, maka anda berhak untuk melanjutkan ke topik/modul berikutnya.
DAFTAR PUSTAKA
Tim Matematika SMA, 2004. Matematika 1 Untuk SMA Kelas X , Jakarta : PT. Galaxy Puspa Mega. Sartono Wirodikromo, 2006. Matematika untuk SMA Kelas X , Jakarta : Penerbit Erlangga. MGMP Matematika Kota Semarang, 2007. LKS Matematika SMA / MA, Semarang : CV. Jabbaar Setia.