SATUAN ACARA PENGAJARAN (SAP) (KEGIATAN PENGAJARAN YANG DILAKUKAN SETIAP MINGGU / SETIAP TATAP MUKA)
NAMA DOSEN MATA KULIAH PERTEMUAN KE TUJUAN INST UMUM TUJUAN INST KHUSUS
: : : : :
POKOK BAHASAN
:
Fitria Hidayanti, S.Si., M.Si. Matrik dan Vektor 1 - 16 (3 x 50’)
SKS: 3
Memahami Matrik dan Vektor untuk aplikasi Teknik Fisika Memahami Matrik dan Vektor sebagai solusi persamaan yang diperlukan dalam aplikasi bidang Teknik Fisika 1. 2. 3. 4. 5. 6. 7.
SUB POKOK BAHASAN
KODE: 02030231
Matriks Operasi matriks Dekomposisi matriks Determinan matriks Invers matriks Persamaan linear Vektor
: 1. Definisi Matriks, Jenis-jenis matriks, transpose matriks, matriks, partisi matriks, kesamaan matriks, matriks matriks gabungan. 2. Definisi operasi matriks, penjumlahan penjumlahan dan pengurangan matriks, perkalian perkalian scalar matriks, perkalian matriks, pembagian matriks, pangkat suatu matriks, operasi baris elementer. 3. Definisi dekomposisi matriks, metode metode crout, metode Doolittle, metode cholesky, metode metode eliminasi gauss, minor dan k ofaktor matriks, matriks adjoint 4. Definisi determinan matriks, matriks, matode sarrus, metode metode minor kofaktor, kofaktor, metode CHIO, metode eliminasi eliminasi gauss, metode dekomposisi matriks, sifat determinan matriks, aplikasi konsep determinan 5. Definisi invers matriks, metode substitusi, substitusi, metode partisi matriks, metode matriks adjoint, metode eliminasi gauss, metode eliminasi gauss Jordan, metode perkalian invers matriks elementer, metode dekomposisi matriks, sifat invers matriks 6. Persamaan linear simultan, persamaan linear homogen, solusi persamaan linear homogen, persamaan linear non homogen, solusi persamaan linear non homogen, metode grafik, metode substitusi, metode invers matriks, metode crammer, metode eliminasi gauss, metode eliminasi gauss
Jordan, metode dekomposisi matriks. 7. Vector pada bidang dan ruang, hasil kali titik dan proyeksi, persamaan garis dan bidang di ruang tiga, kosinus arah, hasil kali scalar dari dua vector, hasil kali vector dari dua vector, sudut antara dua vektor KEGIATAN PENGAJARAN
:
TAHAP KEGIATAN
KEGIATAN PENGAJAR
PENDAHULUAN
Menjelaskan definisi dan pokok bahasan
Mendengarkan Bertanya Mencatat
PENYAJIAN
Menjelaskan sub pokok bahasan, mengatur diskusi
Mendengarkan, mengerjakan soal, diskusi Menyimpulkan pembelajaran
PENUTUP
Menyimpulkan pokok bahasan
MEDIA DAN ALAT PENGAJARAN
KEGIATAN MAHASISWA
White Board
mencatat, bertanya, tujuan
Presentasi Power Point, LCD, Projector LCD Projector
GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata Kuliah Deskripsi Mata Kuliah Tujuan Instruksional Umum
: Matrik dan Vektor : Mata kuliah yang mempelajari tentang matriks dan vektor : Mata kuliah ini bertujuan agar mahasiswa dapat memahami Matrik dan Vektor dalam persamaan dan memanfaatkannya untuk aplikasi di bidang Teknik Fisika
Minggu 1
2
Tujuan Instruksional Khusus
Pokok Bahasan
Sub Pokok Bahasan
Estimasi Waktu
Media Pembelajaran
Pustaka
Diharapkan mahasiswa : 1. Memahami definisi matriks 2.Memahami jenis-jenis matriks 3.Memahami transpose matriks
Matriks
1. Defisini matriks 2. Jenis-jenis matriks 3. Transpose matriks
(3x50’)
Presentasi power Anton, H., point, white board, Elementary Linear Algebra, LCD Projector Ninth Edition, John Wiley & Sons, Inc., 2005.
Diharapkan mahasiswa : 1. Memahami partisi matriks 2. Memahami kesamaan pada matriks 3. Memahami matriks gabungan
Matriks
1. Partisi matriks 2. Kesamaan matriks 3. Matriks gabungan
(3x50’)
Presentasi power point, white board, LCD Projector
Serre, D., Matrices : Theory and Applications, Springer – Verlag New York, Inc., 2002
3
4
5
6
Diharapkan mahasiswa : 1. Memahami definisi operasi matriks 2.Memahami penjumlahan dan pengurangan matriks 3. Memahami perkalian scalar matriks 4. Memahami perkalian matriks
Operasi Matriks
1. Definisi operasi matriks 2. Penjumlahan dan pengurangan matriks 3. Perkalian scalar matriks 4. Perkalian matriks 1. Pembagian matriks 2. Pangkat suatu matriks 3. Operasi baris elementer
(3x50’)
Presentasi power point, white board, LCD Projector
Stroud, K.A., Booth, D.J., Engineering Mathematics, Fifth Edition, Industrial Press, Inc., 2001.
Diharapkan mahasiswa : 1. Memahami pembagian matriks 2. Memahami pangkat suatu matriks 3. Memahami operasi baris elementer
Operasi Matriks
(3x50’)
Presentasi power point, white board, LCD Projector
Cox, B., Understanding Engineering Mathematics, Newnes, 2001.
Diharapkan mahasiswa : 1. Memahami definisi dekomposisi 2. Memahami metode crout 3. Memahami metode doolittle
Dekomposisi Matriks
1. Definisi dekomposisi matriks 2. Metode crout 3. Metode doolittle
(3x50’)
Presentasi power Anton, H., point, white board, Elementary Linear Algebra, LCD Projector Ninth Edition, John Wiley & Sons, Inc., 2005.
Diharapkan mahasiswa : 1. Memahami metode cholesky 2. Memahami metode eliminasi gauss 3.Memahami minor dan kofaktor matriks 4. Memahami matriks adjoint
Dekomposisi Matriks
1. Metode cholesky 2. Metode eliminasi gauss 3. Minor dan kofaktor matriks 4. Matriks adjoint
(3x50’)
Presentasi power point, white board, LCD Projector
Serre, D., Matrices : Theory and Applications, Springer – Verlag New York, Inc., 2002
7
Minggu 8
9
Diharapkan mahasiswa : 1. Memahami definisi determinan matriks 2. Memahami metode sarrus 3. Memahami metode minor kofaktor Memahami metode CHIO
Tujuan Instruksional Khusus
Determinan matriks
Pokok Bahasan
Diharapkan mahasiswa : 1. Memahami determinan dengan eliminasi gauss 2. Memahami determinan dengan dekomposisi matriks 3. Memahami sifat determinan 4. Memahami aplikasi determinan
Determinan matriks
Diharapkan mahasiswa : 1. Memahami definisi
Invers Matriks
1. Definisi determinan matriks 2. Metode sarrus 3. Metode minor kofaktor 4. Metode CHIO
(3x50’)
Presentasi power point, white board, LCD Projector
Stroud, K.A., Booth, D.J., Engineering Mathematics, Fifth Edition, Industrial Press, Inc., 2001.
Sub Pokok Bahasan
Estimasi Waktu
Media Pembelajaran
1. Metode eliminasi gauss 2. Metode dekomposisi matriks 3. Sifat determinan matriks 4. Aplikasi konsep determinan 1. Definisi invers matriks
(3x50’)
Presentasi power point, white board, LCD Projector
(3x50’)
Presentasi power Anton, H., point, white board, Elementary
Pustaka Cox, B., Understanding Engineering Mathematics, Newnes, 2001.
invers matriks 2. Memahami metode substitusi 3. Memahami metode partisi matriks 4. Memahami metode matriks adjoint
10
11
Diharapkan mahasiswa : 1. Memahami metode eliminasi gauss 2. Memahami metode eliminasi gauss jordan 3. Memahami metode perkalian invers matriks elementer 4. Memahami metode dekomposisi matriks 5. Memahami sifat invers matriks
Diharapkan mahasiswa : 1. Memahami persamaan linier simultan 2. Memahami persamaan linier homogen 3. Memahami solusi persamaan linier 4. Memahami persamaan linier non homogen 5. Memahami solusi persamaan linier homogen 6. Memahami solusi
2. Metode substitusi 3. Metode partisi matriks 4. Metode matriks adjoint
Invers Matriks
1. Metode eliminasi gauss 2. Metode eliminasi gauss Jordan 3. Metode perkalian invers matriks elementer 4. Metode dekomposisi matriks 5. Sifat invers matriks Persamaan Linear 1. Persamaan linear simultan 2. Persamaan linear homogen 3. Solusi persamaan linear homogen 4. Persamaan linear non homogen 5. Solusi
LCD Projector
Linear Algebra, Ninth Edition, John Wiley & Sons, Inc., 2005.
(3x50’)
Presentasi power point, white board, LCD Projector
Serre, D., Matrices : Theory and Applications, Springer – Verlag New York, Inc., 2002
(3x50’)
Presentasi power point, white board, LCD Projector
Stroud, K.A., Booth, D.J., Engineering Mathematics, Fifth Edition, Industrial Press, Inc., 2001.
dengan metode grafik
12
13
14
Diharapkan mahasiswa : 1. Menyelesaikan persamaan linier dengan metode substitusi 2. Memahami metode invers matriks 3. Memahami metode cramer 4. Memahami metode eliminasi gauss 5. Memahami metode eliminasi gauss Jordan 6. Memahami metode dekomposisi matriks
Persamaan Linear
Diharapkan mahasiswa : 1. Memahami definisi vektor 2.Memahami vector pada bidang dan ruang 3.Memahami hasil kali titik dan proyeksi 4. Memahami persamaan garis dan bidang di R 3
Vektor
Diharapkan mahasiswa : 1. Memahami menjelaskan kosinus arah 2. Memahami hasil kali skalar dari dua vektor 3. Memahami hasil kali vektor dari dua vektor
Vektor
6. 1. 2. 3. 4.
5.
6.
1. 2.
3. 4.
1. 2.
3.
persamaan linear non homogen Metode grafik Metode substitusi Metode invers matriks Metode cramer Metode eliminasi gauss Metode eliminasi gauss Jordan Metode dekomposisi matriks Vector Vector pada bidang dan ruang Hasil kali titik dan proyeksi Persamaan garis dan bidang di ruang tiga Kosinus arah Hasil kali scalar dari dua vector Hasil kali vector dari dua vector
(3x50’)
Presentasi power point, white board, LCD Projector
Cox, B., Understanding Engineering Mathematics, Newnes, 2001.
(3x50’)
Presentasi power Anton, H., point, white board, Elementary Linear Algebra, LCD Projector Ninth Edition, John Wiley & Sons, Inc., 2005.
(3x50’)
Presentasi power point, white board, LCD Projector
Serre, D., Matrices : Theory and Applications, Springer – Verlag New York, Inc., 2002
4. Memahami sudut antara dua vektor
4. Sudut antara dua vektor